Next Article in Journal
Comparison of Different Grid Cell Ordering Approaches in a Simplified Inundation Model
Next Article in Special Issue
Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of Yuyao, China
Previous Article in Journal
Benthic Uptake Rate due to Hyporheic Exchange: The Effects of Streambed Morphology for Constant and Sinusoidally Varying Nutrient Loads
Previous Article in Special Issue
Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data
Article

Determining Characteristic Vegetation Areas by Terrestrial Laser Scanning for Floodplain Flow Modeling

1
Department of Civil and Environmental Engineering, Aalto University, P.O. Box 15500, Aalto 00076, Finland
2
Department of Real Estate, Planning and Geoinformatics, Aalto University, P.O. Box 15800, Aalto 00076, Finland
*
Author to whom correspondence should be addressed.
Academic Editor: Yong Wang
Water 2015, 7(2), 420-437; https://doi.org/10.3390/w7020420
Received: 26 November 2014 / Revised: 13 January 2015 / Accepted: 21 January 2015 / Published: 29 January 2015
(This article belongs to the Special Issue Advances in Remote Sensing of Flooding)
Detailed modeling of floodplain flows and associated processes requires data on mixed, heterogeneous vegetation at river reach scale, though the collection of vegetation data is typically limited in resolution or lack spatial information. This study investigates physically-based characterization of mixed floodplain vegetation by means of terrestrial laser scanning (TLS). The work aimed at developing an approach for deriving the characteristic reference areas of herbaceous and foliated woody vegetation, and estimating the vertical distribution of woody vegetation. Detailed experimental data on vegetation properties were gathered both in a floodplain site for herbaceous vegetation, and under laboratory conditions for 2–3 m tall trees. The total plant area (Atot) of woody vegetation correlated linearly with the TLS-based voxel count, whereas the Atot of herbaceous vegetation showed a linear correlation with TLS-based vegetation mean height. For woody vegetation, 1 cm voxel size was found suitable for estimating both the Atot and its vertical distribution. A new concept was proposed for deriving Atot for larger areas from the point cloud attributes of small sub-areas. The results indicated that the relationships between the TLS attributes and Atot of the sub-areas can be derived either by mm resolution TLS or by manual vegetation sampling. View Full-Text
Keywords: terrestrial laser scanning; remote sensing; hydraulics; flooding; flow resistance; vegetation; rivers and floodplains terrestrial laser scanning; remote sensing; hydraulics; flooding; flow resistance; vegetation; rivers and floodplains
Show Figures

Graphical abstract

MDPI and ACS Style

Jalonen, J.; Järvelä, J.; Virtanen, J.-P.; Vaaja, M.; Kurkela, M.; Hyyppä, H. Determining Characteristic Vegetation Areas by Terrestrial Laser Scanning for Floodplain Flow Modeling. Water 2015, 7, 420-437. https://doi.org/10.3390/w7020420

AMA Style

Jalonen J, Järvelä J, Virtanen J-P, Vaaja M, Kurkela M, Hyyppä H. Determining Characteristic Vegetation Areas by Terrestrial Laser Scanning for Floodplain Flow Modeling. Water. 2015; 7(2):420-437. https://doi.org/10.3390/w7020420

Chicago/Turabian Style

Jalonen, Johanna, Juha Järvelä, Juho-Pekka Virtanen, Matti Vaaja, Matti Kurkela, and Hannu Hyyppä. 2015. "Determining Characteristic Vegetation Areas by Terrestrial Laser Scanning for Floodplain Flow Modeling" Water 7, no. 2: 420-437. https://doi.org/10.3390/w7020420

Find Other Styles

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop