Can Rapid Assessments Predict the Biotic Condition of Restored Streams?
Abstract
:1. Introduction
1.1. Stream Restoration Definition and Goals
1.2. Stream Assessment Methods and Their Prediction of Biological Condition
1.3. Watershed Links to Stream Condition
1.4. Identifying Procedures for Improving the Predictive Capability of Rapid Stream Assessments
2. Materials and Methods
2.1. Stream Assessment
- EGA: Assessment of four major components of stream restoration
- SPA: Assess eco-geomorphological performance of restored streams
- RBP: Describe the overall quality of stream physical habitat
- RCE: Assess the physical and biological conditions of small streams
- SVAP: Evaluate the condition of aquatic ecosystems associated with wadeable streams
2.2. Site Selection
2.3. Macroinvertebrate Sampling
2.4. Watershed Assessment
2.5. Statistical Analyses
2.5.1. Comparing Assessment Methods
2.5.2. Improving Prediction of EPT Taxa Using Ordination and Regression Tools
2.5.3. Determining the Influence of Watershed
2.5.4. Determining the Best Model to Predict EPT Taxa
2.5.5. Creating Stream Assessment Indices
- Perform PCA on the centered and scaled matrix of individual variables for the stream assessment method. Retain enough PCs to explain 75% of the variability.
- Calculate PC scores for all streams for each retained PC.
- Regress EPT taxa on the PC scores to obtain regression coefficients.
- Obtain scaled weights for each variable by multiplying the matrix of PCA variable loadings (i.e., a matrix whose columns contain the eigenvectors) by the regression coefficients.
- Calculate un-scaled weights or multipliers by dividing the scaled weights by the standard deviation for each variable.
- Calculate new single-value index scores for each stream by multiplying the un-scaled weight by the original raw variable point values (as scored in the field) for each stream. The re-weighted point values for each variable are then summed to compute the single-value index score.
3. Results
3.1. Comparing Assessment Methods
3.2. Improving Prediction of Macroinvertebrates Using Principal Component Regression
3.3. Determining the Influence of Watershed Condition
3.4. Comparing Models for Goodness of Fit Relative to EPT Taxa
3.5. Five Stream Assessment Indices
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CN | Soil Conservation Service runoff curve number |
EGA | NCSU’s Eco-Geomorphological Assessment |
EPT | Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) |
GIS | Geographical Information Systems |
NCD | Natural Channel Design |
PC | Principal Component |
PCA | Principal Component Analysis |
RBP | USEPA’s Rapid Bioassessment Protocol |
RCE | Riparian Channel and Environmental Inventory |
SPA | NCSU’s Stream Performance Assessment |
SVAP | USDA’s Stream Visual Assessment Protocol |
References
- Bernhardt, E.S.; Palmer, M.; Allan, J.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J.; et al. Synthesizing U.S. River restoration efforts. Science 2005, 308, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Sparks, J.; Hagman, T.; Messer, D.; Townsend, J. Eastern kentucky stream assessment protocol: Utility in making mitigation decisions. Aquat. Resour. News Regulat. Newsl. 2003, 2, 4–10. [Google Scholar]
- US Environmental Protection Agency (USEPA). Ecological Restoration: A Tool to Manage Stream Quality; USEPA: Washington, DC, USA, 1995; p. 168.
- National Research Council (US). Restoration of Aquatic Ecosystems: Science, Technology, and Public Policy (1992); Haworth Press: Binghamton, NY, USA, 1992. [Google Scholar]
- US Environmental Protection Agency (USEPA). Principles for the Ecological Restoration of Aquatic Resources; 4501F; USEPA: Washington, DC, USA, 2000; p. 4.
- Booth, D.B.; Karr, J.R.; Schauman, S.; Konrad, C.P.; Morley, S.A.; Larson, M.G.; Burges, S.J. Reviving urban streams: Land use, hydrology, biology, and human behavior. J. Am. Water Resour. Assoc. 2004, 40, 1351–1364. [Google Scholar] [CrossRef]
- Deacon, J.R.; Soule, S.A.; Smith, T.E. Effects of Urbanization on Stream Quality at Selected Sites in the Seacoast Region in New Hampshire, 2001-03; US Department of the Interior, US Geological Survey: Menlo Park, CA, USA, 2005.
- Potter, K.M.; Cubbage, F.W.; Schaberg, R.H. Multiple-scale landscape predictors of benthic macroinvertebrate community structure in north carolina. Landsc. Urb. Plan. 2005, 71, 77–90. [Google Scholar] [CrossRef]
- Resh, V.H.; Norris, R.H.; Barbour, M.T. Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Aust. J. Ecol. 1995, 20, 108–121. [Google Scholar] [CrossRef]
- Barbour, M.T.; Gerritsen, J.; Snyder, B.; Stribling, J. Rapid Bioassessment Protocols for Use in Streams and Wadeable rivers; US Environmental Protection Agency (USEPA): Washington, DC, USA, 1999.
- Bjorkland, R.; Pringle, C.M.; Newton, B. A stream visual assessment protocol (SVAP) for riparian landowners. Environ. Monit. Assess. 2001, 68, 99–125. [Google Scholar] [CrossRef] [PubMed]
- The United States Department of Agriculture (USDA). Stream Visual Assessment Protocol; NRC Environmental Services Inc.: Alameda, CA, USA, 1998; p. 36.
- Peterson, B.J.; Wollheim, W.M.; Mulholland, P.J.; Webster, J.R.; Meyer, J.L.; Tank, J.L.; Martí, E.; Bowden, W.B.; Valett, H.M.; Hershey, A.E.; et al. Control of nitrogen export from watersheds by headwater streams. Science 2001, 292, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Rankin, E.T.; Ohio, E. The Qualitative Habitat Evaluation Index [QHEI]: Rationale, Methods, and Application; State of Ohio Environmental Protection Agency (Ohio EPA): Columbus, OH, USA, 1989.
- Prichard, D.; Bridges, C.; Krapf, R.; Leonard, S.; Hagenbuck, W. Riparian Area Management: Process for Assessing Proper Functioning Condition for Lentic Riparian-Wetland Areas; US Department of the Interior, Technical Reference: Denver, CO, USA, 1994.
- Stauffer, J.C.; Goldstein, R.M. Comparison of three qualitative habitat indices and their applicability to prairie streams. North Am. J. Fish. Manag. 1997, 17, 348–361. [Google Scholar] [CrossRef]
- Ward, T.; Tate, K.; Atwill, E.; Lile, D.; Lancaster, D.; McDougald, N.; Barry, S.; Ingram, R.; George, H.; Jensen, W. A comparison of three visual assessments for riparian and stream health. J. Soil Water Conserv. 2003, 58, 83–88. [Google Scholar]
- Somerville, D.; Pruitt, B. Physical Stream Assessment: A Review of Selected Protocols for Use in the Clean Water Act Section 404 Program; Prepared for the US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Wetlands Division (Order No. 3W-0503-NATX): Washington, DC, USA, 2004.
- Hughes, R.M.; Herlihy, A.T.; Kaufmann, P.R. An evaluation of qualitative indexes of physical habitat applied to agricultural streams in ten us states. J. Am. Water Resour. Assoc. 2010, 46, 792–806. [Google Scholar] [CrossRef]
- Cortes, R.M.V.; Varandas, S.; Hughes, S.J.; Ferreira, M.T. Combining habitat and biological characterization: Ecological validation of the river habitat survey. Limnetica 2008, 27, 39–55. [Google Scholar]
- Schueler, T.R. The importance of imperviousness. Watershed Prot. Technique. 1994, 1, 100–111. [Google Scholar]
- Hammer, T.R. Impacts of Urbanization on Peak Streamflow; Regional Science Research Institute: Philadelphia, PA, USA, 1973. [Google Scholar]
- Hammer, T.R. Stream Channel Enlargement Due to Urbanization; Regional Science Research Institute: Philadelphia, PA, USA, 1972. [Google Scholar]
- Doll, B.A.; Wise-Frederick, D.E.; Buckner, C.M.; Wilkerson, S.D.; Harman, W.A.; Smith, R.E.; Spooner, J. Hydraulic geometry relationships for urban streams throughout the piedmont of north carolina. J. Am. Water Resour. As. 2002, 38, 641–651. [Google Scholar] [CrossRef]
- Purcell, A.H.; Friedrich, C.; Resh, V.H. An assessment of a small urban stream restoration project in northern california. Restor. Ecol. 2002, 10, 685–694. [Google Scholar] [CrossRef]
- Feminella, J.W. Comparison of benthic macroinvertebrate assemblages in small streams along a gradient of flow permanence. J. N. Am. Benthol. Soc. 1996, 15, 651–669. [Google Scholar] [CrossRef]
- Doll, B.A.; Jennings, G.D.; Spooner, J.; Penrose, D.L.; Usset, J.L. Evaluating the eco-geomorphological condition of restored streams using visual assessment and macroinvertebrate metrics. J. Am. Water Resour. As. 2015, 51, 68–83. [Google Scholar] [CrossRef]
- NCSU Water Quality Group. Stream Restoration Evaluation Assessment Form; Prepared for the North Carolina Clean Water Management Trust Fund, NC State University: Raleigh, NC, USA, 2006. [Google Scholar]
- Hey, R.D. Fluvial geomorphological methodology for natural stable channel design. J. Am. Water Resour. Assoc. 2006, 42, 357–374. [Google Scholar] [CrossRef]
- US Department of Agriculture (USDA). Rosgen geomorphic channel design. In Restoration DesignNational Engineering Handbook; USDA: Washington, DC, USA, 2007; Volume 654, p. 76. [Google Scholar]
- NC Department of Environment & Natural Resources (NCDENR). Standard Operating Procedures for Biological Monitoring; Division of Water Quality: Raleigh, NC, USA, 2006; p. 52.
- Arcgis Desktop; Release 10; Environmental Systems Research Institute (ESRI): Redlands, CA, USA, 2011.
- Natural Resources Conservation Service (NRCS). U.S. Soil Survey Geographic (SSURGO) Database for North Carolina and Virginia; NRCS: Washington, DC, USA, 2012.
- Fry, J.A.; Xian, G.; Jin, S.; Dewitz, J.A.; Homer, C.G.; Limin, Y.; Barnes, C.A.; Herold, N.D.; Wickham, J.D. Completion of the 2006 national land cover database for the conterminous United States. Photogramm. Eng. Rem. S. 2011, 77, 858–864. [Google Scholar]
- US Environmental Protection Agency (USEPA). National Land Cover Database (NLCD) 2001 Land Cover Class Definitions, Multi-Resolution Land Characteristics Consortium (MRLC); USEPA: Washington, DC, USA, 2007.
- Natural Resources Conservation Service (NRCS). Hydrologic Soil-Cover Complexes. In National Engineering Handbook: Part 630—Hydrology; USDA Soil Conservation Service: Washington, DC, USA, 2004; p. 20. [Google Scholar]
- Cronshey, R. Urban Hydrology for Small Watersheds; Technical release 55 (tr55); US Government Printing Office: Washington, DC, USA, 1986.
- Bureau of Reclamation. Design of Small Dams; U.S. Government Publishing Office (USGPO): Washington, DC, USA, 1974.
- Haan, C.T.; Barfield, B.J.; Hayes, J.C. Design Hydrology and Sedimentology for Small Catchments; Elsevier: Philadelphia, PA, USA, 1994. [Google Scholar]
- Massy, W.F. Principal components regression in exploratory statistical research. J. Am. Stat. Assoc. 1965, 60, 234–256. [Google Scholar] [CrossRef]
- Leopold, L.B. A View of the River; Harvard University Press: Cambridge, MA, USA, 1994. [Google Scholar]
- R; software environment for statistical computing and graphics; R foundation for statistical computing: Vienna, Austria, 2012; ISBN 3-900051-07-0: 2014.
- Kroonenberg, P.M. Applied Multiway Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 702. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer Science & Business Media: Berlin, Germany, 2002. [Google Scholar]
- Picard, R.R.; Cook, R.D. Cross-validation of regression models. J. Am. Stat. Assoc. 1984, 79, 575–583. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A. River restoration: The fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecol. Appl. 2011, 21, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Violin, C.R.; Cada, P.; Sudduth, E.B.; Hassett, B.A.; Penrose, D.L.; Bernhardt, E.S. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems. Ecol. Appl. 2011, 21, 1932–1949. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.; Host, G. Examining land use influences on stream habitats and macroinvertebrates: A GIS approach. Water Resour. Bull. 1994, 30, 729–738. [Google Scholar] [CrossRef]
- Goforth, R.R.; Bain, M.B. Assessing stream integrity based on interpretations of map-based riparian and subbasin properties. Landsc. Ecol. Eng. 2012, 8, 33–43. [Google Scholar] [CrossRef]
- Wright, J.; Moss, D.; Armitage, P.; Furse, M. A preliminary classification of running-water sites in great britain based on macro-invertebrate species and the prediction of community type using environmental data. Freshw. Biol. 1984, 14, 221–256. [Google Scholar] [CrossRef]
- Sawyer, J.A.; Stewart, P.M.; Mullen, M.M.; Simon, T.P.; Bennett, H.H. Influence of habitat, water quality, and land use on macro-invertebrate and fish assemblages of a southeastern coastal plain watershed, USA. Aquat. Ecosyst. Health Manag. 2004, 7, 85–99. [Google Scholar] [CrossRef]
- Wallace, J.B.; Grubaugh, J.W.; Whiles, M.R. Biotic indices and stream ecosystem processes: Results from an experimental study. Ecol. Appl. 1996, 6, 140–151. [Google Scholar] [CrossRef]
- Poff, N.L.; Zimmerman, J.K. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Helms, B.S.; Schoonover, J.E.; Feminella, J.W. Seasonal variability of landuse impacts on macroinvertebrate assemblages in streams of western georgia, USA. J. N. Am. Benthol. Soc. 2009, 28, 991–1006. [Google Scholar] [CrossRef]
- Joung, H.; Miller, W.; Mahannah, C.; Guitjens, J. A generalized water quality index based on multivariate factor analysis. J. Environ. Qual. 1979, 8, 95–100. [Google Scholar] [CrossRef]
- Norris, R.H.; Georges, A. Analysis and interpretation of benthic macroinvertebrate surveys. In Freshwater Biomonitoring Benthic Macroinvertebrates; Chapman & Hall: New York, NY, USA, 1993; pp. 234–286. [Google Scholar]
Evaluation Categories | Sub-Categories | No. of Variables | Max. Possible Points |
---|---|---|---|
Channel Condition | Bedform Condition | 10 | 20 |
Dominant Substrate Material | 3 | 12 | |
Streambank Stability | 6 | 24 | |
Riparian Habitat | Riparian Vegetation | 5 | 20 |
Floodplain Condition | 6 | 24 | |
Macro invertebrates | Community Structure | 6 | 24 |
Cover and Refuge | 12 | 20 | |
In-stream Structures | Structure Function | 4 | 16 |
Structure Condition | 3 | 12 | |
Total Points | 55 | 172 |
Evaluation Category | Sub-Category | Points |
---|---|---|
Bedform (riffle-pool or step-pool or ripple-pool features) | Riffles-Pools present in regular alternating sequence | 3 |
Riffles-Pools properly located | 3 | |
Riffles appropriate length & slope | 3 | |
Riffles clean washed course material | 3 | |
Pools adequate length & depth; point bar slopes | 3 | |
Pattern | Appropriate to valley slope and type | 10 |
In-Stream Habitat | Large woody debris (excluding root wads) | 3 |
Leaf packs | 3 | |
Stable undercut banks | 3 | |
Root mats and/or fine roots along toe of streambanks | 3 | |
Overhanging vegetation | 3 | |
Root wads and/or large root masses along streambanks | 3 | |
Bedrock, boulders or boulder clusters | 2 | |
Sediment Transport | Evaluate bed incision or deposition | 15 |
Streambank Condition | Estimate percentage of streambanks eroding | 20 |
Streambank Vegetation | Evaluate bank vegetative cover and presence of invasive plants | 15 |
Floodplain Function | Evaluate bank height ratio and floodplain width | 15 |
Total Points | 110 |
Characteristic | EGA | SPA | RBP | RCE | SVAP |
---|---|---|---|---|---|
Number of Variables | 55 | 17 | 13 | 19 | 15 |
Equal variable weights | X | X | |||
Unequal variable weights | X | X | X | ||
Variable points summed | X | X | X | ||
Variable points averaged | X | ||||
Sum/Average combined | X |
Assessment Categories | EGA | SPA | RBP | RCE | SVAP |
---|---|---|---|---|---|
Bedform | X | X | X | X | X |
Substrate 1 | X | X | X | X | X |
Streambank stability | X | X | X | X | X |
Riparian vegetation | X | X | X | X | |
Riparian width | X | X | X | X | |
Riparian completeness | X | ||||
Floodplain accessibility | X | X | X | ||
Aquatic insects 2 | X | X | X | ||
Fish | X | ||||
In-stream habitat | X | X | X | X | X |
Structures (x-vanes, etc.) | X | ||||
Debris dams | X | ||||
Channel pattern | X | ||||
Sediment transport | X | X | X | ||
Channel velocity | X | ||||
Channel flow | X | ||||
Channel modification | X | X | |||
Land use 3 | X | ||||
Width-to-depth ratio | X | ||||
Algal presence | X | X | |||
Water clarity | X | ||||
Fish barriers | X | ||||
Manure presence 1 | X | ||||
Salinity1 | X |
Dominant Taxa | EPT Taxa | EPT Abundance | % Shredders & Predators | Indicator Taxa | |
---|---|---|---|---|---|
EGA | *** | *** | *** | ns | *** |
SPA | · | * | · | · | * |
RBP | *** | *** | *** | ns | *** |
RCE | * | ** | ns | ns | ** |
SVAP | ns | ns | ns | ns | * |
Dominant Taxa | EPT Taxa | EPT Abundance | % Shredders & Predators | Indicator Taxa | No. of Variables | Total No. of PCs | % Variability Explained by PCs | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EGA Total Points | 0.24 | *** | 0.29 | *** | 0.23 | *** | 0.03 | ns | 0.26 | *** | 1 | ||
PCA EGA | 0.61 | *** | 0.68 | *** | 0.62 | *** | 0.29 | · | 0.58 | *** | 44 | 11 | 76.3 |
PCA (EGA +Watershed) | 0.74 | *** | 0.81 | *** | 0.72 | *** | 0.26 | ns | 0.70 | *** | 50 | 12 | 77.3 |
SPA Total Points | 0.07 | · | 0.10 | * | 0.07 | · | 0.09 | · | 0.14 | * | 1 | ||
PCA SPA | 0.49 | *** | 0.47 | *** | 0.32 | * | 0.16 | ns | 0.39 | ** | 17 | 7 | 78.1 |
PCA (SPA + Watershed) | 0.66 | *** | 0.68 | *** | 0.53 | *** | 0.20 | ns | 0.56 | *** | 23 | 8 | 78.8 |
RBP Total Points | 0.31 | *** | 0.37 | *** | 0.33 | *** | 0.03 | ns | 0.42 | *** | 1 | ||
PCA RBP | 0.37 | *** | 0.46 | *** | 0.39 | *** | 0.20 | · | 0.45 | *** | 13 | 5 | 77.4 |
PCA (RBP + Watershed) | 0.63 | *** | 0.72 | *** | 0.59 | *** | 0.24 | · | 0.65 | *** | 19 | 6 | 77.4 |
RCE Total Points | 0.15 | * | 0.11 | ** | 0.16 | ns | 0.01 | ns | 0.31 | ** | 1 | ||
PCA RCE | 0.45 | *** | 0.49 | *** | 0.45 | *** | 0.20 | ns | 0.65 | *** | 18 | 8 | 78.7% |
PCA (RCE + Watershed) | 0.70 | *** | 0.73 | *** | 0.63 | *** | 0.16 | ns | 0.73 | *** | 24 | 9 | 78.2% |
SVAP Total Points | 0.02 | ns | 0.04 | ns | 0.05 | ns | 0.01 | ns | 0.33 | . | 1 | ||
PCA SVAP | 0.33 | ** | 0.39 | *** | 0.34 | ** | 0.09 | ns | 0.66 | ** | 11 | 6 | 80.3% |
PCA (SVAP + Watershed) | 0.58 | *** | 0.67 | *** | 0.56 | *** | 0.11 | ns | 0.66 | *** | 17 | 6 | 75.7% |
Watershed | 0.65 | *** | 0.70 | *** | 0.55 | *** | 0.22 | ns | 0.52 | *** | 6 | ||
PC Watershed | 0.41 | *** | 0.43 | *** | 0.34 | *** | 0.09 | ns | 0.40 | *** | 6 | 2 | 78.6% |
Linear Regression of Total Raw Score | PCR | PCR (Assessment + Watershed Variables) | |||||||
---|---|---|---|---|---|---|---|---|---|
AIC | CV | # | AIC | CV | # | AIC | CV | # | |
EGA | 356 | 13.1 | 1 | 324 | 8.8 | 11 | 294 | 7.1 | 12 |
SPA | 371 | 16.6 | 1 | 349 | 10.8 | 7 | 319 | 7.3 | 8 |
RBP | 349 | 11.2 | 1 | 347 | 10.4 | 5 | 307 | 7.4 | 6 |
RCE | 366 | 15.4 | 1 | 348 | 11.3 | 8 | 308 | 6.3 | 9 |
SVAP | 376 | 17.7 | 1 | 357 | 12.3 | 6 | 316 | 6.5 | 6 |
Watershed | 311 | 6.9 | 6 | 344 | 9.9 | 2 |
Variable # | Variable Name | Scaled Weight | Multiplier |
---|---|---|---|
3 | Pool variability or velocity | 1.10 | 0.20 |
7 | Channel sinuosity or riffle frequency | 0.84 | 0.16 |
1 | Epifaunal substrate | 0.83 | 0.23 |
2 | Pool substrate or embeddedness | 0.69 | 0.18 |
5 | Channel flow status | 0.56 | 0.10 |
8 | Bank stability LB | 0.42 | 0.38 |
9 | Bank stability RB | 0.38 | 0.34 |
4 | Sediment deposition | 0.26 | 0.07 |
11 | Vegetative protection RB | 0.05 | 0.02 |
6 | Channel alteration | 0.04 | 0.01 |
10 | Vegetative protection LB | 0.01 | 0.00 |
13 | Riparian zone RB | –0.07 | –0.03 |
12 | Riparian zone LB | –0.18 | –0.06 |
Variable # | Variable Name | Scaled Weight | Multiplier |
---|---|---|---|
7 | Channel sinuosity or riffle frequency | 0.86 | 0.16 |
14 | Basin Slope | 0.81 | 19.13 |
3 | Pool variability or velocity | 0.74 | 0.13 |
5 | Channel flow status | 0.63 | 0.12 |
2 | Pool substrate or embeddedness | 0.53 | 0.14 |
16 | Watershed Size | 0.43 | 0.05 |
4 | Sediment deposition | 0.38 | 0.10 |
1 | Epifaunal substrate | 0.37 | 0.10 |
8 | Bank stability LB | 0.19 | 0.17 |
9 | Bank stability RB | 0.14 | 0.12 |
15 | Time of Concentration | 0.06 | 0.00 |
6 | Channel alteration | –0.01 | 0.00 |
13 | Riparian zone RB | –0.14 | –0.05 |
11 | Vegetative protection RB | –0.15 | –0.08 |
10 | Vegetative protection LB | –0.17 | –0.09 |
12 | Riparian zone LB | –0.23 | –0.07 |
19 | % Impervious | –0.40 | –0.03 |
18 | % Developed | –0.49 | –0.01 |
17 | Curve Number | –0.75 | –0.09 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doll, B.; Jennings, G.; Spooner, J.; Penrose, D.; Usset, J.; Blackwell, J.; Fernandez, M. Can Rapid Assessments Predict the Biotic Condition of Restored Streams? Water 2016, 8, 143. https://doi.org/10.3390/w8040143
Doll B, Jennings G, Spooner J, Penrose D, Usset J, Blackwell J, Fernandez M. Can Rapid Assessments Predict the Biotic Condition of Restored Streams? Water. 2016; 8(4):143. https://doi.org/10.3390/w8040143
Chicago/Turabian StyleDoll, Barbara, Gregory Jennings, Jean Spooner, David Penrose, Joseph Usset, James Blackwell, and Mark Fernandez. 2016. "Can Rapid Assessments Predict the Biotic Condition of Restored Streams?" Water 8, no. 4: 143. https://doi.org/10.3390/w8040143
APA StyleDoll, B., Jennings, G., Spooner, J., Penrose, D., Usset, J., Blackwell, J., & Fernandez, M. (2016). Can Rapid Assessments Predict the Biotic Condition of Restored Streams? Water, 8(4), 143. https://doi.org/10.3390/w8040143