Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Flood Damage Modeling Approach
- a)
- Classification of elements at risk by pooling them into homogeneous classes;
- b)
- Exposure analysis and asset assessment by describing the number and type of elements at risk and by estimating their asset value; and
- c)
- Susceptibility analysis by relating the relative damage of the elements at risk to the flood impact.
2.3. Input Data and Preprocessing
2.4. Classification of Elements at Risk: Urban Structure Type Classification
Task | Data | Source | Properties | Application |
---|---|---|---|---|
Urban structure type mapping (subsection 2.4.) | 4 Ikonos Geo Ortho Kit images | Acquisition time: 2004–2008 Format: raster Spatial resolution: 1m Spectral resolution: 4 spectral Bands (blue, green, red, near infrared) | LULC classification using a decision tree classifier | |
LiDAR | Acquisition time: 2002 Format: raster Spatial resolution: 1 m Vertical resolution: 1 dm | Reclassification of maximum likelihood classification result using a decision tree Height information of buildings for spatial feature calculation in the urban structure mapping approach | ||
digital basis landscape model (basis-DLM) | Official Topographic Cartographic Information System ATKIS (Amtliche Topographisch-Kartographische Informationssystem) | Acquisition time: 2004 Format: vector | Borders of building blocks for urban structure type mapping Basic mapping units for flood loss estimation | |
urban structure map of Dresden | Environmental Office of Dresden (Umweltamt Dresden) | Acquisition time: 2007 Format: vector | Training and validation data for urban structure type classification | |
Flood loss modeling (subsection 2.5. and subsection 2.6.) | Water depth of the Elbe flood 2002 | Landeshauptstadt Dresden | Acquisition time: 2002 Format: raster Spatial resolution: 10 m | Flood loss estimation for the Elbe flood 2002 in Dresden using FLEMOps and three regression tree models |
Contamination | [48] | Class: no contamination Format: table | ||
Urban structure types | Derived in this study using the urban structure mapping approach developed by Bochow et al. [33] | Classes: closed block development, semi-open block development, mid-rise dwellings, single-family houses Format: vector | ||
Floor space | Calculated in this study based on the urban structure map | Unit: square meter Format: table | ||
age of building | telephone interviews [45,46,55] | Categories: before 1924, 1924–1948, 1949–1990, and after 1990 Format: table | ||
heating system | telephone interviews [45,46,55] | Classes: coal, gas, fuel oil, electricity (night storage), district heating, wood/pellets/tile stoves, and others Format: table | ||
Precaution measures | [48] | Class: no precautions Format: table | ||
Building quality | [50] | Categories: low/medium quality, high quality Format: raster Spatial resolution: 10 m | ||
Building value | [49,55] | Unit: Euro per square meter Format: raster Spatial resolution: 10 m | ||
Relative losses | Calculated based on telephone interviews [45,46,55] | Format: table |
2.5. Exposure Analyses and Asset Assessment
2.6. Susceptibility Analyses
3. Results and Discussion
3.1. Classification of Elements at Risk
Urban Structure Types and Features |
---|
Closed block development—semi-open block development |
mean height of all objects in the border area |
mean area of the segments of the class roofs within the total building block |
standard deviation of the linear segment indicator of the class roofs in the border area |
Closed block development—mid-rise dwellings |
share of area of the class roofs within the total building block |
mean height of the class vegetation within the total building block |
number of segments per area of the class trees in the border area |
height of the mean distance of class pixels from a central region of the class vegetation in the border area |
Closed block development—single-family houses |
standard deviation of the height of all objects within the building block |
mean standard deviation of the height of the segment of the class trees within the building block |
mean of the minimal distances between neighboring segments of the class trees within the building block |
mean of the minimal distances between neighboring segments of the class shadow in the backyard |
Semi-open block development—mid-rise dwellings |
number of segments per area of the class roofs within the building block |
maximal height of the class grey roof within the building block |
minimal height of the class meadow in the border area |
Semi-open block development—single-family houses |
maximal mean height of the roof segments within the building block |
share of the class shadow not on vegetation within the building block |
maximal standard deviation of the height of the class soil in the backyard |
Mid-rise dwellings—single-family houses |
mean height of the class roofs within the building block |
standard deviation of the height of the class shadow in the border area |
minimal mean height of the segments of the class shadow in the backyard |
Urban structure type | Number of training building blocks | Closed block development | Semi-open block development | Mid-rise dwellings | Single-family houses | Omission error |
---|---|---|---|---|---|---|
Closed block development | 36 | 63.9 | 16.7 | 19.4 | 0 | 36.11 |
Semi-open block development | 493 | 1.2 | 72.8 | 11.6 | 14.4 | 27.18 |
Mid-rise dwellings | 745 | 1.5 | 16.0 | 64.1 | 18.4 | 35.84 |
Single-family houses | 1157 | 0 | 11.5 | 8.1 | 80.4 | 19.62 |
Commission error | 42.50 | 41.82 | 24.84 | 18.28 |
3.2. Exposure Analysis and Asset Assessment
Building characteristics | Closed block development | Semi-open block development | Mid-rise dwellings | Single-family houses | |
---|---|---|---|---|---|
Share of area (%) | 2.9 | 22.6 | 24.7 | 49.8 | |
Age of building(%) | before 1924 | 28.0 | 35.1 | 12.2 | 25.6 |
1924–1948 | 16.1 | 23.1 | 25.1 | 33.7 | |
1949–1990 | 40.9 | 22.5 | 47.6 | 17.6 | |
after 1990 | 15.1 | 19.2 | 15.0 | 23.0 | |
heating system(%) | coal | 2.3 | 0.6 | 0.7 | 2.3 |
gas | 30.7 | 67.5 | 38.5 | 75.1 | |
fuel oil | 6.8 | 8.6 | 6.8 | 15.5 | |
electricity (night storage) | 5.7 | 1.3 | 4.3 | 2.3 | |
district heating | 54.5 | 21.2 | 49.0 | 2.8 | |
wood, pellets, tile stoves | 0 | 0.6 | 0.4 | 1.9 | |
others | 0 | 0 | 0.4 | 0 | |
mean floor space(m²) | 4336 | 1078 | 2549 | 388 |
3.3. Susceptibility Analysis
Building quality | Water depth | Loss ratio of the urban structure types | |||
---|---|---|---|---|---|
Closed block development | semi-open block development | mid-rise dwellings | Single-family houses | ||
low/medium | <20 cm | 0.03 | 0.03 | 0.03 | 0.04 |
21–60 cm | 0.10 | 0.10 | 0.09 | 0.07 | |
61–100 cm | 0.11 | 0.11 | 0.11 | 0.10 | |
101–150 cm | 0.13 | 0.13 | 0.15 | 0.22 | |
>150 cm | 0.18 | 0.18 | 0.20 | 0.24 | |
high | <20 cm | 0.05 | 0.05 | 0.05 | 0.05 |
21–60 cm | 0.16 | 0.16 | 0.12 | 0.09 | |
61–100 cm | 0.17 | 0.17 | 0.14 | 0.13 | |
101–150 cm | 0.20 | 0.20 | 0.20 | 0.29 | |
>150 cm | 0.29 | 0.29 | 0.26 | 0.32 |
Modeled flood losses | Official estimates | |||||
---|---|---|---|---|---|---|
FLEMOps | RT1 | RT2 | RTpruned | SAB [43] | Korndörfer [42] | |
Total loss (€ in million) | 288.9 | 189.2 | 214.4 | 241.9 | 239.8 | 304.0 |
Closed block development | Semi-open block development | Mid-rise dwellings | Single-family houses | Total loss | ||
---|---|---|---|---|---|---|
flooded area (m²) at water depth < 97.5 cm | 166,200 | 1,418,000 | 1,579,900 | 2,823,200 | ||
flooded area (m²) at water depth > 97.5 cm | 54,800 | 312,800 | 313,300 | 1,001,300 | ||
Flood loss estimations | ||||||
Water depth <97.5 cm | FLEMOps (€ in million) | 5.6 | 50.9 | 45.6 | 74.3 | 176.4 |
RT1 (€ in million) | 2.4 | 33.5 | 24.5 | 69.4 | 129.8 | |
RT2 (€ in million) | 4.2 | 38.1 | 29.0 | 77.5 | 148.8 | |
RTpruned (€ in million) | 4.8 | 44.2 | 44.4 | 85.0 | 178.4 | |
Water depth >97.5 cm | FLEMOps (€ in million) | 2.4 | 19.3 | 18.3 | 72.5 | 112.5 |
RT1 (€ in million) | 1.1 | 10.8 | 8.4 | 39.0 | 59.3 | |
RT2 (€ in million) | 1.2 | 11.3 | 8.2 | 44.8 | 65.5 | |
RTpruned (€ in million) | 1.2 | 11.1 | 8.6 | 42.5 | 63.4 | |
Water depth <97.5 cm | FLEMOps(€/m²) | 33.5 | 35.9 | 28.9 | 26.3 | |
RT1 (€/m²) | 14.8 | 23.6 | 15.5 | 24.6 | ||
RT2 (€/m²) | 25.3 | 26.9 | 18.4 | 27.5 | ||
RTpruned (€/m²) | 28.8 | 31.2 | 28.1 | 30.1 | ||
Water depth >97.5 cm | FLEMOps (€/m²) | 44.5 | 61.7 | 58.5 | 72.4 | |
RT1 (€/m²) | 21.5 | 34.6 | 26.9 | 38.9 | ||
RT2 (€/m²) | 21.5 | 36.2 | 26.3 | 44.7 | ||
RTpruned (€/m²) | 21.5 | 35.5 | 27.5 | 42.4 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Jha, A. K.; Bloch, R.; Lamond, J. Cities and Flooding—A Guide to Integrated Urban Flood Risk Management for the 21st Century; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Douben, K.-J. Characteristics of river floods and flooding: A global overview, 1985–2003. Irrig. Drain 2006, 55-S1, S9–S21. [Google Scholar]
- Becker, A.; Grünewald, U. Flood Risk in Central Europe. Science 2003, 300, 1099. [Google Scholar] [CrossRef]
- Thieken, A.H.; Kreibich, H.; Müller, M.; Merz, B. Coping with floods: Preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrol. Sci. 2007, 52, 1016–1037. [Google Scholar] [CrossRef]
- Johnson, C.; Penning-Rowsell, E.; Tapsell, S. Aspiration and reality: Flood policy, economic damages and the appraisal process. Area 2007, 39, 214–223. [Google Scholar] [CrossRef]
- Grünthal, G.; Thieken, A.H.; Schwarz, J.; Radtke, K.S.; Smolka, A.; Merz, B. Comparative Risk Assessments for the City of Cologne—Storms, Floods, Earthquakes. Nat. Hazards 2006, 38, 21–44. [Google Scholar] [CrossRef]
- De Moel, H.; Aerts, J.C.J.H. Effect of uncertainty in land use, damage models models and inundation depth on flood damage estimtes. Nat. Hazards 2011, 58, 407–425. [Google Scholar] [CrossRef]
- Qi, H.; Qi, P.; Altinakar, M.S. GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional Flood Simulation. Water Resour. Manag. 2013, 27, 3631–3645. [Google Scholar]
- Merz, B.; Thieken, A.H. Flood risk curves and uncertainty bounds. Nat. Hazards 2009, 51, 437–458. [Google Scholar] [CrossRef]
- Qi, H.; Altinakar, M.S. Simulation-based decision support system for flood damage assessment under uncertainty using remote sensing and census block information. Nat. Hazards 2011, 59, 1125–1143. [Google Scholar] [CrossRef]
- Van der Sande, C.J.; de Jong, S.M.; de Roo, A.P.J. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 217–229. [Google Scholar] [CrossRef]
- Dutta, D.; Herath, S.; Musiake, K. A mathematical model for flood loss estimation. J. Hydrol. 2003, 277, 24–49. [Google Scholar] [CrossRef]
- Kates, R.W. Industrial Flood Losses: Damage Estimation in the Lehigh Valley; Research Paper 98; Department of Geography, University of Chicago: Chicago, IL, USA, 1965. [Google Scholar]
- White, G.F. Choice of Adjustment to Floods; Research Paper 93; Department of Geography, University of Chicago: Chicago, IL, USA, 1964. [Google Scholar]
- Vozinaki, A.E.K.; Kourgialas, N.N.; Karatzas, G.P. Estimation of Agricultural Flood Loss in the Koiliaris River Basin in Crete, Greece. Eur. Water 2012, 39, 53–63. [Google Scholar]
- Grigg, N.S.; Helweg, O.J. State-of-the-art of estimating flood damage in urban areas. Water Resour. Bull. 1975, 11, 379–390. [Google Scholar] [CrossRef]
- Zhai, G.; Fukuzono, T.; Ikeda, S. Modeling flood damage: Case of Tokai flood 2000. J. Am. Water Resour. Assoc. 2005, 41, 77–92. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, C. Urban Flood Damage Estimation Using GIS and Remote Sensing. In Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering, Chengdu, China, 20–22 August 2010; pp. 232–237.
- Hammond, M.J.; Chen, A.S.; Djordjevic, S.; Butler, D.; Khan, D.M.; Rahman, S.M.M.; Haque, A.K.E. The development of a flood damage assessment tool for urban areas. In Proceedings of the 9th International Joint IWA/IAHR Conference on Urban Drainage Modelling, Belgrade, Serbia, 3–6 September 2012.
- Ward, P.J.; de Moel, H.; Aerts, J.C.J.H. How are flood risk estimates affected by the choice of return-periods? Nat. Hazards Earth Syst. Sci. 2011, 11, 3181–3195. [Google Scholar] [CrossRef]
- Merz, B.; Kreibich, H.; Thieken, A.H.; Schmidtke, R. Estimation uncertainty of direct monetary flood. Nat. Hazards Earth Syst. Sci. 2004, 4, 153–163. [Google Scholar] [CrossRef]
- Thieken, A.H.; Ackermann, V.; Elmer, F.; Kreibich, H.; Kuhlmann, B.; Kunert, U.; Maiwald, H.; Merz, B.; Müller, M.; Piroth, K.; et al. Methods for the evaluation of direct and indirect flood losses. In Proceedings of the 4th International Symposium on Flood Defence: Managing Flood Risk, Reliability and Vulnerability, Toronto, ON, Canada, 6–8 May 2008; pp. 1–10.
- Nicholas, J.; Holt, G.D.; Proverbs, D. Towards standardising the assessment of flood damaged properties in the UK. Struct. Survey 2001, 19, 163–172. [Google Scholar] [CrossRef]
- Kreibich, H.; Seifert, I.; Merz, B.; Thieken, A.H. Development of FLEMOcs—A new model for the estimation of flood losses in the commercial sector. Hydrol. Sci. J. 2010, 55, 1302–1314. [Google Scholar] [CrossRef]
- Elmer, F.; Thieken, A.H.; Pech, I.; Kreibich, H. Influence of flood frequency on residential building losses. Nat. Hazards Earth Syst. Sci. 2010, 10, 2145–2159. [Google Scholar] [CrossRef]
- Merz, B.; Kreibich, H.; Lall, U. Multi-variate flood damage assessment: A tree-based data-mining approach. Nat. Hazards Earth Syst. Sci. 2013, 13, 53–64. [Google Scholar] [CrossRef]
- Apel, H.; Aronica, G.T.; Kreibich, H.; Thieken, A.H. Flood risk analyses—How detailed do we need to be? Nat. Hazards 2009, 49, 79–98. [Google Scholar] [CrossRef]
- Merz, B. Hochwasserrisiken: Grenzen und Möglichkeiten der Risikoabschätzung; Schweizerbart: Stuttgart, Germany, 2006. (In German) [Google Scholar]
- Taubenböck, H.; Wurm, M.; Netzband, M.; Zwenzner, H.; Roth, A.; Rahman, A.; Dech, S. Flood risks in urbanized areas—Multi-sensoral approaches using remotely sensed data for risk assessment. Nat. Hazards Earth Syst. Sci. 2011, 11, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Banzhaf, E.; Höfer, R. Monitoring Urban Structure Types as Spatial Indicators With CIR Aerial Photographs for a More Effective Urban Environmental Management. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2008, 1, 129–138. [Google Scholar] [CrossRef]
- Bochow, M. Automatisierungspotenzial von Stadtbiotopkartierungen durch Methoden der Fernerkundung; Fachbereich Mathematik/Informatik, Universität Osnabrück: Osnabrück, Germany, 2010. [Google Scholar]
- Bochow, M.; Peisker, T.; Roessner, S.; Segl, K.; Kaufmann, H. Towards an automated update of urban biotope maps using remote sensing data: What is possible? In Urban Biodiversity and Design; Conservation science and practice series, 7; Wiley-Blackwell: Oxford, UK, 2010; pp. 255–272. [Google Scholar]
- Bochow, M.; Taubenböck, H.; Segl, K.; Kaufmann, H. An automated and adaptable approach for characterizing and partitioning cities into urban structure types. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 1796–1799.
- Wurm, M.; Taubenbock, H.; Roth, A.; Dech, S. Urban structuring using multisensoral remote sensing data: By the example of the German cities Cologne and Dresden. In Proceedings of the Urban Remote Sensing Joint Event, Shanghai, China, 20–22 May 2009; pp. 1–8.
- Statistisches Landesamt des Freistaates Sachsen. Statistisches Jahrbuch Sachsen 2012; Statistisches Landesamt des Freistaates Sachsen: Kamenz, Germany, 2012. (In German)
- Pesch, F.; Sendlewska, A.; Sperle, T.; Goebel, J.; Schmal, P.; Hofheinz, A.; Dippold, F. Lebendige Geschichte—Urbane Stadtlandschaft. In Dresden—Planungsleitbild Innenstadt 2008; Landeshauptstadt Dresden: Dresden, Germany, 2008. (In German) [Google Scholar]
- Sukopp, H. Die ökologische Gliederung der Stadt. In Stadtökologie; Sukopp, H., Wittig, W., Klausnitzer, B., Eds.; Gustav Fischer: Stuttgart, Germany, 1998; pp. 316–372. (In German) [Google Scholar]
- Internationale Kommission zum Schutz der Elbe (Ed.) Dokumentation des Hochwassers vom August 2002 im Einzugsgebiet der Elbe; Internationale Kommission zum Schutz der Elbe: Magdeburg, Germany, 2004. (In German)
- Deutsches Komitee für Katastrophenvorsorge—German Committee for Disaster Reduction (DKKV). Hochwasservorsorge in Deutschland—Lernen aus der Katastrophe 2002 im Elbegebiet; DKKV: Bonn, Germany, 2003. (In German) [Google Scholar]
- Bundesamt für Kartographie und Geodäsie (BKG Geodatenzentrum). Digitales Landschaftsmodell 1:25 000 Basis-DLM; BKG Geodatenzentrum: Frankfurt am Main, Germany, 2005; In German). [Google Scholar]
- LfUG Saxon State Agency for Environment and Geology. Personal interview with Grafe. 2003
- Korndörfer, C. The flood in August 2002—Consequences on flood protection for the city of Dresden. In Flood Risk Management: Hazards, Vulnerability and Mitigation Measures; Springer: Dordrecht, The Netherlands, 2006; pp. 267–273. [Google Scholar]
- Sächsische Aufbaubank. Damage to residential buildings caused by the Elbe flood in 2002. Personal communication, 2005. [Google Scholar]
- Sächsische Aufbaubank. Flood compensation data of 16 August 2004. Unpublished work, 2004. [Google Scholar]
- Sächsische Staatskanzlei. Flood compensation data of 17 April 2003. Unpublished work, 2003. [Google Scholar]
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A.H. Assessment of economic flood damage. Nat. Hazards Earth Syst. Sci. 2010, 10, 1697–1724. [Google Scholar] [CrossRef]
- Beak Consultants GmbH. Ermittlung des Schadenpotenzials von Hochwassern der Elbe, der Gewässer erster und zweiter Ordnung und des Grundwassers auf dem Gebiet der Stadt Dresden—Hochwasser Dresden 2002; Beak Consultants GmbH: Freiberg, Germany, 2006. (In German) [Google Scholar]
- Kreibich, H.; Meyer, S.; Thieken, A.H. Schadensmodellierung auf der Basis von Landnutzungseinheiten (Mesoskala). Mitt. d. DGFZ u. seiner Partner 2012, 6, 73–88. (In German) [Google Scholar]
- Thieken, A.H.; Müller, M.; Kreibich, H.; Merz, B. Flood damage and influencing factors: New insights from the August 2002 flood in Germany. Water Resour. Res. 2005, 41, 1–16. [Google Scholar]
- INFAS GEOdaten. In Das DataWarehouse; INFAS GEOdaten GmbH: Bonn, Germany, 2005.
- Thieken, A.H.; Olschewski, A.; Kreibich, H.; Kobsch, S.; Merz, B. Development and evaluation of FLEMOps—A new flood loss estimation model for the private sector. Flood Recovery, Innovation and Response, WIT Press: Chichester, UK, 2008; 315–324. [Google Scholar]
- Kleist, L.; Thieken, A.H.; Köhler, P.; Müller, M.; Seifert, I.; Borst, D.; Werner, U. Estimation of the regional stock of residential buildings as a basis for a comparative risk assessment in Germany. Nat. Hazards Earth Syst. Sci. 2006, 6, 541–552. [Google Scholar] [CrossRef]
- Kreibich, H.; Meyer, S.; Diekkrüger, B. Weiterentwicklung von FLEMOps zur Modellierung von Grundhochwasserschäden an Wohngebäuden. Hydrol. Wasserbewirtschaftug 2011, 55, 300–309. (In German) [Google Scholar]
- Statistisches Bundesamt (Federal Statistical Agency). Baupreisindizes November 2003; Statistisches Bundesamt: Wiesbaden, Germany. (In German)
- Kreibich, H.; Thieken, H.; Grunenberg, H.; Ullrich, K.; Sommer, T. Extent, perception and mitigation of damage due to high groundwater levels in the city of Dresden, Germany. Nat. Hazards Earth Syst. Sci. 2009, 9, 1247–1258. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to feature extraction. StudFuzz 2006, 207, 1–25. [Google Scholar]
- Reunanen, J. Search strategies. In Feature Extraction—Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 2006; pp. 119–137. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; Chapman & Hall: New York, NY, USA, 1984. [Google Scholar]
- Wünsch, A.; Hermann, U.; Kreibich, H.; Thieken, A.H. The role of disaggregation of asset values in flood loss estimation: A comparison of different modeling approaches at the Mulde River, Germany. Environ. Manag. 2009, 44, 524–541. [Google Scholar]
- Pappenberger, F.; Beven, K.J. Ignorance is bliss: Or seven reasons not to use uncertainty analysis. Water Resour. Res. 2006, 42, W05302. [Google Scholar]
- Kourgialas, N.N.; Karatzas, G.P. A hydro-economic modelling framework for flood damage estimation and the role of riparian vegetation. Hydrol. Process. 2013, 27, 515–531. [Google Scholar] [CrossRef]
- Wind, H.G.; Nierop, T.M.; de Blois, C.J.; de Kok, J.L. Analysis of flood damages from the 1993 and 1995 Meuse Floods. Water Resour. Res. 1999, 35, 3459–3465. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gerl, T.; Bochow, M.; Kreibich, H. Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data. Water 2014, 6, 2367-2393. https://doi.org/10.3390/w6082367
Gerl T, Bochow M, Kreibich H. Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data. Water. 2014; 6(8):2367-2393. https://doi.org/10.3390/w6082367
Chicago/Turabian StyleGerl, Tina, Mathias Bochow, and Heidi Kreibich. 2014. "Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data" Water 6, no. 8: 2367-2393. https://doi.org/10.3390/w6082367
APA StyleGerl, T., Bochow, M., & Kreibich, H. (2014). Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data. Water, 6(8), 2367-2393. https://doi.org/10.3390/w6082367