Activated Sludge and Other Aerobic Suspended Culture Processes
Abstract
:1. Introduction
2. Modeling and Kinetics
3. Process Microbiology
4. Nitrogen and Phosphorus Removal
5. Treatment and Effects of Xenobiotics
6. Oxygen Transfer
7. Solids Separation
8. Discussion
9. Conclusions
References
- Boltz, J.P.; Johnson, B.R.; Daigger, G.T.; Sandino, J. Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems I: Mathematical treatment and model development. Water. Environ. Res. 2009, 81, 555–575. [Google Scholar] [CrossRef] [PubMed]
- Sen, D.; Randall, C.W. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part I: Semi-empirical model development. Water Environ. Res. 2008, 80, 439–453. [Google Scholar] [PubMed]
- Sen, D.; Randall, C.W. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part II: Multilayer biofilm diffusional model. Water Environ. Res. 2008, 80, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Sen, D.; Randall, C.W. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part III: Analysis and verification. Water Environ. Res. 2008, 80, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Lubello, C.; Caffaz, S.; Gori, R.; Munz, G.A. Modified activated sludge model to estimate solids production at low and high solids retention time. Water Res. 2009, 43, 4539–4548. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Sin, G.; Spanjers, H.; Nopens, I.; Kennedy, M.; Van Der Meer, W.; Futselaar, H.; Amy, G.; Vanrolleghem, P. Comparison of modeling approach between membrane bioreactor and conventional activated sludge process. Water Environ. Res. 2009, 81, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.; Yu, H. Kinetic modeling microbial storage process in activated sludge under anoxic conditions. Chem. Engr. Sci 2008, 63, 2785–2792. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kim, Y.; Saito, T.; Tanaka, K. Development of the modified activated sludge model describing nitrite inhibition of aerobic phosphate uptake. Water Sci. Technol. 2009, 59, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Alasino, N.; Mussati, M.; Scenna, N.; Aguirre, P. Wastewater treatment plant synthesis and design: Combined biological nitrogen and phosphorus removal. Ind. Eng. Chem. Res. 2010, 49, 8601–8612. [Google Scholar] [CrossRef]
- Li, W.W.; Li, X.D.; Zeng, K.M. Aerobic biodegradation kinetics of tannic acid in activated sludge system. Biochem. Eng. J. 2009, 43, 142–148. [Google Scholar] [CrossRef]
- Pai, T.Y.; Wang, S.C.; Lo, H.M.; Chiang, C.F.; Liu, M.H.; Chiou, R.J.; Chen, W.Y.; Hung, P.S.; Liao, W.C.; Leu, H.G. Novel modeling concept for evaluating the effects of cadmium and copper on heterotrophic growth and lysis rates in activated sludge process. J. Hazard. Mater. 2009, 166, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Hiatt, W.; Grady, C.; Leslie, C. Application of the activated sludge model for nitrogen to elevated nitrogen conditions. Water Environ. Res. 2008, 80, 2134–2144. [Google Scholar] [CrossRef] [PubMed]
- Patziger, M.; Kainz, H.; Hunze, M.; Józsa, J. Analysing sludge balance in activated sludge systems with a novel mass transport model. Water Sci. Technol. 2008, 57, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Abusam, A.; Keesman, K. Dynamic modeling of sludge compaction and consolidation processes in wastewater secondary settling tanks. Water Environ. Res. 2009, 81, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Arshad, M.; Crowley, D. Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater. Water Res. 2009, 43, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, J.; Sridhar, A.; Harrata, K.; Esplugas, M.; Onuki, S.; Cai, L.; Koziel, J. Improving the biodegradation of organic pollutants with ozonation during biological wastewater treatment. Ozone: Sci. Eng. 2009, 31, 63–70. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y. Biodegradation and metabolites of 2-methylquinoline by acclimated activated sludge under aerobic and denitrifying conditions. Process Biochem. 2010, 45, 919–928. [Google Scholar] [CrossRef]
- Azimova, M.; Morton, S.; Frymier, P. Comparison of three bacterial toxicity assays for imidazolium-derived ionic liquids. J. Environ. Eng. 2009, 135, 1388–1392. [Google Scholar] [CrossRef]
- Luongo, L.; Zhang, X. Toxicity of carbon nanotubes to the activated sludge process. J. Hazard. Mater. 2010, 178, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Das, A.; Hu, Z. Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res. 2010, 44, 5432–5438. [Google Scholar] [CrossRef] [PubMed]
- Gedalanga, P.; Olson, B. Development of a quantitative PCR method to differentiate between viable and nonviable bacteria in environmental water samples. Appl. Microbiol. Biotechnol. 2009, 82, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Foladori, P.; Bruni, L.; Tamburini, S.; Ziglio, G. Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry. Water Res. 2010, 44, 3807–3818. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; Pagilla, K. Microbial community structures in conventional activated sludge system and membrane bioreactor (MBR). Biotech. Bioprocess Eng. 2009, 14, 848–853. [Google Scholar] [CrossRef]
- Felföldi, T.; Székely, A.; Gorál, R.; Barkás, K.; Scheirich, G.; András, J.; Rácz, A.; Márialigeti, K. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. Bioresour. Technol. 2010, 101, 3406–3414. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Das, A.; Dolan, E.; Hu, Z. Ammonia-oxidizing archaea involved in nitrogen removal. Water Res. 2009, 43, 1801–1809. [Google Scholar] [CrossRef]
- Downing, L.; Nerenberg, R. Total nitrogen removal in a hybrid, membrane-aerated activated sludge process. Water Res. 2008, 42, 3697–3708. [Google Scholar] [CrossRef] [PubMed]
- González, C.; García, P.; Muñoz, R. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry. Water Sci. Technol. 2009, 60, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chen, Y.; Liu, C. Waste activated sludge alkaline fermentation liquid as carbon source for biological nutrients removal in anaerobic followed by alternating aerobic-anoxic sequencing batch reactors. Chin. J. Chem. Eng. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Lee, H.; Han, J.; Yun, Z. Biological nitrogen and phosphorus removal in UCT-Type MBR process. Water Sci. Technol. 2009, 59, 2093–2099. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Peng, Y.; Wang, S.; Wang, L.; Liu, Y.; Ma, N. Denitrifying phosphorus removal in a step-feed CAST with alternating anoxic-oxic operational strategy. J. Environ. Sci. 2009, 21, 1169–1174. [Google Scholar] [CrossRef]
- Machnicka, A.; Grubel, K.; Suschka, J. Enhanced biological phosphorus removal and recovery. Water Environ. Res. 2008, 80, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Manyumba, F.; Wood, E.; Horan, N. Meeting the phosphorus consent with biological nutrient removal under UK winter conditions. Water Environ. J. 2008, 23, 83–90. [Google Scholar] [CrossRef]
- Lee, W.; Bishop, P. In situ microscale analyses of activated sludge flocs in the enhanced biological phosphate removal process by the use of micro electrodes and fluorescent in situ hybridization. J. Environ. Engr., 2010, 136, 561–567. [Google Scholar] [CrossRef]
- Kim, S.; Park, H.; Chandran, K. Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline resistant bacteria: A mathematical modeling approach. Chemosphere 2010, 78, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, J.; Duran, M. Changes in antibiotic resistance patterns of escherichia coli during domestic wastewater treatment. Water Environ. Res. 2009, 81, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Plósz, B.; Leknes, H.; Thomas, K. Impacts of competitive inhibition, parent compound formation and partitioning behavior on the removal of antibiotics in municipal wastewater treatment. Environ. Sci. Technol. 2010, 44, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Geien, S.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Helbling, D.; Hollender, J.; Kohler, H.; Singer, H.; Fenner, K. High-throughput identification of microbial transformation products of organic micropollutants. Environ. Sci. Technol. 2010, 44, 6621–6627. [Google Scholar] [CrossRef] [PubMed]
- Chong, N. Modeling the acclimation of activated sludge to a xenobiotic. Bioresour. Technol. 2009, 100, 5750–5756. [Google Scholar] [CrossRef] [PubMed]
- Henkel, J.; Cornel, P.; Wagner, M. Free water content and sludge retention time: Impact on oxygen transfer in activated sludge. Environ. Sci. Technol. 2009, 43, 8561–8565. [Google Scholar] [CrossRef] [PubMed]
- Gillot, S.; Héduit, A. Prediction of alpha factor values for fine pore aeration systems. Water Sci. Technol. 2008, 57, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Almoustafa, F.; Benadda, B.; Buffière, P. Efficiency of a gas-liquid contactor for the oxygenation of activated sludge: Assessment of mass transfer coefficient. Chem. Eng. Technol. 2009, 32, 1958–1965. [Google Scholar] [CrossRef]
- Iversen, V.; Koseoglu, H.; Yigit, N.; Drews, A.; Kitis, M.; Lesjean, B.; Kraume, M. Impacts of membrane flux enhancers on activated sludge respiration and nutrient removal in MBRs. Water Res. 2009, 43, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Rosso, D.; Larson, L.; Stenstrom, M. Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Sci. Technol. 2008, 57, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Pan, Z.; Yu, S.; Lin, C. Experimental study on pressurized activated sludge process for high concentration pesticide wastewater. J. Environ. Sci. 2010, 22, 1342–1347. [Google Scholar] [CrossRef]
- Jolly, M.; Green, S.; Wallis-Lage, C.; Buchanan, A. Energy saving in activated sludge plants by the use of more efficient fine bubble diffusers. Water Environ. J. 2010, 24, 58–64. [Google Scholar] [CrossRef]
- Al-Jasser, A. Enhancement of sludge settling with chemical additives. Water Environ. Res. 2009, 81, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Wilén, B.; Lumley, D.; Mattsson, A.; Mino, T. Relationship between floc composition and flocculation and settling properties studied at a full scale activated sludge plant. Water Res. 2008, 42, 4404–4418. [Google Scholar] [CrossRef]
- Jones, P.; Schuler, A. Seasonal variability of biomass density and activated sludge settleability in full-scale wastewater treatment systems. Chem. Eng. J. 2010, 164, 16–22. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Moretti, C.J.; Das, D.; Kistner, B.T.; Gullicks, H.; Hung, Y.-T. Activated Sludge and Other Aerobic Suspended Culture Processes. Water 2011, 3, 806-818. https://doi.org/10.3390/w3030806
Moretti CJ, Das D, Kistner BT, Gullicks H, Hung Y-T. Activated Sludge and Other Aerobic Suspended Culture Processes. Water. 2011; 3(3):806-818. https://doi.org/10.3390/w3030806
Chicago/Turabian StyleMoretti, Charles J., Dipesh Das, Brian T. Kistner, Harvey Gullicks, and Yung-Tse Hung. 2011. "Activated Sludge and Other Aerobic Suspended Culture Processes" Water 3, no. 3: 806-818. https://doi.org/10.3390/w3030806
APA StyleMoretti, C. J., Das, D., Kistner, B. T., Gullicks, H., & Hung, Y. -T. (2011). Activated Sludge and Other Aerobic Suspended Culture Processes. Water, 3(3), 806-818. https://doi.org/10.3390/w3030806