Effects of Land Use Types on Community Structure Patterns of Benthic Macroinvertebrates in Streams of Urban Areas in the South of the Korea Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sampling
2.2. Data Analysis
3. Results
3.1. Community Composition
3.2. Relationships between Variables
3.3. Community Classification
3.4. Community Ordination
3.5. Species Abundance Distribution
3.6. Indicator Species Analysis
4. Discussion
4.1. Community Patterns and Indicator Species
4.2. Influence of Land Use Types
4.3. Geological Features and the Management of Urban Streams
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Sampling Sites | Sampling Dates | Physicochemical Variables | Land Use Types (Riparian Sub-Corridors; 1000 m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Summer | Winter | Altitude (m) | Slope (%) | DO (mg/L) | Conductivity (µs/cm) | Substrate Index | Depth (cm) | Speed (cm/s) | Forest (%) | Urban (%) | Agriculture (%) | |
CCD | 13-August-2014 | 8-December-2014 | 46 | 3.0 | 6.2 | 126.9 | 6.40 | 15.0 (±1.8) | 28.3 (±2.1) | 47.2 | 29.8 | 0.0 |
CCM | 13-August-2014 | 8-December-2014 | 57 | 4.6 | 8.9 | 122.1 | 6.15 | 20.0 (±2.9) | 26.7 (±5.4) | 75.8 | 19.6 | 0.0 |
CCU | 13-August-2014 | 8-December-2014 | 78 | 2.8 | 8.5 | 65.1 | 5.83 | 20.8 (±1.5) | 18.3 (±4.9) | 92.4 | 0.0 | 0.0 |
DAU | 13-August-2014 | 8-December-2014 | 263 | 5.8 | 9.7 | 231.5 | 6.00 | 33.3 (±4.4) | 42.5 (±8.5) | 90.3 | 0.0 | 8.3 |
DDK | 13-August-2014 | 8-December-2014 | 314 | 4.9 | 7.9 | 205.5 | 5.83 | 12.5 (±1.1) | 30.0 (±3.7) | 50.5 | 0.0 | 42.0 |
DRM | 13-August-2014 | 8-December-2014 | 126 | 3.1 | 9.4 | 152.3 | 5.48 | 20.8 (±2.0) | 8.5 (±2.3) | 88.7 | 0.3 | 2.2 |
DRU | 13-August-2014 | 8-December-2014 | 170 | 3.3 | 10.0 | 112.6 | 5.63 | 20.0 (±2.9) | 7.5 (±3.1) | 92.7 | 1.4 | 3.4 |
HAD | 12-August-2013 | 9-December-2013 | 65 | 0.2 | 8.1 | 254.5 | 5.90 | 8.8 (±0.9) | 13.0 (±1.7) | 41.5 | 7.0 | 45.8 |
HAM | 12-August-2013 | 9-December-2013 | 72 | 0.7 | 9.1 | 115.0 | 5.80 | 5.5 (±1.2) | 2.0 (±1.0) | 23.1 | 5.0 | 66.3 |
HJD | 13-August-2014 | 8-December-2014 | 9 | 0.0 | 7.8 | 505.5 | 4.30 | 23.3 (±3.3) | 2.7 (±0.8) | 1.7 | 38.5 | 0.0 |
HJM | 13-August-2014 | 8-December-2014 | 11 | 0.0 | 7.5 | 540.5 | 4.38 | 32.5 (±3.1) | 3.8 (±1.1) | 39.6 | 15.5 | 0.0 |
HJU | 13-August-2014 | 8-December-2014 | 14 | 0.4 | 7.3 | 325.0 | 4.43 | 30.0 (±2.6) | 4.0 (±1.4) | 8.6 | 22.1 | 0.1 |
IGM | 12-August-2013 | 9-December-2013 | 31 | 3.2 | 9.1 | 116.3 | 5.73 | 19.2 (±1.5) | 65.0 (±3.7) | 64.1 | 0.0 | 31.3 |
IGU | 12-August-2013 | 9-December-2013 | 58 | 3.3 | 9.6 | 113.0 | 6.28 | 15.0 (±1.8) | 30.0 (±3.7) | 71.7 | 0.0 | 27.8 |
IKM | 12-August-2013 | 9-December-2013 | 82 | 4.0 | 9.8 | 304.0 | 5.80 | 11.1 (±2.1) | 25.0 (±2.6) | 43.2 | 4.0 | 49.2 |
IKU | 12-August-2013 | 9-December-2013 | 83 | 3.0 | 9.6 | 239.0 | 6.03 | 4.2 (±1.2) | 11.2 (±2.0) | 4.2 | 2.0 | 78.9 |
JAD | 12-August-2013 | 9-December-2013 | 14 | 2.4 | 5.7 | 214.0 | 5.80 | 6.7 (±1.2) | 31.7 (±1.2) | 21.8 | 5.3 | 60.7 |
JAM | 12-August-2013 | 9-December-2013 | 32 | 0.2 | 9.2 | 211.5 | 5.93 | 7.3 (±1.1) | 15.8 (±2.0) | 49.9 | 2.0 | 38.0 |
JAU | 12-August-2013 | 9-December-2013 | 119 | 2.1 | 9.4 | 119.0 | 6.10 | 7.7 (±1.1) | 11.2 (±1.7) | 97.9 | 0.6 | 1.1 |
NLM | 12-August-2013 | 9-December-2013 | 10 | 0.0 | 8.1 | 390.0 | 5.73 | 16.2 (±1.7) | 21.7 (±3.3) | 56.1 | 0.0 | 0.0 |
NLU | 12-August-2013 | 9-December-2013 | 41 | 8.4 | 7.4 | 390.0 | 5.58 | 16.7 (±2.8) | 14.2 (±2.7) | 69.2 | 0.0 | 4.3 |
SRD | 13-August-2014 | 8-December-2014 | 1 | 0.0 | 8.0 | 331.0 | 4.90 | 25.8 (±5.2) | 2.2 (±0.9) | 0.0 | 49.7 | 36.8 |
SRM | 13-August-2014 | 8-December-2014 | 1 | 0.0 | 8.6 | 331.5 | 4.20 | 55.0 (±3.4) | 0.3 (±0.2) | 0.0 | 52.2 | 46.2 |
SRU | 13-August-2014 | 8-December-2014 | 1 | 0.0 | 7.0 | 462.5 | 4.45 | 37.5 (±2.5) | 5.0 (±2.6) | 0.0 | 77.0 | 4.1 |
TAP | 15-August-2013 | 11-December-2013 | 91 | 6.8 | 12.5 | 71.0 | 6.00 | 16.7 (±1.7) | 28.3 (±2.8) | 100.0 | 0.0 | 0.0 |
THP | 15-August-2013 | 11-December-2013 | 24 | 4.1 | 8.5 | 513.5 | 5.35 | 13.2 (±1.6) | 20.5 (±2.4) | 43.4 | 6.1 | 17.3 |
TKC | 15-August-2013 | 11-December-2013 | 49 | 4.1 | 8.7 | 417.0 | 5.83 | 22.5 (±2.8) | 24.3 (±2.9) | 59.6 | 5.0 | 20.3 |
TSD | 15-August-2013 | 11-December-2013 | 135 | 7.7 | 9.5 | 272.0 | 6.05 | 12.0 (±2.1) | 12.7 (±2.5) | 92.4 | 0.9 | 6.2 |
YBD | 15-August-2014 | 20-November-2014 | 106 | 15.6 | 10.2 | 67.9 | 5.33 | 7.5 (±1.1) | 25.8 (±2.7) | 100.0 | 0.0 | 0.0 |
YBK | 15-August-2013 | 11-December-2013 | 222 | 9.5 | 9.0 | 44.0 | 6.05 | 13.5 (±1.9) | 17.8 (±2.9) | 98.4 | 0.0 | 0.0 |
YBT | 13-August-2014 | 20-November-2014 | 315 | 27.7 | 8.3 | 74.6 | 5.93 | 20.0 (±2.2) | 33.3 (±2.1) | 76.7 | 0.0 | 0.9 |
YBV | 13-August-2014 | 20-November-2014 | 220 | 8.1 | 9.6 | 85.4 | 5.93 | 16.7 (±4.8) | 28.3 (±4.6) | 75.6 | 2.5 | 13.2 |
YCK | 15-August-2013 | 11-December-2013 | 90 | 4.6 | 8.1 | 275.3 | 5.78 | 8.0 (±1.6) | 10.0 (±1.3) | 29.6 | 5.7 | 48.5 |
YGS | 13-August-2014 | 20-November-2014 | 37 | 5.6 | 8.5 | 330.5 | 5.50 | 12.5 (±2.1) | 23.3 (±4.0) | 7.5 | 33.8 | 0.2 |
YHD | 15-August-2014 | 20-November-2014 | 26 | 6.1 | 8.0 | 239.5 | 5.25 | 17.5 (±5.0) | 24.2 (±2.0) | 51.4 | 8.0 | 5.0 |
YJJ | 13-August-2014 | 20-November-2014 | 20 | 0.0 | 8.4 | 384.0 | 5.70 | 10.0 (±1.3) | 20.0 (±6.2) | 8.7 | 52.4 | 0.0 |
YJL | 15-August-2014 | 20-November-2014 | 70 | 11.6 | 9.0 | 219.5 | 5.65 | 16.7 (±3.6) | 22.5 (±5.7) | 100.0 | 0.0 | 0.0 |
YOU | 13-August-2014 | 20-November-2014 | 105 | 4.4 | 9.5 | 107.6 | 5.88 | 21.7 (±4.2) | 35.8 (±3.3) | 63.3 | 4.1 | 15.7 |
YPU | 15-August-2014 | 20-November-2014 | 153 | 3.3 | 9.4 | 319.0 | 6.00 | 8.7 (±1.5) | 4.8 (±1.2) | 72.1 | 8.3 | 2.9 |
YPY | 15-August-2014 | 20-November-2014 | 7 | 0.0 | 9.3 | 570.0 | 4.90 | 33.3 (±3.3) | 0.0 (±0.0) | 19.6 | 42.4 | 0.7 |
YSB | 15-August-2014 | 20-November-2014 | 9 | 0.0 | 9.9 | 412.5 | 5.23 | 23.3 (±2.5) | 15.8 (±2.7) | 0.0 | 48.1 | 0.0 |
YSC | 15-August-2013 | 11-December-2013 | 44 | 0.8 | 8.1 | 197.5 | 5.95 | 5.3 (±1.1) | 7.5 (±1.9) | 10.5 | 23.9 | 45.2 |
YYS | 15-August-2014 | 20-November-2014 | 107 | 13.1 | 8.7 | 125.5 | 5.50 | 11.3 (±3.2) | 11.7 (±1.1) | 100.0 | 0.0 | 0.0 |
ZGD | 12-August-2013 | 9-December-2013 | 29 | 1.8 | 8.3 | 292.0 | 5.65 | 19.7 (±1.6) | 41.7 (±4.8) | 86.8 | 0.0 | 12.4 |
ZGM | 12-August-2013 | 9-December-2013 | 67 | 2.6 | 7.3 | 210.7 | 5.78 | 23.8 (±1.8) | 20.0 (±1.3) | 4.5 | 3.6 | 57.1 |
ZGU | 12-August-2013 | 9-December-2013 | 105 | 9.5 | 9.2 | 179.0 | 6.30 | 16.7 (±2.4) | 38.3 (±3.9) | 93.3 | 3.6 | 1.6 |
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Roy, A.H.; Freeman, M.C.; Freeman, B.J.; Wenger, S.J.; Ensign, W.E.; Meyer, J.L. Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams. J. N. Am. Benthol. Soc. 2005, 24, 656–678. [Google Scholar] [CrossRef]
- Chessman, B.C.; Williams, S.A. Biodiversity and conservation of river macroinvertebrates on an expanding urban fringe: Western Sydney, New South Wales, Australia. Pac. Conserv. Biol. 1999, 5, 36–55. [Google Scholar]
- Walsh, C.J. Biological indicators of stream health using macroinvertebrate assemblage composition: A comparison of sensitivity to an urban gradient. Mar. Freshw. Res. 2006, 57, 37–47. [Google Scholar] [CrossRef]
- Wang, L.; Lyons, J. Fish and Benthic Macroinvertebrate Assemblages as Indicators of Stream Degradation in Urbanizing Watersheds; CRC Press: Boca Raton, FL, USA, 2003; pp. 227–249. [Google Scholar]
- Meyer, J.L.; Paul, M.J.; Taulbee, W.K. Stream ecosystem function in urbanizing landscapes. J. N. Am. Benthol. Soc. 2005, 24, 602–612. [Google Scholar] [CrossRef]
- Miller, W.; Boulton, A.J. Managing and rehabilitating ecosystem processes in regional urban streams in Australia. Hydrobiologia 2005, 552, 121–133. [Google Scholar] [CrossRef]
- Benke, A.C.; Willeke, G.; Parrish, F.; Stites, D. Effects of Urbanization on Stream Ecosystems; Georgia Institute of Technology: Atlanta, GA, USA, 1981. [Google Scholar]
- Park, Y.-S.; Grenouillet, G.; Esperance, B.; Lek, S. Stream fish assemblages and basin land cover in a river network. Sci. Total Environ. 2006, 365, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Petersen, I.; Masters, Z.; Hildrew, A.; Ormerod, S. Dispersal of adult aquatic insects in catchments of differing land use. J. Appl. Ecol. 2004, 41, 934–950. [Google Scholar] [CrossRef]
- Wenger, S.J.; Peterson, J.T.; Freeman, M.C.; Freeman, B.J.; Homans, D.D. Stream fish occurrence in response to impervious cover, historic land use, and hydrogeomorphic factors. Can. J. Fish. Aquat. Sci. 2008, 65, 1250–1264. [Google Scholar] [CrossRef]
- Rosenberg, D.M.; Resh, V.H. Freshwater Biomonitoring and benthic Macroinvertebrates; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Allan, J.D.; Castillo, M.M. Stream Ecology: Structure and Function of Running Waters; Springer Science & Business Media: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Van Diggelen, R.; Sijtsma, F.J.; Strijker, D.; van den Burg, J. Relating land-use intensity and biodiversity at the regional scale. Basic Appl. Ecol. 2005, 6, 145–159. [Google Scholar] [CrossRef]
- Wright, J.; Furse, M.; Armitage, P.; Moss, D. New procedures for identifying running-water sites subject to environmental stress and for evaluating sites for conservation, based on the macroinvertebrate fauna. Archiv für Hydrobiol. 1993, 127, 319–326. [Google Scholar]
- Cao, Y.; Bark, A.W.; Williams, W.P. Measuring the responses of macroinvertebrate communities to water pollution: A comparison of multivariate approaches, biotic and diversity indices. Hydrobiologia 1996, 341, 1–19. [Google Scholar] [CrossRef]
- Park, Y.-S.; Céréghino, R.; Compin, A.; Lek, S. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol. Model. 2003, 160, 265–280. [Google Scholar] [CrossRef]
- Chon, T.-S. Self-organizing maps applied to ecological sciences. Ecol. Inform. 2011, 6, 50–61. [Google Scholar] [CrossRef]
- Kim, D.-H.; Cho, W.-S.; Chon, T.-S. Self-organizing map and species abundance distribution of stream benthic macroinvertebrates in revealing community patterns in different seasons. Ecol. Inform. 2013, 17, 14–29. [Google Scholar] [CrossRef]
- Reynoldson, T.; Norris, R.; Resh, V.; Day, K.; Rosenberg, D. The reference condition: A comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J. N. Am. Benthol. Soc. 1997, 16, 833–852. [Google Scholar] [CrossRef]
- Richards, C.; Minshall, G.W. Spatial and temporal trends in stream macroinvertebrate communities: The influence of catchment disturbance. Hydrobiologia 1992, 241, 173–194. [Google Scholar] [CrossRef]
- Marshall, J.C.; Sheldon, F.; Thoms, M.; Choy, S. The macroinvertebrate fauna of an Australian dryland river: Spatial and temporal patterns and environmental relationships. Mar. Freshw. Res. 2006, 57, 61–74. [Google Scholar] [CrossRef]
- Beche, L.A.; Mcelravy, E.P.; Resh, V.H. Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two Mediterranean-climate streams in California, USA. Freshw. Biol. 2006, 51, 56–75. [Google Scholar] [CrossRef]
- Sponseller, R.; Benfield, E.; Valett, H. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshw. Biol. 2001, 46, 1409–1424. [Google Scholar] [CrossRef]
- McGill, B.J.; Etienne, R.S.; Gray, J.S.; Alonso, D.; Anderson, M.J.; Benecha, H.K.; Dornelas, M.; Enquist, B.J.; Green, J.L.; He, F. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 2007, 10, 995–1015. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.-D.; Song, M.-Y.; Park, Y.-S.; Oh, Y.; Chon, T.-S. Species abundance patterns of benthic macroinvertebrate communities in polluted streams. Ann. Limnol. Int. J. Limnol. 2008, 44, 119–133. [Google Scholar] [CrossRef]
- Jowett, I.G.; Richardson, J.; Biggs, B.J.; Hickey, C.W.; Quinn, J.M. Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp. Habitat suitability curves, applied to four New Zealand rivers. N. Z. J. Mar. Freshw. Res. 1991, 25, 187–199. [Google Scholar] [CrossRef]
- Suren, A.M. Bryophyte distribution patterns in relation to macro-, meso-, and micro-scale variables in south island, New Zealand streams. N. Z. J. Mar. Freshw. Res. 1996, 30, 501–523. [Google Scholar] [CrossRef]
- Stauffer, J.; Goldstein, R.; Newman, R. Relationship of wooded riparian zones and runoff potential to fish community composition in agricultural streams. Can. J. Fish Aquat. Sci. 2000, 57, 307–316. [Google Scholar] [CrossRef]
- Han, M.; Na, Y.; Bang, H.; Kim, M.; Kang, K.; Hong, H.; Lee, J.; Ko, B. Aquatic Invertebrate in Paddy Ecosystem of Korea; Kwang Monn Dang Press: Suwon, Korea, 2010. [Google Scholar]
- Won, D.; Kwon, S.; Jun, Y. Aquatic Insects of Korea; Korea Ecosystem Service: Seoul, Korea, 2005. [Google Scholar]
- Yoon, I. Aquatic Insects of Korea; Jeonghaengsa: Seoul, Korea, 1995. [Google Scholar]
- Merritt, R.W.; Cummins, K.W. An Introduction to the Aquatic Insects of North America; Kendall Hunt: Dubuque, ID, USA, 1996. [Google Scholar]
- Brigham, A.R.; Brigham, W.U.; Gnilka, A. Aquatic Insects and Oligochaetes of North and South Carolina; Midwest Aquatic Enterprises: Mahomet, IL, USA, 1982. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Information; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- McNaughton, S. Relationships among functional properties of Californian grassland. Nature 1967, 216, 168–169. [Google Scholar] [CrossRef]
- Biondini, M.E.; Mielke, P.W., Jr.; Berry, K.J. Data-dependent permutation techniques for the analysis of ecological data. Vegetatio 1988, 75, 161–168. [Google Scholar]
- McCune, B.; Grace, J.B.; Urban, D.L. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- Hawkins, C.P.; Murphy, M.L.; Anderson, N. Effects of canopy, substrate composition, and gradient on the structure of macroinvertebrate communities in cascade range streams of Oregon. Ecology 1982, 1840–1856. [Google Scholar] [CrossRef]
- Marsh-Matthews, E.; Matthews, W.J. Spatial variation in relative abundance of a widespread, numerically dominant fish species and its effect on fish assemblage structure. Oecologia 2000, 125, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- Legendre, P. Indicator species: Computation. Encycl. Biodivers. 2013, 4, 264–268. [Google Scholar]
- Li, F.; Chung, N.; BAE, M.J.; KWON, Y.S.; PARK, Y.S. Relationships between stream macroinvertebrates and environmental variables at multiple spatial scales. Freshw. Biol. 2012, 57, 2107–2124. [Google Scholar] [CrossRef]
- Ter Braak, C.J.; Juggins, S. Weighted averaging partial least squares regression (wa-pls): An improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 1993, 269, 485–502. [Google Scholar] [CrossRef]
- Juggins, S. C2 Version 1.5: Software for Ecological and Palaeoecological Data Analysis and Visualisation; University of Newcastle: Newcastle, UK, 2007. [Google Scholar]
- Birks, H. Quantitative palaeoenvironmental reconstructions. Stat. Model. Quat. Sci. Data Tech. Guide 1995, 5, 161–254. [Google Scholar]
- Magurran, A.E. Measuring biological diversity. Afr. J. Aquat. Sci. 2004, 29, 285–286. [Google Scholar]
- Tang, H.; Song, M.-Y.; Cho, W.-S.; Park, Y.-S.; Chon, T.-S. Species abundance distribution of benthic Chironomids and other macroinvertebrates across different levels of pollution in streams. Ann. Limnol. Int. J. Limnol. 2010, 46, 53–66. [Google Scholar] [CrossRef]
- Hall, M.J.; Closs, G.P.; Riley, R.H. Relationships between land use and stream invertebrate community structure in a south island, New Zealand, coastal stream catchment. N. Z. J. Mar. Freshw. Res. 2001, 35, 591–603. [Google Scholar] [CrossRef]
- Miserendino, M.L.; Casaux, R.; Archangelsky, M.; Di Prinzio, C.Y.; Brand, C.; Kutschker, A.M. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams. Sci. Total Environ. 2011, 409, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Collier, K.J.; Quinn, J.M. Land-use influences macroinvertebrate community response following a pulse disturbance. Freshw. Biol. 2003, 48, 1462–1481. [Google Scholar] [CrossRef]
- Stewart, P.; Butcher, J.; Swinford, T. Land use, habitat, and water quality effects on macroinvertebrate communities in three watersheds of a lake Michigan associated marsh system. Aquat. Ecosyst. Health Manag. 2000, 3, 179–189. [Google Scholar] [CrossRef]
- Lenat, D.R.; Crawford, J.K. Effects of land use on water quality and aquatic biota of three North Carolina piedmont streams. Hydrobiologia 1994, 294, 185–199. [Google Scholar] [CrossRef]
- Moore, A.A.; Palmer, M.A. Invertebrate biodiversity in agricultural and urban headwater streams: Implications for conservation and management. Ecol. Appl. 2005, 15, 1169–1177. [Google Scholar] [CrossRef]
- Fochetti, R.; De Figueroa, J.M.T. Global diversity of stoneflies (plecoptera; insecta) in freshwater. Hydrobiologia 2008, 595, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Cai, Q.; Liu, J. Temperature-dependent growth and life cycle of Nemoura sichuanensis (plecoptera: Nemouridae) in a Chinese mountain stream. Int. Rev. Hydrobiol. 2009, 94, 595–608. [Google Scholar] [CrossRef]
- Martins, R.; Stephan, N.; Alves, R. Tubificidae (annelida: Oligochaeta) as an indicator of water quality in an urban stream in southeast Brazil. Acta Limnol. Brasil. 2008, 20, 221–226. [Google Scholar]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban For. Urban Gree. 2006, 5, 195–201. [Google Scholar] [CrossRef]
Variables | Physicochemical Variables | Land Use Types | Biological Indices | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Slope (%) | DO (mg/L) | Conductivity (µs/cm) | Substrate Index | Depth (cm) | Velocity (cm/s) | Forest (%) | Urban (%) | Agriculture (%) | Density (indi./m2) | Taxa Richness | Shannon Diversity | Dominance Index | EPT% * | |
Altitude | 0.72 | 0.48 | −0.69 | 0.61 | – | – | 0.70 | −0.62 | – | – | – | – | – | 0.68 |
Slope | – | 0.30 | −0.52 | 0.38 | – | 0.56 | 0.71 | −0.59 | – | 0.30 | 0.32 | – | – | 0.54 |
Dissolved oxygen (DO) | – | – | −0.38 | 0.31 | – | – | 0.47 | −0.34 | – | – | – | – | – | – |
Conductivity | – | – | – | −0.57 | 0.38 | −0.50 | −0.63 | 0.58 | – | – | −0.65 | −0.56 | 0.52 | −0.78 |
Substrate index | – | –– | – | – | −0.44 | 0.54 | 0.44 | −0.37 | – | – | 0.47 | 0.56 | −0.58 | 0.59 |
Depth | – | – | – | – | – | – | – | – | – | −0.34 | -0.40 | −0.51 | 0.51 | −0.45 |
Velocity | – | – | – | – | – | – | 0.38 | −0.48 | – | 0.36 | 0.42 | 0.33 | −0.34 | 0.48 |
Forest | – | – | – | – | – | – | – | −0.78 | −0.38 | – | 0.34 | 0.31 | −0.30 | 0.56 |
Urban | – | – | – | – | – | – | – | – | – | – | −0.42 | −0.45 | 0.41 | −0.46 |
Agriculture | – | – | – | – | – | – | – | – | – | – | – | 0.30 | −0.31 | – |
Variables | Clusters | p * | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Physicochemical variables | Altitude (m) | 131.8 (±21.8) c ** | 60.8 (±9.6) b | 91.0 (±32.2) b | 7.2 (±2.2) a | <0.001 |
Slope (%) | 8.7 (±2.0) c | 3.3 (±0.6) b | 3.2 (±0.9) b | 0.1 (±0.1) a | <0.001 | |
DO (mg/L) | 9.2 (±0.4) b | 8.6 (±0.3) ab | 8.6 (±0.2) ab | 7.8 (±0.3) a | 0.048 | |
Conductivity (㎲/cm) | 105.7 (±12.8) a | 254.0 (±28.0) b | 292.1 (±27.5) bc | 455.8 (±43.0) c | <0.001 | |
Substrate index | 5.8 (±0.1) b | 5.9 (±0.1) b | 5.5 (±0.2) b | 4.6 (±0.1) a | 0.001 | |
Depth (cm) | 16.8 (±1.2) a | 14.7 (±1.3) a | 19.6 (±4.2) a | 30.4 (±2.1) b | 0.003 | |
Velocity (cm/s) | 22.5 (±2.5) b | 25.0 (±3.2) b | 17.7 (±3.7) b | 2.9 (±0.7) a | 0.001 | |
Land use types | Forest (%) | 85.4 (±4.6) c | 51.8 (±7.9) b | 37.7 (±9.6) ab | 11.6 (±6.4) a | <0.001 |
Urban (%) | 4.4 (±2.6) a | 3.9 (±1.4) a | 19.5 (±6.7) ab | 40.9 (±8.9) b | 0.001 | |
Agriculture (%) | 2.7 (±1.5) a | 31.0 (±6.0) b | 20.1 (±7.4) ab | 7.0 (±6.0) a | 0.001 | |
Biological indices | Number of taxa | 30.3 (±2.0) c | 25.6 (±1.9) c | 17.2 (±1.8) b | 4.8 (±0.9) a | <0.001 |
Density (indi./m2) | 2155.4 (±504.8) b | 1455.9 (±317.7) ab | 964.0 (±211.7) ab | 311.4 (±85.1) a | 0.004 | |
Diversity (H´) | 2.0 (±0.1) bc | 2.3 (±0.1) c | 1.6 (±0.1) b | 0.6 (±0.1) a | <0.001 | |
Dominance | 59.2 (±3.8) ab | 46.7 (±3.2) a | 71.9 (±4.4) b | 97.1 (±1.1) c | <0.001 | |
EPT% | 66.6 (±2.5) c | 56.0 (±3.0) bc | 43.5 (±4.7) b | 14.9 (±6.1) a | <0.001 |
Variables | R2 * | R2boot | RMSE ** | RMSEboot |
---|---|---|---|---|
Forest (%) | 0.56 | 0.44 | 31.3 | 35.6 |
Urban (%) | 0.54 | 0.35 | 17.2 | 21.7 |
Agriculture (%) | 0.46 | 0.28 | 24.2 | 28.0 |
Slope (%) | 0.60 | 0.36 | 4.2 | 5.1 |
Conductivity (㎲/cm) | 0.64 | 0.58 | 103.5 | 117.2 |
Substrate index | 0.61 | 0.36 | 0.4 | 0.6 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H.; Chon, T.-S.; Kwak, G.-S.; Lee, S.-B.; Park, Y.-S. Effects of Land Use Types on Community Structure Patterns of Benthic Macroinvertebrates in Streams of Urban Areas in the South of the Korea Peninsula. Water 2016, 8, 187. https://doi.org/10.3390/w8050187
Kim D-H, Chon T-S, Kwak G-S, Lee S-B, Park Y-S. Effects of Land Use Types on Community Structure Patterns of Benthic Macroinvertebrates in Streams of Urban Areas in the South of the Korea Peninsula. Water. 2016; 8(5):187. https://doi.org/10.3390/w8050187
Chicago/Turabian StyleKim, Dong-Hwan, Tae-Soo Chon, Gyu-Suk Kwak, Sang-Bin Lee, and Young-Seuk Park. 2016. "Effects of Land Use Types on Community Structure Patterns of Benthic Macroinvertebrates in Streams of Urban Areas in the South of the Korea Peninsula" Water 8, no. 5: 187. https://doi.org/10.3390/w8050187
APA StyleKim, D. -H., Chon, T. -S., Kwak, G. -S., Lee, S. -B., & Park, Y. -S. (2016). Effects of Land Use Types on Community Structure Patterns of Benthic Macroinvertebrates in Streams of Urban Areas in the South of the Korea Peninsula. Water, 8(5), 187. https://doi.org/10.3390/w8050187