# Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results and Discussion

#### 3.1. Hydrological Model (WBM) Performance Evaluation

#### 3.2. Runoff and Streamflow Trends 1971–2001 (GCMs versus Observations)

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix A. Mann-Kendall Trend Test

_{i}and x

_{j}are the data values in time series i and j (j > i), respectively, and sgn(x

_{j}− x

_{i}) is the sign function:

_{i}is the number of ties of extent i. A tied group is a set of sample data having the same value. In cases where the sample size n > 10, the standard normal test statistic Z

_{S}is computed as:

_{S}indicates the trend in the data series, where positive values of Z

_{S}means increasing trend, while negative Z

_{S}values show decreasing trends. For the tests at a specific α significance level, if $\left|{Z}_{\mathrm{S}}\right|>{Z}_{1-\mathsf{\alpha}/2}$, the null hypothesis is rejected and the time series has a statistically significant trend. ${Z}_{1-\mathsf{\alpha}/2}$ is obtained from the standard normal distribution table, where at the 5% significance level (α = 0.05), trend is statistically significant if $\left|{Z}_{\mathrm{S}}\right|>1.96$ and at the 1% significance level (α = 0.01), trend is statistically significant if $\left|{Z}_{\mathrm{S}}\right|>2.576$.

## Appendix B. Sen’s Slope Estimator

_{j}and x

_{k}are the data values at times j and k (j > k), respectively. N is defined as $\frac{n\left(n-1\right)}{2}$, where n is the number of time periods.

_{i}are ranked from smallest to largest, the parameter Qmed is computed as the median of the Q

_{i}vector. The Qmed sign reflects the direction of trend, while its value indicates the magnitude of the trend. To determine whether the median slope is statistically different than zero, the confidence interval of Qmed at a specific probability should be computed as follows [58,59]:

_{1}th largest and the (M

_{2}+ 1)th largest of the N ordered slope estimates [58]. The slope Qmed is significantly different than zero if the two limits Qmin and Qmax have the same sign.

## References

- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature
**2002**, 419, 224–232. [Google Scholar] [CrossRef] [PubMed] - Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim.
**2006**, 19, 5686–5699. [Google Scholar] [CrossRef] - Wentz, F.J.; Ricciardulli, L.; Hilburn, K.; Mears, C. How much more rain will global warming bring? Science
**2007**, 317, 233–235. [Google Scholar] [CrossRef] [PubMed] - Trenberth, K.E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim. Chang.
**1999**, 42, 327–339. [Google Scholar] [CrossRef] - Trenberth, K.E. Changes in precipitation with climate change. Clim. Res.
**2011**, 47, 123–138. [Google Scholar] [CrossRef] - Dankers, R.; Arnell, N.W.; Clark, D.B.; Falloon, P.D.; Fekete, B.M.; Gosling, S.N.; Heinke, J.; Kim, H.; Masaki, Y.; Satoh, Y.; et al. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proc. Natl. Acad. Sci. USA
**2013**, 111, 3257–3261. [Google Scholar] [CrossRef] [PubMed] - Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc.
**2003**, 84, 1205–1217. [Google Scholar] [CrossRef] - O’Gorman, P.A.; Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA
**2009**, 106, 14773–14777. [Google Scholar] [CrossRef] [PubMed] - Min, S.-K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature
**2011**, 470, 378–381. [Google Scholar] [CrossRef] [PubMed] - Field, C.B. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.M.B.; Miller, H.L.; Chen, Z. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Karl, T.R.; Melillo, J.M.; Peterson, T.C. Global Climate Change Impacts in the United States; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W.; Medina-elizade, M. Global temperature change. Proc. Natl. Acad. Sci. USA
**2006**, 103, 14288–14293. [Google Scholar] [CrossRef] [PubMed] - Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys.
**2010**, 48, RG4004. [Google Scholar] [CrossRef] - Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change-Abstract for Decision-Makers; C/O World Meteorological Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Trenberth, K.E.; Fasullo, J.; Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dyn.
**2005**, 24, 741–758. [Google Scholar] [CrossRef] - Pall, P.; Allen, M.R.; Stone, D.A. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO
_{2}warming. Clim. Dyn.**2006**, 28, 351–363. [Google Scholar] [CrossRef] - Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science
**2008**, 321, 1481–1484. [Google Scholar] [CrossRef] [PubMed] - Lambert, F.H.; Stine, A.R.; Krakauer, N.Y.; Chiang, J.C.H. How much will precipitation increase with global warming? Eos
**2008**, 89, 193–200. [Google Scholar] [CrossRef] - Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res.
**2006**, 111, D05109. [Google Scholar] [CrossRef] - Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim.
**2013**, 26, 3904–3918. [Google Scholar] [CrossRef] - Asadieh, B.; Krakauer, N.Y. Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth Syst. Sci.
**2015**, 19, 877–891. [Google Scholar] [CrossRef] - Lehmann, J.; Coumou, D.; Frieler, K. Increased record-breaking precipitation events under global warming. Clim. Chang.
**2015**, 132, 501–515. [Google Scholar] [CrossRef] - Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang.
**2013**, 119, 345–357. [Google Scholar] [CrossRef] - Toreti, A.; Naveau, P.; Zampieri, M.; Schindler, A.; Scoccimarro, E.; Xoplaki, E.; Dijkstra, H.A.; Gualdi, S.; Luterbacher, J. Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys. Res. Lett.
**2013**, 40, 4887–4892. [Google Scholar] [CrossRef] [Green Version] - Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Zampieri, M.; Navarra, A. Heavy precipitation events in a warmer climate: Results from CMIP5 models. J. Clim.
**2013**, 26, 7902–7911. [Google Scholar] [CrossRef] - Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Hegerl, G.C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim.
**2007**, 20, 1419–1444. [Google Scholar] [CrossRef] - Zhang, X.; Zwiers, F.W.; Hegerl, G.C.; Lambert, F.H.; Gillett, N.P.; Solomon, S.; Stott, P.A.; Nozawa, T. Detection of human influence on twentieth-century precipitation trends. Nature
**2007**, 448, 461–465. [Google Scholar] [CrossRef] [PubMed] - Chou, C.; Neelin, J. Mechanisms of global warming impacts on regional tropical precipitation. J. Clim.
**2004**, 17, 2688–2701. [Google Scholar] [CrossRef] - Greve, P.; Orlowsky, B.; Mueller, B.; Sheffield, J.; Reichstein, M.; Seneviratne, S.I. Global assessment of trends in wetting and drying over land. Nat. Geosci.
**2014**, 7, 716–721. [Google Scholar] [CrossRef] - Hirabayashi, Y.; Kanae, S.; Emori, S.; Oki, T.; Kimoto, M. Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J.
**2008**, 53, 754–772. [Google Scholar] [CrossRef] - Dankers, R.; Feyen, L. Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. J. Geophys. Res.
**2008**, 113, D19105. [Google Scholar] [CrossRef] - Dankers, R.; Feyen, L. Flood hazard in Europe in an ensemble of regional climate scenarios. J. Geophys. Res.
**2009**, 114, D16108. [Google Scholar] [CrossRef] - Okazaki, A.; Yeh, P.J.-F.; Yoshimura, K.; Watanabe, M.; Kimoto, M.; Oki, T. Changes in flood risk under global warming estimated using MIROC5 and the discharge probability index. J. Meteorol. Soc. Jpn. Ser. II
**2012**, 90, 509–524. [Google Scholar] [CrossRef] - Te Linde, A.H.; Aerts, J.C.J.H.; Bakker, A.M.R.; Kwadijk, J.C.J. Simulating low probability peak discharges for the Rhine basin using resampled climate modeling data. Water Resour. Res.
**2010**, 46. [Google Scholar] [CrossRef] - Veijalainen, N.; Lotsari, E.; Alho, P.; Vehviläinen, B.; Käyhkö, J. National scale assessment of climate change impacts on flooding in Finland. J. Hydrol.
**2010**, 391, 333–350. [Google Scholar] [CrossRef] - Kay, A.L.; Jones, D.A. Transient changes in flood frequency and timing in Britain under potential projections of climate change. Int. J. Climatol.
**2012**, 32, 489–502. [Google Scholar] [CrossRef] [Green Version] - Huang, S.; Hattermann, F.F.; Krysanova, V.; Bronstert, A. Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model. Clim. Chang.
**2012**, 116, 631–663. [Google Scholar] [CrossRef] - Hagemann, S.; Chen, C.; Clark, D.B.; Folwell, S.; Gosling, S.N.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.; Voss, F.; et al. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn.
**2013**, 4, 129–144. [Google Scholar] [CrossRef] - Tang, Q.; Lettenmaier, D.P. 21st century runoff sensitivities of major global river basins. Geophys. Res. Lett.
**2012**, 39. [Google Scholar] [CrossRef] - Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn.
**2013**, 4, 219–236. [Google Scholar] [CrossRef] - Krakauer, N.Y.; Fekete, B.M. Are climate model simulations useful for forecasting precipitation trends? Hindcast and synthetic-data experiments. Environ. Res. Lett.
**2014**, 9, 024009. [Google Scholar] [CrossRef] - Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. HESS Opinions “should we apply bias correction to global and regional climate model data?”. Hydrol. Earth Syst. Sci.
**2012**, 16, 3391–3404. [Google Scholar] [CrossRef] - Hagemann, S.; Chen, C.; Haerter, J.O.; Heinke, J.; Gerten, D.; Piani, C. Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeorol.
**2011**, 12, 556–578. [Google Scholar] [CrossRef] - Warszawski, L.; Frieler, K.; Huber, V.; Piontek, F.; Serdeczny, O.; Schewe, J. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proc. Natl. Acad. Sci. USA
**2013**, 111, 1–5. [Google Scholar] [CrossRef] [PubMed] - Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA
**2014**, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science
**2000**, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] - Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T. Assessing reservoir operations risk under climate change. Water Resour. Res.
**2009**, 45, 1–16. [Google Scholar] [CrossRef] - Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang.
**2004**, 14, 31–52. [Google Scholar] [CrossRef] - Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science
**2006**, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] - Gudmundsson, L.; Seneviratne, S.I. Towards observation-based gridded runoff estimates for Europe. Hydrol. Earth Syst. Sci.
**2015**, 19, 2859–2879. [Google Scholar] [CrossRef] - Wisser, D.; Fekete, B.; Vorosmarty, C.J.; Schumann, A.H. Reconstructing 20th century global hydrography: A contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol. Earth Syst. Sci.
**2010**, 14, 1–24. [Google Scholar] [CrossRef] - Weedon, G.P.; Gomes, S.; Viterbo, P.; Shuttleworth, W.J.; Blyth, E.; Österle, H.; Adam, J.C.; Bellouin, N.; Boucher, O.; Best, M. Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol.
**2011**, 12, 823–848. [Google Scholar] [CrossRef] - Mann, H.B. Nonparametric tests against trend. Econometrica
**1945**, 13, 245–259. [Google Scholar] [CrossRef] - Kendall, M.G. Rank Correlation Methods; Charless Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc.
**1968**, 63, 1379–1389. [Google Scholar] [CrossRef] - Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang.
**2013**, 3, 816–821. [Google Scholar] [CrossRef] - Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods; John Wiley & Sons: New York, NY, USA, 1973. [Google Scholar]

**Figure 1.**WBM model versus observations streamflow data 1971–2001 maps for Coterminous US—Log of annual-averaged daily streamflow map for observations (

**a**) and WBM model (

**d**), Slope of change in streamflow map for observations (

**b**) and WBM model (

**e**) and relative change in annual-averaged daily streamflow map for observations (

**c**) and WBM model (

**f**). Lower axis of the maps represents the latitude and left side axis represents the longitude of the girds.

**Figure 2.**WBM model versus observations streamflow data 1971–2001 boxplots for Coterminous US—Log of annual-averaged daily streamflow map for observations (

**a**), Slope of change in streamflow map for observations (

**b**) and relative change in annual-averaged daily streamflow map for observations (

**c**). Values larger than 99

^{th}and smaller than 1

^{st}percentile of the data (considered as the outliers) have been excluded from the plots. The boxplots show good agreement between the observations and WBM model outputs for the relative change in streamflow.

**Figure 3.**Global maps of runoff simulations of WBM model from WFD observation-based input versus ISI-MIP model simulations input, 1971–2001—Mean runoff map for WFD (

**a**) and ISI-MIP (

**d**), Slope of change in mean runoff map for WFD (

**b**) and ISI-MIP (

**e**), and relative change in mean runoff map for WFD (

**c**) and ISI-MIP (

**f**). Lower side axes of the maps represent the latitudeand left side axes represent the longitude of the girds.

**Figure 4.**Global maps of WBM streamflow generated from WFD observation-based input versus ISI-MIP inputs (average of the 5 GCMs), 1971–2001—mean streamflow map for WFD (

**a**) and ISI-MIP (

**d**), Slope of change in mean streamflow map for WFD (

**b**) and ISI-MIP (

**e**), and relative change in mean streamflow map for WFD (

**c**) and ISI-MIP (

**f**). The values are per grid cell.

**Figure 5.**Boxplots of runoff and streamflow trends simulated under climate forcings from either ISI-MIP models (minimum, 25th percentile, median, 75th percentile and maximum of the 5 model runs) or WFD observation-based data (shown as blue circles) for 1971–2001 on global and continental scale—(

**a**) annual average of runoff (mm·day

^{−1}), (

**b**) linear regression slope of change in annual-averaged runoff (mm·day

^{−1}·year

^{−1}), (

**c**) relative change in annual-averaged runoff (%·year

^{−1}), (

**d**) average of discharge (m

^{3}·s

^{−1}), (

**e**) linear regression slope of change in discharge (m

^{3}·s

^{−1}·year

^{−1}), (

**f**) relative change in discharge (%·year

^{−1}).

**Figure 6.**ISI-MIP global map of relative change in extreme runoff (

**a**) and extreme streamflow (

**d**). Boxplots of trends simulated under climate forcing from ISI-MIP models (minimum, 25th percentile, median, 75th percentile and maximum of the 5 model runs) for relative change in annual-maximum 1-day runoff (%·year

^{−1}) (

**b**), annual-maximum 1-day streamflow (%·year

^{−1}) (

**e**) and annual-maximum 7-day streamflow (%·year

^{−1}) (

**c**).

**Table 1.**Statistics of variation of streamflow trend results for observations, as well as WBM simulations in the Coterminous United States from 1971 to 2001. The observational discharge is station measurements; whereas the WBM simulated discharge average is per grid cell. WBM results are for all grid cells of the Coterminous US, as shown in Figure 1d. Ave. = Average, Min. = Minimum, Max. = Maximum, Med. = Median, St. Dev. = Standard Deviation.

Discharge Ave (Q) (m^{3}·s^{−1}) | Slope of Change (b) (m^{3}·s^{−1}·year^{−1}) | Relative Change (b/Q) (%·year^{−1}) | ||||
---|---|---|---|---|---|---|

Obs. | WBM | Obs. | WBM | Obs. | WBM | |

Grids Ave. | 106.4 | 217.7 | −0.16 | −0.64 | −0.01 | −0.35 |

Grids Min. | 0.0 | 0.0 | −7.81 | −26.19 | −6.48 | −12.01 |

Grids Max. | 1776.2 | 11332.9 | 7.66 | 23.74 | 6.87 | 11.81 |

Grids Med. | 42.6 | 35.1 | −0.04 | −0.07 | −0.28 | −0.33 |

Grids St. Dev. | 199.5 | 810.3 | 1.40 | 3.13 | 1.69 | 2.40 |

**Table 2.**Global and continental-averaged trend results of the WBM runoff simulations based on the WFD observation-based inputs, from 1971 to 2001. The Qmed and Z-score indices are obtained from the Sen’s slope estimator and Mann-Kendall methods, respectively, for the runoff.

Runoff Ave (R) (mm·day^{−1}) | Slope of Change (b) (mm·day^{−1}·year^{−1}) | Relative Change (b/R) (%·year^{−1}) | Qmed (mm·day^{−1}·year^{−1}) | Z Score (-) | |
---|---|---|---|---|---|

Global | 0.23 | −0.00038 | −0.042 | −0.00035 | −0.05 |

North America | 0.88 | −0.00211 | −0.307 | −0.00216 | −0.37 |

South America | 1.95 | −0.00572 | −0.355 | −0.00560 | −0.42 |

Europe | 0.74 | 0.00104 | 0.211 | 0.00125 | 0.23 |

Oceania | 0.42 | −0.00150 | −0.597 | −0.00071 | −0.27 |

Africa | 0.89 | −0.00077 | 0.009 | −0.00069 | −0.11 |

Asia | 0.96 | −0.00086 | −0.186 | −0.00085 | −0.25 |

India | 1.26 | −0.00351 | −0.758 | −0.00290 | −0.31 |

**Table 3.**Global-averaged results of mean and annual-maximum 1-day runoff trend analysis—WBM runoff simulations based on the WFD observation-based inputs as well as from the ISI-MIP (WBM model driven by GCM climate forcing), for 1971–2001. The 5 ISI-MIP models give 5 global averages, of which the minimum, maximum, median, mean, and standard deviation are presented. Ave. = Average, Min. = Minimum, Max. = Maximum, Med. = Median, St. Dev. = Standard Deviation.

Runoff Ave (R) (mm·day^{−1}) | Slope of Change (b) (mm·day^{−1}·year^{−1}) | Relative Change (b/R) (%·year^{−1}) | Qmed (mm·day^{−1}·year^{−1}) | Z Score (-) | ||||||
---|---|---|---|---|---|---|---|---|---|---|

Mean Runoff | Max. 1d Runoff | Mean Runoff | Max. 1d Runoff | Mean Runoff | Max. 1d Runoff | Mean Runoff | Max. 1d Runoff | Mean Runoff | Max. 1d Runoff | |

WFD | 0.23 | - | −0.00038 | - | −0.042 | - | −0.00035 | - | −0.05 | - |

ISI-MIP Ave. | 0.22 | 2.95 | 0.00005 | 0.00399 | 0.031 | 0.035 | 0.00000 | 0.00211 | 0.011 | 0.019 |

ISI-MIP Min. | 0.21 | 2.69 | −0.00013 | 0.00006 | −0.012 | −0.010 | −0.00019 | −0.00070 | −0.007 | 0.003 |

ISI-MIP Max. | 0.22 | 3.24 | 0.00025 | 0.00727 | 0.061 | 0.062 | 0.00015 | 0.00419 | 0.038 | 0.039 |

ISI-MIP Med. | 0.21 | 2.95 | −0.00001 | 0.00465 | 0.036 | 0.036 | −0.00005 | 0.00205 | 0.004 | 0.015 |

ISI-MIP St. Dev. | 0.00 | 0.21 | 0.00016 | 0.00283 | 0.026 | 0.029 | 0.00015 | 0.00181 | 0.019 | 0.016 |

**Table 4.**Global and continental-averaged trend results of the WBM streamflow simulations based on the WFD observation-based inputs, from 1971 to 2001. The average discharge magnitude (Q) values are per grid cell. The Qmed and Z-score indices are obtained from the Sen’s slope estimator and Mann-Kendall methods, respectively, for the streamflow.

Discharge Ave (Q) (m^{3}·s^{−1}) | Slope of Change (b) (m^{3}.s^{−1}·year^{−1}) | Relative Change (b/Q) (%·year^{−1}) | Qmed (m^{3}·s^{−1}·year^{−1}) | Z Score (-) | ||
---|---|---|---|---|---|---|

Global | 116.50 | −0.28 | −0.041 | −0.29 | −0.06 | |

North America | 262.53 | −0.86 | −0.281 | −0.89 | −0.41 | |

South America | 1574.78 | −6.38 | −0.371 | −6.65 | −0.51 | |

Europe | 194.21 | 0.25 | 0.159 | 0.28 | 0.21 | |

Oceania | 44.29 | −0.33 | −0.304 | −0.07 | −0.27 | |

Africa | 633.57 | −0.04 | −0.112 | −0.13 | −0.11 | |

Asia | 316.13 | −0.40 | −0.151 | −0.36 | −0.25 | |

India | 420.07 | −2.30 | −0.704 | −2.40 | −0.46 |

**Table 5.**Global-averaged results of annual-mean and annual-maximum 1-day streamflow trend analysis—WBM streamflow simulations based on the WFD observation-based inputs as well as from the ISI-MIP (WBM model driven by GCM climate forcing), for 1971–2001. The 5 ISI-MIP models give 5 global averages, of which the minimum, maximum, median, mean, and standard deviation are presented. The average discharge magnitude (Q) values are per grid cell. Ave. = Average, Min. = Minimum, Max. = Maximum, Med. = Median, St. Dev. = Standard Deviation.

Discharge Ave (Q) (m^{3}·s^{−1}) | Slope of Change (b) (m^{3}·s^{−1}·year^{−1}) | Relative Change (b/Q) (%·year^{−1}) | Qmed (m^{3}·s^{−1}·year^{−1}) | Z Score (-) | ||||||
---|---|---|---|---|---|---|---|---|---|---|

Mean Disch. | Max. 1d Disch. | Mean Disch. | Max. 1d Disch. | Mean Disch. | Max. 1d Disch. | Mean Disch. | Max. 1d Disch. | Mean Disch. | Max. 1d Disch. | |

WFD | 116.50 | - | −0.28 | - | −0.041 | - | −0.29 | - | −0.06 | - |

ISI-MIP Ave. | 132.0 | 570.3 | −0.02 | 0.41 | 0.028 | 0.032 | −0.04 | 0.19 | 0.01 | 0.02 |

ISI-MIP Min | 128.3 | 531.6 | −0.21 | −0.46 | −0.015 | −0.015 | −0.21 | −0.52 | −0.01 | 0.00 |

ISI-MIP Max | 138.7 | 620.9 | 0.14 | 1.13 | 0.059 | 0.058 | 0.15 | 0.59 | 0.03 | 0.04 |

ISI-MIP Med. | 130.6 | 568.2 | 0.02 | 0.66 | 0.033 | 0.031 | −0.02 | 0.31 | 0.00 | 0.01 |

ISI-MIP St. Dev. | 4.0 | 33.1 | 0.15 | 0.64 | 0.027 | 0.029 | 0.14 | 0.43 | 0.02 | 0.02 |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Asadieh, B.; Krakauer, N.Y.; Fekete, B.M.
Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models. *Water* **2016**, *8*, 189.
https://doi.org/10.3390/w8050189

**AMA Style**

Asadieh B, Krakauer NY, Fekete BM.
Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models. *Water*. 2016; 8(5):189.
https://doi.org/10.3390/w8050189

**Chicago/Turabian Style**

Asadieh, Behzad, Nir Y. Krakauer, and Balázs M. Fekete.
2016. "Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models" *Water* 8, no. 5: 189.
https://doi.org/10.3390/w8050189