Changes in Pan Evaporation and Their Attribution to Climate Factors in the Zoige Alpine Wetland, the Eastern Edge of the Tibetan Plateau (1969–2014)
Abstract
:1. Introduction
2. Study Area, Data, and Method
2.1. Study Area and Data
2.2. PenPan-20 Model and Its Contributions
2.3. Trend Analysis
3. Results
3.1. Change in the Main Climate Factors
3.2. Changes in the Observed Epan
3.3. Contributions of the Main Climate Factors on the Changes in Epan
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Woo, M. Impacts of climate variability and change on Canadian Wetlands. Can. Water Resour. J. 1992, 17, 63–69. [Google Scholar] [CrossRef]
- Poiani, K.A.; Johnson, W.C. Potential effects of climate change on a semi-permanent prairie wetland. Clim. Chang. 1993, 24, 213–232. [Google Scholar] [CrossRef]
- Dankers, R.; Christensen, O.B. Climate change impact on snow coverage, evaporation and river discharge in the sub-arctic Tana Basin, Northern Fennoscandia. Clim. Chang. 2005, 69, 367–392. [Google Scholar] [CrossRef]
- Liu, H.; Bu, R.; Liu, J.; Leng, W.; Hu, Y.; Yang, L.; Liu, H. Predicting the wetland distributions under climate warming in the great Xing’an mountains, Northeastern China. Ecol. Res. 2011, 26, 605–613. [Google Scholar] [CrossRef]
- Cui, B.L.; Li, X.Y. The impact of climate changes on water level of Qinghai Lake in China over the past 50 years. Hydrol. Res. 2016, 47, 532–542. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Duan, S.; Tian, M.; Yi, D. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. J. Appl. Remote Sens. 2011, 5, 053532. [Google Scholar] [CrossRef]
- Liu, C.; Xie, G.; Huang, H. Shrinking and drying up of Baiyangdian Lake wetland: A natural or human cause? Chin. Geogr. Sci. 2006, 16, 314–319. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2009, 17, 71. [Google Scholar] [CrossRef]
- Abtew, W.; Melesse, A. Wetland Evapotranspiration; Springer: Dordrecht, The Netherlands, 2013; pp. 93–108. [Google Scholar]
- Brutsaert, W. Indications of increasing land surface evaporation during the second half of the 20th century. Geophys. Res. Lett. 2006, 33, L20403. [Google Scholar] [CrossRef]
- Brutsaert, W. Use of pan evaporation to estimate terrestrial evaporation trends: The case of the Tibetan Plateau. Water Resour. Res. 2013, 49, 3054–3058. [Google Scholar] [CrossRef]
- Hobbins, M.T.; Ramírez, J.A.; Brown, T.C. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett. 2004, 31, 405–407. [Google Scholar] [CrossRef]
- Jhajharia, D.; Shrivastava, S.K.; Sarkar, D.; Sarkar, S. Temporal characteristics of pan evaporation trends under the humid conditions of Northeast India. Agric. For. Meteorol. 2009, 149, 763–770. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol. 2004, 24, 1077–1090. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. Changes in New Zealand pan evaporation since the 1970s. Int. J. Climatol. 2005, 25, 2031–2039. [Google Scholar] [CrossRef]
- Xie, H.; Zhu, X.; Yuan, D.Y. Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012). Hydrol. Process. 2015, 29, 2164–2177. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Tang, Y.; Yang, Y. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res. Atmos. 2007, 112, 1103–1118. [Google Scholar] [CrossRef]
- Brutsaert, W.; Parlange, M.B. Hydrologic cycle explains the evaporation paradox. Nature 1998, 396, 30. [Google Scholar] [CrossRef]
- Mcvicar, T.R.; Niel, T.G.V.; Roderick, M.L.; Donohue, R.J. Ecohydrology bearings—Invited commentary less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds. Ecohydrology 2012, 5, 381–388. [Google Scholar] [CrossRef]
- Roderick, M.L.; Rotstayn, L.D.; Farquhar, G.D.; Hobbins, M.T. On the attribution of changing pan evaporation. Geophys. Res. Lett. 2007, 34, 251–270. [Google Scholar] [CrossRef]
- Rotstayn, L.D.; Roderick, M.L.; Farquhar, G.D. A simple pan-evaporation model for analysis of climate simulations: Evaluation over Australia. Geophys. Res. Lett. 2006, 33, 165–173. [Google Scholar] [CrossRef]
- Jhajharia, D.; Singh, V.P. Trends in temperature, diurnal temperature range and sunshine duration in Northeast India. Int. J. Climatol. 2011, 31, 1353–1367. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Zhao, Y.; Li, H.; Zhai, J.; Shang, Y. Temporal and spatial characteristics of pan evaporation trends and their attribution to meteorological drivers in the three-river source region, China. J. Geophys. Res. 2015, 120, 6391–6408. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D. Climatic factors influencing changing pan evaporation across China from 1961 to 2001. J. Hydrol. 2012, 414–415, 184–193. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Shen, Y.; Liu, Y.; Zhang, S. Analysis of changing pan evaporation in the arid region of Northwest China. Water Resour. Res. 2013, 49, 2205–2212. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, Y.; Szilagyi, J.; Guo, Y.; Zhai, J.; Gao, H. Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau. Water Resour. Res. 2015, 51, 1069–1083. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Niu, G.Y.; Zhang, Y.; Zhang, T.; Wang, B.; Wu, Y. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion. J. Hydrol. 2016, 537, 27–35. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Q.; Chen, F.; Wang, K. Rs based evaporation estimation of Three River sources in Qinghai-Tibet Plateau and its response to lakes and wetlands. J. Jilin Univ. 2009, 39, 507–513. [Google Scholar]
- Bai, J.; Lu, Q.; Zhao, Q.; Wang, J.; Ouyang, H. Effects of alpine wetland landscapes on regional climate on the Zoige Plateau of China. Adv. Meteorol. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Li, B.; Yu, Z.; Liang, Z.; Song, K.; Li, H.; Wang, Y.; Zhang, W.; Acharya, K. Effects of climate variations and human activities on runoff in the Zoige alpine wetland in the eastern edge of the Tibetan Plateau. J. Hydrol. Eng. 2014, 19, 1026–1035. [Google Scholar] [CrossRef]
- Dai, Y.; Luo, Y.; Wang, C.-K.; Shen, Y.-P.; Ma, Z.-F.; Wang, X.-L. Climate variation and abrupt change in wetland of Zoigê Plateau during 1961–2008. J. Glaciol. Geocryol. 2010, 32, 35–42. [Google Scholar]
- Guo, J.; Li, G.-P. Climate change in Zoigê Plateau marsh wetland and its impact on wetland degradation. Plateau Meteorol. 2007, 26, 422–428. [Google Scholar]
- Zhen, S.; Duoerji, S.; Dong, L.; Yao, P.; Zheng, R. Analysis on climate change characteristics of Zoige p Lateau during 1967–2014. J. Southwest For. Univ. 2016, 36, 138–143. [Google Scholar]
- Li, Z.; Wang, Z.; Zhang, C.; Han, L.; Zhao, N. A study on the mechanism of wetland degradation in Ruoergai swamp. Adv. Water Sci. 2014, 25, 172–180. [Google Scholar]
- Wang, X.L. Comments on “detection of undocumented changepoints: A revision of the two-phase regression model”. J. Clim. 2002, 15, 2547–2554. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage paper 56. FAO 1998, 300, D05109. [Google Scholar]
- Kulkarni, A.; Storch, H.V. Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol. Z. 1995, 4, 82–85. [Google Scholar]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Gan, T.Y. Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water Resour. Res. 1998, 34, 3009–3015. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Y.; Zhang, D.; Zhang, M.; Liu, C. Recent changes in pan-evaporation dynamics in China. Geophys. Res. Lett. 2011, 38, 142–154. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, Y.; Yin, Z.Y.; Lin, Z.; Zheng, D. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J. Geophys. Res. Atmos. 2009, 114, 4427–4433. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. The significant climate warming in the Northern Tibetan Plateau and its possible causes. Int. J. Climatol. 2012, 32, 1775–1781. [Google Scholar] [CrossRef]
- Yihui, D.; Li, Z. Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China. Chin. J. Atmos. Sci. 2008, 32, 794–805. [Google Scholar]
- You, Q.; Min, J.; Kang, S. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 2015, 36, 2660–2670. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Lin, C.; Yang, K.; Qin, J.; Fu, R. Observed coherent trends of surface and upper-air wind speed over China since 1960. J. Clim. 2013, 26, 2891–2903. [Google Scholar] [CrossRef]
- Yang, K.; Ding, B.; Qin, J.; Tang, W.; Ning, L.; Lin, C. Can aerosol loading explain the solar dimming over the Tibetan Plateau? Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Qin, G.; Li, H.; Zhou, Z.; Song, K.; Zhang, L. Hydrologic variations and stochastic modeling of runoff in Zoige Wetland in the Eastern Tibetan Plateau. Adv. Meteorol. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
Study Area | WMO Number | Station Name | Longitude (°E) | Latitude (°N) | Elevation (m) |
---|---|---|---|---|---|
Zoige wetland | 56067 | Jiuzhi | 101.483 | 33.433 | 3630 |
56173 | Hongyuan | 102.550 | 32.800 | 3492.7 | |
56079 | Zoige | 102.967 | 33.583 | 3441.1 | |
56074 | Marchu | 102.083 | 34.000 | 3473.2 | |
Peripheral area | 56043 | Golog | 100.250 | 34.467 | 3720 |
56046 | Darlag | 99.650 | 33.750 | 3968.5 | |
56151 | Baima | 100.750 | 32.933 | 3530 | |
56172 | Barkam | 102.233 | 31.900 | 2665.9 | |
56182 | Songpan | 103.567 | 32.650 | 2852.1 | |
56065 | Henan | 101.600 | 34.733 | 3501 |
Study Area | Ta (°C) | Rn (W/m2) | u2 (m/s) | D (hpa) | P (mm) | Epan_o (mm/a) * |
---|---|---|---|---|---|---|
Zoige wetland | 1.41 | 30.9 | 1.67 | 2.26 | 685.2 | 1245 |
Peripheral area | 2.89 | 30.6 | 1.26 | 2.96 | 633.9 | 1316 |
Meteorological Factors | Zoige Wetland | Peripheral Area | ||||
---|---|---|---|---|---|---|
1969–2014 | 1969–1989 | 1990–2014 | 1969–2014 | 1969–1989 | 1990–2014 | |
Ta (°C/decade) | 0.41 ** | 0.22 | 0.63 ** | 0.20 ** | −0.11 | 0.50 ** |
Rn (W/m2/decade) | −0.16 | −0.58 * | −0.26 | −0.17 * | −0.09 | −0.01 |
u2 (m/s/decade) | −0.07 ** | −0.05 * | 0.04 | −0.11 ** | −0.07 ** | 0.03 ** |
D (hpa/decade) | 0.11 ** | 0.04 | 0.20 ** | 0.08 ** | −0.03 | 0.31 ** |
P (mm/decade) | 2.95 | 41.97 | 39.82 * | 5.88 | 16.40 | 19.25 |
Epan_o (mm/decade) | −5.75 | −63.0 ** | 167.7 ** | −19.6 | −57.1 ** | 116.7 ** |
Meteorological Stations | 1969–2001 | 1969–1989 | 1990–2001 | |
---|---|---|---|---|
Zoige wetland | Jiuzhi | 21.7 * | −20.1 # | 231.0 * |
Hongyuan | 33.8 # | 123.3 # | 161.2 * | |
Zoige | 57.9 * | 176.7 * | 58.7 # | |
Marchu | −45.8 * | −145.2 * | 133.9 * | |
Peripheral area | Golog | −49.7 * | −128.4 * | 137.3 * |
Darlag | 14.5 # | −6.1 # | 259.9 * | |
Baima | −19.2 # | −97.6 * | 134.3 * | |
Barkam | −30.8 # | −163.5 # | 90.2 # | |
Songpan | 34.5 * | 136.4 # | 37.4 # | |
Henan | −47.0 * | −129.0 * | 89.7 * |
Contributions | Zoige Wetland | Peripheral Area | |||||
---|---|---|---|---|---|---|---|
1969–2014 | 1969–1989 | 1990–2014 | 1969–2014 | 1969–1989 | 1990–2014 | ||
EpR * | Rn * | −4.1 | −15.0 | −7.2 | −4.8 | −2.6 | −5.7 |
Ta1 * | 17.8 | 9.3 | 27.3 | 9.0 | −4.7 | 22.1 | |
Total | 13.6 | −5.7 | 20.2 | 4.2 | −7.3 | 16.4 | |
EpA * | Ta2 * | −1.8 | −0.9 | −2.9 | −1.1 | 0.6 | −2.5 |
u2 * | −8.6 | −5.8 | 5.7 | −17.7 | −11.8 | 4.7 | |
D * | 19.0 | 7.2 | 32.4 | 11.6 | −5.3 | 41.8 | |
Total | 8.6 | 0.5 | 35.2 | −7.1 | −16.5 | 44.0 | |
Epan * | 22.2 | −5.2 | 55.4 | −2.9 | −23.8 | 60.4 |
Contributions of Ta | Zoige Wetland | Peripheral Area | ||||
---|---|---|---|---|---|---|
1969–2014 | 1969–1989 | 1990–2014 | 1969–2014 | 1969–1989 | 1990–2014 | |
Ta1 * | 17.75 | 9.34 | 27.35 | 9.04 | −4.72 | 22.12 |
Ta2 * | −1.81 | −0.92 | −2.86 | −1.05 | 0.56 | −2.53 |
Ta3 * | −0.63 | −0.33 | −0.97 | −0.32 | 0.17 | −0.79 |
Ta4 * | 11.30 | 5.95 | 17.37 | 5.97 | −3.23 | 14.11 |
Ta * | 26.61 | 14.05 | 40.88 | 13.64 | −7.22 | 32.91 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Gou, S.; Zhang, B.; Yu, Y.; Han, S. Changes in Pan Evaporation and Their Attribution to Climate Factors in the Zoige Alpine Wetland, the Eastern Edge of the Tibetan Plateau (1969–2014). Water 2017, 9, 971. https://doi.org/10.3390/w9120971
Zhao N, Gou S, Zhang B, Yu Y, Han S. Changes in Pan Evaporation and Their Attribution to Climate Factors in the Zoige Alpine Wetland, the Eastern Edge of the Tibetan Plateau (1969–2014). Water. 2017; 9(12):971. https://doi.org/10.3390/w9120971
Chicago/Turabian StyleZhao, Nana, Si Gou, Beibei Zhang, Yilei Yu, and Songjun Han. 2017. "Changes in Pan Evaporation and Their Attribution to Climate Factors in the Zoige Alpine Wetland, the Eastern Edge of the Tibetan Plateau (1969–2014)" Water 9, no. 12: 971. https://doi.org/10.3390/w9120971
APA StyleZhao, N., Gou, S., Zhang, B., Yu, Y., & Han, S. (2017). Changes in Pan Evaporation and Their Attribution to Climate Factors in the Zoige Alpine Wetland, the Eastern Edge of the Tibetan Plateau (1969–2014). Water, 9(12), 971. https://doi.org/10.3390/w9120971