Estimating the Risk of River Flow under Climate Change in the Tsengwen River Basin
Abstract
:1. Introduction
2. Literature Review
3. Research Methodology
3.1. SOBEK Model
3.1.1. Rainfall Runoff
3.1.2. River Hydraulics
3.2. Indicators for Model Error Analysis
3.3. Study Area
3.4. Hydrologic and Geomorphic Data
4. Case Analysis
4.1. River Hydraulic Structure Impact Assessment
4.2. Model Calibration and Validation
4.3. Simulation Results
5. Conclusions and Recommendations
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovermental. Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Liu, K.F.; Li, H.C.; Hsu, Y.C. Debris flow hazard assessment with numerical Simulation. Nat. Hazards 2009, 49, 137–161. [Google Scholar] [CrossRef]
- National Science and Technology Center for Disaster Reduction (NCDR): Introduction of Taiwan Climate Change Projection and Information Platform Project (TCCIP). NCDR Rep. 2010, 7, 2010–2054. (In Chinese)
- Vitart, F.; Anderson, J.L.; Stern, W.F. Simulation of the interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Clim. 1997, 10, 745–760. [Google Scholar] [CrossRef]
- Lenderink, G.; Buishand, A.; Deursen, W.V. Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci. 2007, 11, 1145–1159. [Google Scholar] [CrossRef]
- Wilby, R.L.; Wigley, T.M.L.; Conway, D.; Jones, P.D.; Hewitson, B.C.; Main, J.; Wilks, D.S. Statistical downscaling of general circulation model output: A Comparison of Methods. Water. Resour. Res. 1998, 34, 2995–3008. [Google Scholar] [CrossRef]
- Wilby, R.L.; Charles, S.P.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L.O. IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA). Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods; IPCC Data Distribution Centre: Geneva, Switzerland, 2004. [Google Scholar]
- Tabor, K.; Williams, J.W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 2010, 20, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, C.Y.; Guo, S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J. Hydrol. 2012, 434–435, 36–45. [Google Scholar] [CrossRef]
- Mizuta, R.; Yoshimura, H.; Murakami, H.; Matsueda, M.; Endo, H.; Ose, T.; Kamiguchi, K.; Hosaka, M.; Sugi, M.; Yukimoto, S.; et al. Climate simulations using the improved MRI-AGCM with 20-km grid. J. Meteor. Soc. 2012, 90A. [Google Scholar] [CrossRef]
- Linde, A.H.T.; Aerts, J.C.J.H.; Bakker, A.M.R.; Kwadijk, J.C.J. Simulating low probability peak discharges for the Rhine basin using resampled climate modeling data. Water. Resour. Res. 2010, 46, 1–19. [Google Scholar] [CrossRef]
- Kimura, N.; Chiang, S.; Wei, H.P.; Su, Y.F.; Chu, J.L.; Cheng, C.T.; Liou, J.J.; Chen, Y.M.; Lin, L.Y. Tsengwen reservoir watershed hydrological flood simulation under global climate change using the 20 km mesh meteorological research institute atmospheric general circulation model (MRI-AGCM). Terr. Atmos. Ocean. Sci. 2014, 25, 449–461. [Google Scholar] [CrossRef]
- Lenderink, G.; Ulden, A.V.B.; van den Hurk, B.; Keller, F. A study on combining global and regional climate model results for generating climate scenarios of temperature and precipitation for the Netherlands. Clim. Dyn. 2007, 29, 157–176. [Google Scholar] [CrossRef]
- Jones, R.; Murphy, J.; Hassell, D.; Taylor, R. Ensemble mean changes in a simulation of the European climate of 2071–2100: Using the New Hadley Centre Regional Climate Modelling System HadAM3H/HadRM3H. Available online: http://prudence.dmi.dk/public/publications/hadley_200208.pdf (accessed on 6 October 2005).
- Jones, C.G.; Willen, U.; Ullerstig, A.; Hansson, U. The Rossby Centre Regional Atmospheric Climate Model (RCA). Part I: Model Climatology and Performance for the Present Climate over Europe. Ambio 2004, 33, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.; Bi, X.; Pal, J. Means, trends and interannual variability in a regional climate change experiment over Europe. PartI: Present-Day Climate (1961–1990). Clim. Dyn. 2004, 22, 733–756. [Google Scholar] [CrossRef]
- Linde, A.H.T.; Aerts, J.C.J.H.; Kwadijk, J.C.J. Effectiveness of flood management strategies on peak discharges in the Rhine basin. J. Flood Risk Manag. 2010, 3, 248–269. [Google Scholar] [CrossRef]
- Delft Hydraulics SOBEK User Manuals; Deltares: Delft, The Netherlands, 2007.
- Burnash, R.J.C. The NWS River Forecast System—Catchment model. In Computer Models of Watershed Hydrology; Water Resources Publications: Littleton, CO, USA, 1995. [Google Scholar]
- Republic of China Ministry of Economic Affairs. Water Resources Agency (WRA) Calibration of Flood Forecasting Model and Review and Establishment of Warning Stages; Water Resources Agency report (2/2); Republic of China Ministry of Economic Affairs: Taipei, Taiwan, 2014. (In Chinese)
- Republic of China Ministry of Economic Affairs. Water Resources Agency (WRA) Operation Directions for Nanhua Reservoir; (2011 updated version); Republic of China Ministry of Economic Affairs: Taipei, Taiwan, 2004. (In Chinese)
- Chen, W.B.; Liu, W.C. Modeling Flood Inundation Induced by River Flow and Storm Surges over a River Basin. Water 2014, 6, 3182–3199. [Google Scholar] [CrossRef]
- Republic of China Ministry of Economic Affairs. Water Resources Agency (WRA) Operation Directions for Tsengwen Reservoir; (2014 updated version); Republic of China Ministry of Economic Affairs: Taipei, Taiwan, 2002. (In Chinese)
- Republic of China Ministry of Economic Affairs. Water Resources Agency (WRA) Operation Directions for Wusanto Reservoir; (2011 updated version); Republic of China Ministry of Economic Affairs: Taipei, Taiwan, 2008. (In Chinese)
- Tang, Y.; Reed, P.M.; Wagener, T. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrol. Earth Syst. 2006, 10, 289–307. [Google Scholar] [CrossRef]
- Su, Y.F.; Cheng, C.T.; Liu, J.J.; Chen, Y.M. Bias correction of MRI-WRF dynamic downscaling datasets. Terr. Atmos. Ocean. Sci. 2015. Submitted. [Google Scholar]
- Yu, Y.C.; Lee, T.J.; Kung, C.Y. Disaster warning and scenario analysis in Typhoons and Heavy Rainfall events. NCDR Rep. 2014, 2014, 1–15. (In Chinese) [Google Scholar]
- Johnson, F.; Sharma, A. Accounting for interannual variability: A Comparison of Options for Water Resources Climate Change Impact Assessments. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
Parameters | Description | Allowable Range |
---|---|---|
UZTWM | Capacity of the upper tension water zone (mm) | 250–300 |
UZFWM | Capacity of the upper free water zone (mm) | 240–300 |
UZK | Upper zone lateral drainage rate (fraction of contents per day) | 0.2 |
PCTIM | Permanent impervious fraction of the segment contiguous with stream channels | 0.02 |
ADIMP | Additional impervious fraction when all tension water requirements are met | 0.3–0.5 |
SARVA | Fraction of the segment covered by streams, lakes, and riparian vegetation | 0.01 |
ZPERC | Proportional increase in the percolation under saturated to dry conditions in the lower zone | 10–20 |
REXP | Exponent in the percolation equation, for determining the rate at which percolation demand changes from dry to wet conditions | 1.5–2.5 |
LZTW | Capacity of the lower zone tension water storage (mm) | 210–330 |
LZFPM | Capacity of the lower zone primary free water storage (mm) | 230–450 |
LZFSM | Capacity of the lower zone supplemental free water storage (mm) | 200–340 |
LZPK | Drainage rate of the lower zone primary free water storage (fraction of contents per day) | 0.004–0.04 |
LZSK | Drainage rate of the lower zone supplemental free water storage (fraction of contents per day) | 0.06–0.14 |
PFREE | Fraction of percolated water that drains directly to the lower zone free water storage | 0.2 |
RSERV | Fraction of the lower zone free water storage that is unavailable for transpiration purposes | 0.3 |
SIDE | Ratio of the unobserved to observed base flow | 0 |
SSOUT | Fixed rate of discharge lost during the total CF (mm/t) | 0 |
Typhoon Events | Base Period | Near Future | End of This Century | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1979–2003) | (2015–2039) | (2075–2099) | ||||||||||
No. | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) |
Top1 | 851.4 | 108.6 | 491.3 | 120 | 548.2 | 111.7 | 420.3 | 90 | 1027.8 | 191.7 | 722.1 | 48 |
Top2 | 505.9 | 63 | 268.4 | 90 | 370 | 132.3 | 367.8 | 78 | 738.2 | 160.6 | 572.5 | 66 |
Top3 | 298.6 | 57.1 | 247.3 | 90 | 304.9 | 68.8 | 296.3 | 66 | 551.1 | 200.4 | 549.5 | 36 |
Top4 | 295.7 | 58.7 | 223.1 | 60 | 344.3 | 64.2 | 295.8 | 60 | 534.6 | 84.8 | 433.2 | 132 |
Top5 | 248.8 | 55.7 | 222 | 66 | 288.3 | 117.0 | 280.9 | 67 | 677.0 | 154.3 | 430.1 | 48 |
Top6 | 194.8 | 73.5 | 192.6 | 78 | 227 | 39.6 | 197.2 | 90 | 407.5 | 135.9 | 404.9 | 66 |
Top7 | 174.8 | 75.7 | 164.4 | 42 | 197.7 | 47.0 | 183.3 | 42 | 503.0 | 94.2 | 394.7 | 102 |
Top8 | 149.1 | 68 | 147.6 | 42 | 171.9 | 55.5 | 162.7 | 72 | 475.7 | 91.2 | 366.6 | 48 |
Top9 | 242.5 | 36.3 | 141.8 | 48 | 167.5 | 40.3 | 158.2 | 72 | 484.8 | 97.2 | 359.9 | 42 |
Top10 | 132.4 | 117.1 | 131.8 | 96 | 218.1 | 28.2 | 149.9 | 48 | 344.9 | 63.9 | 283.4 | 48 |
Top11 | 153.4 | 31.0 | 123.0 | 54 | 156.9 | 33.7 | 145.9 | 48 | 338.3 | 92.0 | 268.2 | 54 |
Top12 | 112.9 | 106.0 | 112.9 | 48 | 295.2 | 27.1 | 145.7 | 150 | 328.0 | 82.2 | 250.8 | 42 |
Top13 | 104.3 | 89.6 | 98.7 | 72 | 147.9 | 62.7 | 143.3 | 72 | 258.0 | 61.9 | 219.6 | 66 |
Top14 | 95.6 | 95.6 | 95.6 | 108 | 225.4 | 32.7 | 133.4 | 42 | 259.7 | 79.0 | 203.6 | 42 |
Top15 | 92.1 | 90.6 | 92.1 | 84 | 122.2 | 56.7 | 121.8 | 66 | 201.1 | 94.6 | 195.4 | 54 |
Top16 | 88.6 | 88.6 | 88.6 | 24 | 120.8 | 28.7 | 120.2 | 84 | 239.0 | 43.6 | 191.8 | 72 |
Top17 | 85.7 | 77.7 | 85.7 | 30 | 112.2 | 37.3 | 106.8 | 60 | 306.8 | 42.7 | 186.1 | 60 |
Top18 | 91.8 | 52.7 | 85.3 | 54 | 110.9 | 37.3 | 106.8 | 78 | 290.1 | 57.3 | 173.7 | 30 |
Top19 | 75.2 | 75.2 | 75.2 | 48 | 98.5 | 42.6 | 98.1 | 30 | 190.8 | 28.6 | 147.1 | 48 |
Top20 | 67.5 | 34.8 | 37.0 | 138 | 76.5 | 23.6 | 74.8 | 42 | 68.7 | 21.5 | 66.8 | 78 |
Typhoon Morakot | 1007.5 | 144.3 | 636.2 | 72 | – | – | – | – | – | – | – | – |
Gauge Station | Return Period (Years) | Design Discharge (cm) | Design Stage (m) | * Historical Maximum Stage (m) |
---|---|---|---|---|
XinZong (1) | 100 | 9890 | 15.71 | 18.36 |
Erxi Bridge | 8740 | 21.37 | 23.56 | |
Yufeng Bridge | 6900 | 46.06 | 46.98 |
Item | Typhoon Events | (h) | ||
---|---|---|---|---|
Calibrated | Kalmaegi(2008) | 0.8 | −1.31 | −2 |
Morakot(2009) | 0.9 | 4.75 | −1 | |
Verified | 0610 Extreme rain (2009) | 0.9 | −1.66 | 0 |
Water Level Station | Design Water Level (m) | ||
---|---|---|---|
Base Period (88) | Future (82) | End of Century (81) | |
XinZong (1) | 2 | 6 | 10 |
Erxi Bridge | 3 | 6 | 12 |
Yufeng Bridge | 1 | 1 | 8 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.-P.; Yeh, K.-C.; Liou, J.-J.; Chen, Y.-M.; Cheng, C.-T. Estimating the Risk of River Flow under Climate Change in the Tsengwen River Basin. Water 2016, 8, 81. https://doi.org/10.3390/w8030081
Wei H-P, Yeh K-C, Liou J-J, Chen Y-M, Cheng C-T. Estimating the Risk of River Flow under Climate Change in the Tsengwen River Basin. Water. 2016; 8(3):81. https://doi.org/10.3390/w8030081
Chicago/Turabian StyleWei, Hsiao-Ping, Keh-Chia Yeh, Jun-Jih Liou, Yung-Ming Chen, and Chao-Tzuen Cheng. 2016. "Estimating the Risk of River Flow under Climate Change in the Tsengwen River Basin" Water 8, no. 3: 81. https://doi.org/10.3390/w8030081