Combining Field and Laboratory Measurements to Determine the Erosion Risk of Cohesive Sediments Best
Abstract
:1. Introduction
2. Study Areas
3. Materials and Methods
3.1. In Situ Erosion Device
3.2. Withdrawal of Sediment Cores in the Field
3.3. The SETEG Flume and the SEDCIA System
3.4. Bulk Density and Particle Size Distribution
Clay | Fine Silt | Medium Silt | Coarse Silt | Fine Sand | Medium Sand | Coarse Sand |
---|---|---|---|---|---|---|
<2 μm | 2–6 μm | 6–20 μm | 20–64 μm | 64–200 μm | 200–640 μm | >640 μm |
4. Results
4.1. Laboratory Analyses of the Sediment Cores from the River Elbe
4.2. Laboratory Analyses of the Sediment Cores from the River Saale
4.3. Comparison of Critical Shear Stress Values between Laboratory and in situ Measurements
5. Discussion
6. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Owens, P.N.; Batalla, R.; Collins, A.J.; Gomez, B.; Hicks, D.M.; Horowitz, A.J.; Kondolf, G.M.; Marden, M.; Page, M.J.; Peacock, D.H.; et al. Fine-grained sediment in river systems: Environmental significance and management issues. River Res. Appl. 2005, 21, 693–717. [Google Scholar] [CrossRef]
- Heise, S.; Förstner, U. Risk assessment of contaminated sediments in river basins—Theoretical considerations and pragmatic approach. J. Environ. Monit. 2007, 9, 943–952. [Google Scholar] [CrossRef] [PubMed]
- The SedNet Strategy Paper. Available online: http://www.sednet.org/download/SedNet_strategic_paper_2004.pdf (accessed on 14 September 2015).
- Black, K.S.; Tolhurst, T.J.; Paterson, D.M.; Hagerthey, S.E. Working with natural cohesive sediments. J. Hydraul. Eng. 2002, 128, 2–8. [Google Scholar] [CrossRef]
- Gerbersdorf, S.U.; Wieprecht, S. Biostabilization of cohesive sediments: Revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 2015, 13, 68–97. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.M. Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol. Oceanogr. 1989, 34, 223–234. [Google Scholar] [CrossRef]
- Amos, C.L.; Grant, J.; Daborn, G.R.; Black, K. Sea Carousel—A benthic, annular flume. Estuar. Coast. Shelf Sci. 1992, 34, 557–577. [Google Scholar] [CrossRef]
- McNeil, J.; Taylor, C.; Lick, W. Measurements of erosion of undisturbed bottom sediments with depth. J. Hydraul. Eng. 1996, 122, 316–324. [Google Scholar] [CrossRef]
- Gust, G.; Muller, V. Interfacial hydrodynamics and entrainment functions of currently used erosion devices. Cohes. Sediment. 1997, 5, 149–171. [Google Scholar]
- Kern, U.; Haag, I.; Schürlein, V.; Holzwarth, M.; Westrich, B. Ein Strömungskanal zur ermittlung der tiefenabhängigen Erosionsstabilität von Gewässersedimente. Wasserwirtschaft 1999, 89, 72–77. (In German) [Google Scholar]
- Roberts, J.D.; Jepsen, R.A.; James, S.C. Measurements of sediment erosion and transport with the adjustable shear stress erosion and transport flume. J. Hydraul. Eng. 2003, 129, 862–871. [Google Scholar] [CrossRef]
- Aberle, J.; Nikora, V.; McLean, S.; Doscher, C.; McEwan, I.; Green, M.; Goring, D.; Walsh, J. Straight benthic flow-through flume for in situ measurement of cohesive sediment dynamics. J. Hydraul. Eng. 2003, 129, 63–67. [Google Scholar] [CrossRef]
- Westrich, B.; Schmid, G.; Witt, O. Comprehensive investigation on cohesive sediment erodibility by field and laboratory experiments. In 30th IAHR Congress: Water Engineering and Research in a Learning Society; Ganoulis, J., Prinos, P., Eds.; Aristoteleio Panepistimio Thessalonikis: Thessaloniki, Greece, 2003. [Google Scholar]
- Gerbersdorf, S.U.; Jancke, T.; Westrich, B. Physico-chemical and biological sediment properties determining erosion resistance of contaminated riverine sediments—Temporal and vertical pattern at the Lauffen reservoir/River Neckar, Germany. Limnol.-Ecol. Manag. Inland Waters 2005, 35, 132–144. [Google Scholar] [CrossRef]
- Förstner, U.; Heise, S.; Schwartz, R.; Westrich, B.; Ahlf, W. Historical contaminated sediments and soils at the river basin scale: Examples from the Elbe river catchment area. J. Soils Sediment. 2004, 4, 247–260. [Google Scholar] [CrossRef]
- Lick, W.J. Sediment and Contaminant Transport in Surface Waters; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Wölz, J.; Cofalla, C.; Hudjetz, S.; Roger, S.; Brinkmann, M.; Schmidt, B.; Schäffer, A.; Kammann, U.; Lennartz, G.; Hecker, M.; et al. In search for the ecological and toxicological relevance of sediment re-mobilisation and transport during flood events. J. Soils Sediment. 2008, 9, 1–5. [Google Scholar] [CrossRef]
- Westrich, B.; Förstner, U. Sediment Dynamics and Pollutant Mobility in Rivers—An Interdisciplinary Approach; Springer: Berlin, Germany, 2007. [Google Scholar]
- Gerbersdorf, S.U.; Hollert, H.; Brinkmann, M.; Wieprecht, S.; Schüttrumpf, H.; Manz, W. Anthropogenic pollutants affect ecosystem services of freshwater sediments: The need for a “triad plus x” approach. J. Soils Sediment. 2011, 11, 1099–1114. [Google Scholar] [CrossRef]
- Moshenberg, K.L. Fate and Transport Modeling of Cohesive Sediment and Sediment-Bound HCB in the Middle Elbe River Basin. Ph.D. Thesis, Technical University Hamburg-Harburg, Hamburg, Germany, October 2013. [Google Scholar]
- Witt, O.; Westrich, B. Qunatification of erosion rates for undistrubed contaminated cohesive sediment cores by image analysis. Hydrobiologia 2003, 494, 271–276. [Google Scholar] [CrossRef]
- Tolhurst, T.J.; Black, K.S.; Paterson, D.M. Muddy sediment erosion: Insights from field studies. J. Hydraul. Eng. 2009, 135, 73–87. [Google Scholar] [CrossRef]
- Hartmann, S. Entwicklung einer Strategie zur in situ Ermittlung der kritischen Erosionsgeschwindigkeit. Ph.D. Thesis, Universität der Bundeswehr München, München, Germany, June 1997. [Google Scholar]
- Schwartz, R.; Gerth, J.; Neumann-Hensel, H.; Förstner, U. Assessment of highly polluted fluvisol in the Spittelwasser floodplain based on national guideline values and MNA-criteria. J. Soils Sediment. 2006, 6, 145–155. [Google Scholar] [CrossRef]
- Aberle, J. Measurement techniques for the estimation of cohesive sediment erosion. In Hydraulic Methods for Catastrophes: Floods, Droughts, Environmental Disasters; Rowiński, P.M., Ed.; Institute of Geophysics Polish Academy of Sciences: Warszawa, Poland, 2008. [Google Scholar]
- Debnath, K.; Nikora, V.; Aberle, J.; Westrich, B.; Muste, M. Erosion of cohesive sediments resuspension, bed load, and erosion patterns from field experiments. J. Hydraul. Eng. ASCE 2007, 133, 508–520. [Google Scholar] [CrossRef]
- Schweim, C. Modellierung und Prognose der Erosion Feiner Sedimente. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, April 2005. [Google Scholar]
- Lorch, S. Automatische Registrierung der Feuchtdichte und der Wassergehaltsänderung eines Bodens durch Messung der Absorption von Gammastrahlen (Geländemessung). Z. Pflanzenernaehr. Bodenk. 1971, 130, 136–151. (In German) [Google Scholar]
- Capello, S.V. Modeling Channel Erosion in Cohesive Streams of the Blackland Prairie, Texas at the Watershed Scale. Master Thesis, Baylor University, Waco, TX, USA, August 2008. [Google Scholar]
- Wieprecht, S.; Hartmann, S.; Schmid, G. Erosionsmessung Elbe-Buhnenfelder; University of Stuttgart: Stuttgart, Germany, 2013. (In German) [Google Scholar]
- Wieprecht, S.; Hartmann, S.; Schmid, G. Ermittlung des Resuspensionspotentials Belasteter Altsedimente in Ausgewählten Gewässern Sachsen-Anhalts; University of Stuttgart: Stuttgart, Germany, 2013. (In German) [Google Scholar]
- Houwing, E.-J.; van Rijn, L.C. In Situ Erosion Flume (ISEF): Determination of bed-shear stress and erosion of a kaolinite bed. J. Sea Res. 1998, 39, 243–253. [Google Scholar] [CrossRef]
- Tolhurst, T.J.; Riethmüller, R.; Paterson, D.M. In situ versus laboratory analysis of sediment stability from intertidal mudflats. Cont. Shelf Res. 2000, 20, 1317–1334. [Google Scholar]
- Haag, I.; Kern, U.; Westrich, B. Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated aquatic sediments. Sci. Total Environ. 2001, 266, 249–257. [Google Scholar] [PubMed]
- Grabowski, R.C.; Droppo, I.G.; Wharton, G. Erodibility of cohesive sediment: The importance of sediment properties. Earth-Sci. Rev. 2011, 105, 101–120. [Google Scholar] [CrossRef]
- Sills, G.C.; Been, K. Self-weight consolidation of soft soils: An experimental and theoretical study. Géotechnique 1981, 31, 519–535. [Google Scholar]
- Kuijper, C.; Cornelisse, J.M.; Winterwerp, J.C. Research on erosive properties of cohesive sediments. J. Geophys. Res. Oceans 1989, 94, 14341–14350. [Google Scholar] [CrossRef]
- Amos, C.L.; Mosher, D.C. Erosion and deposition of fine-grained sediments from the Bay of Fundy. Sedimentology 1985, 32, 815–832. [Google Scholar] [CrossRef]
- Lick, W.; Lick, J.; Jin, L.; Gailani, J. Approximate equations for sediment erosion rates. In Marine Science, Estuarine and Coastal Fine Sediments Dynamics Intercoh; Elsevier: Amsterdam, The Netherlands, 2007; pp. 109–127. [Google Scholar]
- Gerbersdorf, S.U.; Jancke, T.; Westrich, B. Sediment properties for assessing the erosion risk of contaminated riverine sites. An approach to evaluate sediment properties and their covariance patterns over depth in relation to erosion resistance. First investigations in natural sediments. J. Soils Sediment. 2007, 7, 25–35. [Google Scholar] [CrossRef]
- Young, R.N.; John, S.B. Erosion of fine-grained marine sediments: Sea-floor and laboratory experiments. Geol. Soc. Am. Bull. 1978, 89, 663–672. [Google Scholar] [CrossRef]
- Maa, J.P.-Y.; Wright, L.D.; Lee, C.-H.; Shannon, T.W. VIMS sea carousel: A field instrument for studying sediment transport. Mar. Geol. 1993, 115, 271–287. [Google Scholar] [CrossRef]
- Widdows, J.; Brinsley, M.D.; Bowley, N.; Barrett, C. A benthic annular flume for in situ measurement of suspension feeding/biodeposition rates and Erosion potential of intertidal Cohesive Sediments. Estuar. Coast. Shelf Sci. 1998, 46, 27–38. [Google Scholar] [CrossRef]
- Aberle, J.; Nikora, V.; Walters, R. Data interpretation for in situ measurements of cohesive sediment erosion. J. Hydraul. Eng. ASCE 2006, 132, 581–588. [Google Scholar] [CrossRef]
- Righetti, M.; Lucarelli, C. May the shields theory be extended to cohesive and adhesive benthic sediments? J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef]
- Harb, G.; Haun, S.; Schneider, J. Evaluation of critical shear stress of cohesive sediments by using PIV compared with vane strength measurements. In Advances in River Sediment Research; Fukuoka, S., Nakagawa, H., Sumi, T., Zhang, H., Eds.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Noack, M.; Gerbersdorf, S.; Wieprecht, S.; Hillebrand, G.; Kasimir, P. How to determine the erosion risk of contaminated cohesive sediments best? Putting in situ and laboratory practices to the test. In River Flow 2014; CRC Press: Boca Raton, FL, USA, 2014; pp. 2235–2242. [Google Scholar]
- Debnath, K.; Chaudhuri, S. Cohesive sediment erosion threshold: A review. ISH J. Hydraul. Eng. 2010, 16, 36–56. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noack, M.; Gerbersdorf, S.U.; Hillebrand, G.; Wieprecht, S. Combining Field and Laboratory Measurements to Determine the Erosion Risk of Cohesive Sediments Best. Water 2015, 7, 5061-5077. https://doi.org/10.3390/w7095061
Noack M, Gerbersdorf SU, Hillebrand G, Wieprecht S. Combining Field and Laboratory Measurements to Determine the Erosion Risk of Cohesive Sediments Best. Water. 2015; 7(9):5061-5077. https://doi.org/10.3390/w7095061
Chicago/Turabian StyleNoack, Markus, Sabine U. Gerbersdorf, Gudrun Hillebrand, and Silke Wieprecht. 2015. "Combining Field and Laboratory Measurements to Determine the Erosion Risk of Cohesive Sediments Best" Water 7, no. 9: 5061-5077. https://doi.org/10.3390/w7095061