Biofilm Fixed Film Systems
Abstract
:1. Introduction
2. Biofilm Measurement and Characterization
2.1. Sensors and Microsensors
2.2. Biofilm Attachment and Detachment
2.3. Microscopy
2.4. Novel Techniques
2.5. Extracellular Polymeric Substances (EPS)
2.6. Metal and Radionucleotide Sorption
2.7. Ammonia Removal
2.8. Microbial Community Structure
2.9. Intercellular Communication
2.10. Others
3. Growth and Modeling
3.1. Computational Method
4. Trickling Filters
5. Horizontal Flow Bioreactor
6. Rotating Biological Contactors
7. Fluidized Bed and Air Lift Bioreactors
7.1. Anoxic/Aerobic Reactors
7.2. Airlift Reactor
8. Submerged Bed Biofilm Reactors
8.1. Hybrid Reactor
8.2. Sequencing Batch Biofilm Reactor (SBBR)
8.3. Moving Medium Biofilm Reactors
8.4. Granules
8.5. Photosynthetic Biological Sulfide Removal (BSR) Biofilm System
9. Biological Granular Activated Carbon (BAC)
10. Membrane Bioreactors (MBR)
10.1. Nutrient Removal
10.2. Fouling
10.3. Submerged MBR
10.4. Applications and Other
10.5. Fixed Film and Xenobiotics
11. Immobilized Cell Reactors (MBR)
12. Innovative Reactors and Systems
13. Biofilm on Sand, Soil and Sediments
13.1. Wetlands
13.2. Riverine Sediment
14. Discussion
15. Conclusions
References
- Downing, L.S.; Nerenberg, R. Effect of oxygen gradient on the activity and microbiol community structure of a nitrifying, membrane aerated biofilm. Biotecnol. Bioeng. 2008, 101, 1193–1204. [Google Scholar] [CrossRef]
- Downing, L.S.; Nerenberg, R. Total nitrogen removal in a hybrid, membrane-aerated activated sludge process. Water Res. 2008, 42, 3697–3708. [Google Scholar] [CrossRef] [PubMed]
- McLamore, E.S.; Zhang, W.; Porterfield, D.M.; Banks, M.K. Membrane-Aerated biofilm proton and oxygen flux during chemical toxin exposure. Environ. Sci. Technol. 2010, 44, 7050–7057. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.; Kuttuva, R.G.; Land, C.J.; Dhalhammar, G. Biofilm formation and interaction of bacterial strains commonly found in wastewater treatment systems. FEMS Microbiol. Lett. 2008, 283, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Ochi, S.; Ozaki, M. Characterization of bacterial biofilm communities in tertiary treatment processes for wastewater reclamation and reuse. Water Sci. Technol. 2008, 58, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Roeselers, G.; Loosdrecht, M.C.; Muyzer, G. Phototrophic biofilms and their potential applications. J. Appl. Phycol. 2008, 20, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Jechalke, S.; Vogt, C.; Reiche, N.; Franchini, A.; Borsdorf, H.; Neu, T.; Richnow, H. Aerated treatment pond technology with biofilm promoting mats for the bioremediation of benzene, MTBE and ammonium contaminated groundwater. Water Res. 2010, 44, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Guzzon, A.; Bohn, A.; Diociauti, M.; Albertano, P. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res. 2008, 42, 4357–4367. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Chen, Z.; Nan, J.; Liang, H.; Li, G. Integrative membrane coagulation adsorption bioreactor (MCABR) for enhanced organic matter removal in drinking water treatment. J. Membr. Sci. 2010, 352, 205–212. [Google Scholar] [CrossRef]
- Marconnet, C.; Houari, A.; Galas, L.; Vaudry, H.; Heim, V.; Di Martino, P. Biodegradable dissolved organic carbon concentration of feed water and NF membrane biofouling: A pilot train study. Desalination 2009, 242, 228–235. [Google Scholar] [CrossRef]
- Spettmann, D.; Eppmann, S.; Flemming, H.; Wingender, J. Visualization of membrane cleaning using confocal laser scanning microscopy. Desalination 2008, 224, 195–200. [Google Scholar] [CrossRef]
- Bjerkey, A.; Fiksdal, L. Characterization of biofouling on hollow fiber membranes using confocal laser scanning microscopy and image analysis. Desalination 2009, 245, 474–484. [Google Scholar] [CrossRef]
- Delatolla, R.; Berk, D.; Tufenkji, N. Rapid and reliable quantification of biofilm weight and nitrogen content of biofilm attached to polystyrene beads. Water Res. 2008, 42, 3082–3088. [Google Scholar] [CrossRef] [PubMed]
- Wojnowska-Baryla, I.; Cydzik-Kwiatkowska, A.; Zielinska, M. The application of molecular techniques to the study of wastewater treatment systems. Methods Mol. Biol. 2010, 599, 157–183. [Google Scholar] [PubMed]
- He, S.; Li, J.; Xu, Y. Microbial Community Structure of Biological Contact Oxidation Process Used In Landscape River. In Proceedings of 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009. Article number: 5163050.
- Cheng, K.C.; Demicri, A.; Catchmark, J.M. Advances biofilm reactors for production of value added products. Appl. Microbiol. Biotechnol. 2010, 87, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Di Pippo, F.; Bohn, A.; Congestri, R.; De Philippis, R.; Albertano, P. Capsular polysaccharides of cultured phototrophic biofilms. Biofouling 2009, 25, 495–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avella, A.C.; Gomer, T.; Yvon, J.; Chappe, P.; Guinot-Thomas, P.; de Donato, P. A combined approach for a better understanding of wastewater treatment plants operation: Statistical analysis of monitoring database and sludge physico-chemical characterization. Water Res. 2011, 45, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Wu, C.L.; Hsu, C.H.; Li, H.L. Biodegradation of phenol with chromium (6) reduction in anaerobic fixed biofilm process—kinetic model and reactor performance. J. Hazard Mater. 2009, 172, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Gujer, W. Nitrification and me—A subjective review. Water Res. 2010, 44, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Park, H.D.; Lee, S.Y.; Hwang, S. Redundancy analysis demonstration of the relevance of the temperature to ammonia oxidizing bacterial community composition in a full scale nitrifying bioreactor treating saline waste water. J. Microbiol. Biotechnol. 2009, 19, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.D.; Hofmann, A.; Pilhofer, M. The diversity of fungi in aerobic sewage granules assessed By 18s Rrna gene and its sequence analyses. FEMS Microbiol. Ecol. 2009, 68, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Chen, S. Potential of biofilm-based biofuel production. Appl. Microbiol. Biotechnol. 2009, 83, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ergurder, T.H.; Boon, N.; Wittebolle, L.; Marzorati, M.; Verstraete, W. Environmental factors shaping the ecological niches of ammonia oxidizing archaea. FEMS Microbiol. Rev. 2009, 33, 855–869. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.E.; Francis, C.A.; De Sieyes, N.R.; Boehm, A.B. Shifts in the relative abundance of ammonia oxidizing bacteria and archaea across physicochemical gradient in subterranean estuary. Environ. Microbiol. 2008, 10, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Erable, B.; Dunteanu, N.M.; Dumas, C.; Scott, K. Application of electro active biofilms. Biofouling 2010, 26, 57–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debabov, V.G. Electricity from microorganisms. Mikrobiologia 2008, 77, 149–157. [Google Scholar]
- Ren, Z.; Steinberg, L.M.; Regan, J.M. Electricity production and microbiol biofilm characterization in cellulose fed microbial fuel cells. Water Sci. Technol. 2008, 58, 617–622. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Das, A.; Dolan, E.M.; Hu, Z. Ammonia oxidizing archaea involved in nitrogen removal. Water Res. 2009, 43, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.; Dalhammar, G.; Kuttuva, R.G. Influence of microbial interactions and eps/polysaccharide composition on nutrient removal activity in biofilms formed by strains found in wastewater treatment systems. Microbiol. Res. 2010, 166, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Trapani, D.D.; Mannina, G.; Torregrossa, M.; Viviani, G. Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor. Water Sci. Technol. 2010, 61, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Wichern, M.; Lubken, M.; Horn, H. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge. Water Sci. Technol. 2008, 58, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Boltz, J.P.; Johnson, B.R.; Daigger, G.T.; Sandino, J. Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems I: Mathematical treatment and model development. Water Environ. Res. 2009, 81, 555–575. [Google Scholar] [CrossRef] [PubMed]
- Boltz, J.P.; Morgenroth, E.; Sen, D. Mathematical modelling of biofilms and biofilm reactors for engineering design. Water Sci. Technol. 2009, 62, 1821–1836. [Google Scholar] [CrossRef]
- Boltz, J.P.; Daigger, G.T. Uncertainty in bulk liquid hydrodynamics and biofilm dynamics creates uncertainties in biofilm reactor design. Water Sci. Technol. 2010, 61, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Hsien, T.Y. Kinematics of biodegradation of phenolic wastewater in a biofilm reactor. Water Sci. Technol. 2009, 59, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H. Modeling the performance of biodegradation of textile wastewater using polyurethane foam sponge cube as a supporting medium. Water Sci. Technol. 2010, 62, 2801–2810. [Google Scholar] [CrossRef] [PubMed]
- Sen, D.; Randall, C.W. Improved computational model (Aquifas) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part I: Semi-Empirical model development. Water Environ. Res. 2008, 80, 439–453. [Google Scholar] [PubMed]
- Sen, D.; Randall, C.W. Improved computational model (Aquifas) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part II: Multilayer biofilm diffusional model. Water Environ. Res. 2008, 80, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Selvanayagam, K.; Götz, T.; Sundar, S.; Vetrivel, V. Optimal control of film casting processes. Int. J. Numer. Methods Fluids 2008, 59, 1111–1124. [Google Scholar] [CrossRef]
- van den Akker, B.; Holmes, M.; Cromar, N.; Fallowfield, H. Application of high rate nitrifying trickling filters for potable water treatment. Water Res. 2008, 42, 4514–4524. [Google Scholar] [CrossRef] [PubMed]
- van den Akker, B.; Holmes, M.; Cromar, N.; Fallowfield, H. The impact of organic carbon on the performance of a high rate nitrifying trickling filter designed to pre-treat potable water. Water Sci. Technol. 2010, 61, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- van den Akker, B.; Holmes, M.; Short, M.D.; Cromarm, N.J.; Fallowfield, H.J. Application of high rate nitrifying trickling filters to remove low concentrations of ammonia from reclaimed municipal wastewater. Water Sci. Technol. 2010, 65, 2425–2432. [Google Scholar] [CrossRef]
- ter Haseborg, E.; Zamora, T.M.; Fröhlich, J.; Frimmel, F.H. Nitrifying microorganisms in fixed-bed biofilm reactors fed with different nitrite and ammonia concentrations. Bioresour. Technol. 2010, 101, 1701–1706. [Google Scholar]
- Mondal, B.; Warith, M.A. Use of shredded tire chips and tire crumbs as packing media in trickling filter systems for landfill leachate treatment. Environ. Technol. 2008, 29, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Matthews, R.; Winson, M.; Scullion, J. Treating landfill leachate using passive aeration trickling filters; effects of leachate characteristics and temperature on rates and process dynamics. Sci. Total Environ. 2009, 407, 2557–2564. [Google Scholar] [CrossRef] [PubMed]
- Ziolko, D.; Halla, D.; Lester, J.N.; Scrimshaw, M.D. The effectiveness of conventional trickling filter treatment plants at reducing concentration of copper in wastewaters. Sci. Total Environ. 2009, 407, 6235–6241. [Google Scholar] [CrossRef] [PubMed]
- Clifford, E.; Nielsen, M.; Sorensen, K.; Rodgers, M. Nitrogen dynamics and removal in a horizontal flow biofilm reactor for wastewater treatment. Water Res. 2010, 44, 3819–3828. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, M.; De Paoar, D.; Clifford, E. Dairy waste water treatment using a horizontal flow biofilm system. J. Environ Manag. 2008, 86, 114–120. [Google Scholar] [CrossRef]
- Coello, M.D.; Rodrigues-Barroso, M.R.; Anagon, C.A.; Quiroga, J.M. Use of microbial activity measurements for monitoring RBC biofilms. Environ. Monit. Assess. 2010, 169, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, A.; Klapwijk, A. Polyurethane rotating disc system for post treatment of anaerobically pretreated sewage was investigated. J. Environ. Manag. 2010, 91, 1183–1192. [Google Scholar] [CrossRef]
- Kim, I.; Lee, H.H.; Chung, Y.C.; Jung, J.Y. High-Strength nitrogenous wastewater treatment in biofilm and granule anammox processes. Water Sci. Technol. 2009, 60, 2365–2371. [Google Scholar] [CrossRef] [PubMed]
- Hyun, K.S.; Lee, S.J. Biofilm/Membrane filtration for reclamation and reuse of rural wastewaters. Water Sci. Technol. 2009, 59, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Peng, Y.; Li, B.; Guo, J.; Yang, Q.; Wang, S. Biological removal of nitrogen from wastewater. Rev. Environ. Contam. Toxicol. 2008, 192, 159–195. [Google Scholar] [PubMed]
- Guo, J.; Ma, F.; Chang, C.C. Start-Up of a two-stage bioaugmented anoxic-oxic (a/o) biofilm process treating petrochemical wastewater under different do concentrations. Bioresuor. Technol. 2009, 100, 3483–3488. [Google Scholar] [CrossRef]
- Walters, E.; Hille, A.; He, M.; Ochmann, C.; Horn, H. Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material. Water Res. 2009, 43, 4461–4466. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhou, J.; Zhang, X. Nitrogen removal in an airlift combined A/O biofilm reactor. Dalian Ligong Daxue Xuebao/J. Dalian Univ. Technol. 2009, 49, 193. [Google Scholar]
- Bravo, V.; Spyra, W.; Antaño-López, R. Biodegradation of high concentrations of benzene and diesel in a fixed-film reactor. Water Air Soil Pollut. 2009, 204, 351–361. [Google Scholar] [CrossRef]
- Wirthensohn, T.; Schoeberl, P.; Ghosh, U.; Fuchs, W. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site. J. Hazard Mater. 2009, 163, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Downing, L.S.; Nerenberg, R. Sustainable nitrogen removal from wastewater with the hybrid membrane biofilm process (HMBP): Bench-Scale studies. Water Sci. Technol. 2008, 58, 1715–1720. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, A.; El-Gohary, F.; Ohashi, A.; Harada, H. Optimization of the performance of an integrated anaerobic aerobic system for domestic wastewater treatment. Water Sci. Technol. 2008, 58, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Kritsunankul, C.; Wantawin, C. Partial nutrient removal under insufficient organic carbon from digested swine wastewater in sequencing batch biofilm reactor. J. Environ. Sci. Health 2008, 43, 1085–1092. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Dougherty, M.; Yang, X.; Li, L. Municipal wastewater treatment through an aerobic biofilm sbr integrated with a submerged filtration bed. Water Sci. Technol. 2009, 59, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, O.; Esplugas, M.; Sans, C.; Torres, A.; Esplugas, S. Performance of a sequencing batch biofilm reactor for the treatment of pre-oxidized sulfamethoxazole solutions. Water Res. 2009, 43, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Pijuan, M.; Yuan, Z. Development of a 2-Sludge, 3-Stage system for nitrogen and phosphorus removal from nutrient-rich wastewater using granular sludge and biofilms. Water Res. 2008, 42, 3207–3217. [Google Scholar] [CrossRef] [PubMed]
- Wantawin, C.; Juateea, J.; Noophan, P.L.; Munakata-Marr, J. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes. Water Sci. Technol. 2008, 58, 1889–1894. [Google Scholar] [CrossRef] [PubMed]
- Andrade do Canto, C.; Rodrigues, J.; Ratusznei, S.; Zaiat, M.; Foresti, E. Feasibility of nitrification/denitrification in a sequencing batch biofilm reactor with liquid circulation applied to post-treatment. Bioresour. Technol. 2008, 99, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, C.; Onnis-Hayden, A.; El-Shawabkeh, I.; Gu, A. Implication of using different carbon sources for denitrification in wastewater treatments. Water Environ. Res. 2009, 81, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wei, C.; Zhang, K.; Zhang, C.; Fang, Q.; Li, S. Effects of temperature on simultaneous nitrification and denitrification via nitrite in a sequencing batch biofilm reactor. Bioprocess Biosys. Eng. 2009, 32, 175–182. [Google Scholar] [CrossRef]
- Whang, L.M.; Yang, K.H.; Yang, Y.F.; Han, Y.L.; Chen, Y.J.; Cheng, S.S. Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: Effect of Na(2)Co(3) addition. Water Sci. Technol. 2008, 59, 223–231. [Google Scholar] [CrossRef]
- Bill, K.; Bott, C.; Murthy, S. Evaluation of alternative electron donors for denitrifying moving bed biofilm reactor (MBBRs). Water Sci. Technol. 2009, 60, 2647–2657. [Google Scholar] [CrossRef] [PubMed]
- Di Trapani, D.; Mannina, G.; Torregrossa, M.; Viviani, G. Comparison between hybrid moving bed biofilm reactor and activated sludge system: A pilot plant experiment. Water Sci. Technol. 2010, 61, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, A.; El-Gohary, F.; Temmink, H. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor. Bioprocess Biosyst. Eng. 2010, 33, 267–276. [Google Scholar] [CrossRef] [PubMed]
- João, B.; Marcia, D.; Geraldo, L.S. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor. J. Chem. Technol. Biotechnol. 2008, 83, 6. [Google Scholar] [CrossRef]
- Yilmaz, G.; Lemaire, R.; Keller, J.; Yuan, Z. Simultaneous nitrification, denitrification and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Biotechnol. Bioeng. 2008, 100, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Beliavski, M.; Meerovich, I.; Tarre, S.; Green, M. Biological denitrification of brines from membrane treatment process using an upflow sludge blanket (USB) reactor. Water Sci. Technol. 2010, 61, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Timothy, J.; Ulrike, K.; Jürg, K. Using anoxygenic photosynthetic bacteria for the removal of sulfide from wastewater. Adv. Photosynth. Respir. 2008, 27, 437–460. [Google Scholar]
- Li, W.; Zhao, Q.-L.; Liu, H. Sulfide removal by simultaneous autotrophic and heterotrophic desulfurization–denitrification process. J. Hazard Mater. 2008, 162, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Pasukphun, N.; Vinitnantharat, S.; Gheewala, S. Investigation of decolorization of textile wastewater in an anaerobic/aerobic biological activated carbon system (A/A BAC). Pak. J. Biol. Sci. 2010, 13, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.; Toorisaka, E.; Hirata, M.; Hano, T. Combination of adsorption and biodegradation processes for textile effluent treatment using a granular activated carbon-biofilm configured packed column system. J. Environ. Sci. (China) 2008, 20, 952–956. [Google Scholar] [CrossRef]
- Liang, Z.; Das, A.; Beerman, D.; Hu, Z. Biomass characteristics of two types of submerged membrane bioreactors for nitrogen removal from wastewater. Water Res. 2010, 44, 3313–3320. [Google Scholar] [CrossRef] [PubMed]
- Modin, O.; Fukushi, K.; Nakajima, F.; Yamamoto, K. A membrane biofilm reactor achieves aerobic methane oxidation coupled to denitrification (AME-D) with high efficiency. Water Sci. Technol. 2008, 58, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Tseng, S.; Hsia, T.; Ho, C.; Chou, W. Aerated membrane-attached biofilm reactor as an effective tool for partial nitrification in pretreatment of anaerobic ammonium oxidation (ANAMMOX) process. J. Chem. Technol. Biotechnol. 2008, 83, 6–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Zhang, J.; Yuan, S. An innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification. J. Environ. Sci. 2009, 21, 568–574. [Google Scholar] [CrossRef]
- Hwang, J.H.; Cicek, N.; Oleszkiewicz, J.A. Achieving biofilm control in a membrane biofilm reactor removing total nitrogen. Water Res. 2010, 44, 2283–2289. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Nishisako, R.; Miyoshi, T.; Shimada, R.; Watanabe, Y. Baffled membrane bioreactor (BMBR) for efficient nutrient removal from municipal wastewater. Water Res. 2008, 42, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; Whang, L.M.; Huang, S.J.; Lei, C.N.; Cheng, S.S. Evaluation of performance and microbial ecology of sequencing batch reactor and membrane bioreactor treating thin film transistor liquid crystal display waste water. Water Sci. Technol. 2008, 58, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Whang, L.; Yang, Y.; Huang, S.; Cheng, S. Microbial ecology and performance of nitrifying bacteria in an aerobic membrane bioreactor treating thin-film transistor liquid crystal display wastewater. Water Sci. Technol. 2008, 58, 2365–2371. [Google Scholar] [CrossRef] [PubMed]
- Syron, E.; Casey, E. Membrane-Aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements. Environ. Sci. Technol. 2008, 42, 1833–1844. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, J.; Bai, R. Membrane aerated biofilm reactors: A brief current review. Recent Pat. Biotechnol. 2008, 2, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, J.; Bai, R.; Wong, F.S. Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater. Environ. Sci. Technol. 2008, 42, 2099–2104. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.K.; Sengupta, S.; Ergas, S.J. Onsite wastewater denitrification using a hydrogenotrophic hollow-fiber membrane bioreactor. Water Environ. Res. 2009, 81, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, F.L.; Fu, Z. Characteristics of simultaneous nitrification and denitrification in moving bed membrane bioreactor. Huan Jing Ke Xue 2009, 30, 803–808. [Google Scholar] [PubMed]
- Yang, S.; Yang, F.L.; Fu, Z.; Lei, R. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on membrane fouling. Bioresour. Technol. 2009, 100, 6655–6657. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, F.L.; Fu, Z.; Lei, R. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresour. Technol. 2009, 100, 2369–2374. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Sun, F.; Wang, X.; Li, X. A membrane bioreactor for an innovative biological nitrogen removal process. Water Sci. Technol. 2010, 61, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Cicek, N.; Oleszkiewicz, J. Long term operation of membrane biofilm reactors for nitrogen removal with autotrophic bacteria. Water Sci. Technol. 2009, 60, 2405–2412. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Cicek, N.; Oleszkiewicz, J. Achieving biofilm control in a membrane biofilm reactor removing total nitrogen. Water Res. 2010, 44, 2283–2291. [Google Scholar] [CrossRef] [PubMed]
- Celmer-Repin, D.; Hwang, J.; Cicek, N.; Oleszkiewicz, J. Autotrophic nitrogen-removing biofilms on porous and non-porous membranes. Environ. Technol. 2010, 31, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Venkata, S.; Falkentoft, C.; Venkata, Y.; Sturm, B.S.; Wattiau, P.; Wilderer, P.A.; Wuertz, S.; Hausner, M. Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the tol plasmid. Bioresour. Technol. 2009, 100, 1746–1753. [Google Scholar] [CrossRef] [PubMed]
- Peitzsch, M.; Kiesel, B.; Harms, H.; Maskow, T. Real time analysis of escherichia coli biofilms using calorimetry. Chem. Eng. Process. Process Intensif. 2008, 47, 1000–1006. [Google Scholar] [CrossRef]
- Shimokawa, T.; Hirai, M.; Shoda, M.; Sugano, Y. Hybrid culture efficient dye decolorization and production of dye decolorizing enzymes by the basidiomycete thanatephorus cucumeris Dec 1 in a liquid and solid hybrid culture. J. Biosci. Bioeng. 2008, 106, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Woznica, A.; Nowak, A.; Karczewski, J.; Klis, C.; Bernas, T. Automatic biodetector of water toxicity (ABTOW) as a tool for examination of phenol and cyanide contaminated water. Chemosphere 2010, 81, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Clouzot, L.; Marrot, B.; Doumenq, P.; Roche, N. 17-ethinylestradiol: An endocrine disrupter of great concern. Environ. Prog. 2008, 27, 383–396. [Google Scholar] [CrossRef]
- Mileva, A.; Sapundzhiev, T.; Beschkov, V. Modeling 1,2-Dichloroethane biodegradation by klebsiella oxytoca Va 8391 immobilized on granulated activated carbon. Bioprocess Biosyst. Eng. 2008, 31, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Martínková, L.; Uhnáková, B.; Pátek, M.; Nesvera, J.; Kren, V. Biodegradation potential of the genus rhodococcus. Environ. Int. 2008, 35, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.L.; Chen, Q.X.; Zhang, Z.J. Comparative study of nitrification performances of immobilized cell fluidized bed reactor and contact oxidation biofilm reactor in treating high strength ammonia wastewater. J. Chem. Technol. Biotechnol. 2008, 83, 84–90. [Google Scholar] [CrossRef]
- Paslawski, C.; Nemati, M.; Hill, A.; Headley, V. Model for biodegradation of a naphthenic acid in an immobilized cell reactor. Can. J. Chem. Eng. 2009, 87, 507–513. [Google Scholar] [CrossRef]
- Katuri, K.; Scott, K. Electricity generation from the treatment of wastewater with a hybrid up-flow microbial fuel cell. Biotechnol. Bioeng. 2010, 107, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Venkata, M.S.; Veer, R.S.; Sarma, P.N. Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosens. Bioelectron. 2009, 24, 41–47. [Google Scholar] [CrossRef]
- Venkata, M.S.; Veer, R.S.; Sarma, P.N. Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane. Biosens. Bioelectron. 2008, 23, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- Venkata, M.S.; Veer, R.S.; Sarma, P.N. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte. Bioresour. Technol. 2008, 99, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Venkata, M.S.; Raghuvulu, S.; Peri, D.; Sarma, P. Integrated function of microbial fuel cell (mfc) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosens. Bioelectron. 2009, 24, 2021–2027. [Google Scholar] [CrossRef] [PubMed]
- Mohanakrishna, G.; Venkata, M.; Sarma, P. Bio-Electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. J. Hazard Mater. 2010, 177, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Gapes, D.; Keller, P. Impact of oxygen mass transfer on nitrification reactions in suspended carrier reactor biofilms. Process Biochem. 2008, 44, 43–53. [Google Scholar] [CrossRef]
- Kim, H.S.; Gellner, J.W.; Boltz, J.P.; Freudenberg, R.G.; Gunsch, C.K.; Schuler, A.J. Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems. Water Res. 2010, 44, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Sriwiriyarat, T.; Pittayakool, K.; Fongsatitkul, P.; Chinwetkitvanich, S. Stability and capacity enhancements of activated sluge process by IFAS technology. J. Environ. Sci. Health A 2008, 43, 1318–1324. [Google Scholar] [CrossRef]
- Sriwiriyarat, T.; Ungkurarate, W.; Fongsatitkul, P.; Chinwetkitvanich, S. Effects of dissolved oxygen on biological nitrogen removal in integrated fixed film activated sludge (IFAS) wastewater treatment process. J. Environ. Sci. Health A 2008, 43, 518–527. [Google Scholar] [CrossRef]
- Tian, Z.; Zeng, P.; Song, Y.; Li, D.; Zhang, J. Nitrogen Removal Potential and Biofilm Characteristics in the Anaerobic Ammonium Oxidation ('Anammox') Biofilter Reactor. In Proceedings of 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20June 2010. Article number: 5514910.
- Campos, V.L.; Escalante, G.; Yanez, J.; Zaror, C.A.; Mondaca, M.A. Isolation of arsenic-oxidizing bacteria from a natural biofilm associated to volcanic rocks of atacama desert, Chile. J. Basic Microbiol. 2009, 49, 93–97. [Google Scholar] [CrossRef]
- Gorbushina, A.; Broughton, W. Microbiology of the atmospheric-rock interface: How biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annu. Rev. Microbiol. 2009, 63, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Newton, C.; Wilson, J. Recirculating gravel filters: High-performance treatment at low cost for two small communities. Water Sci. Technol. 2008, 58, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Rengel, Z.; Meney, K. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using schoenoplectus validus in wetland microcosms. Chemosphere 2008, 72, 1823–1828. [Google Scholar] [CrossRef] [PubMed]
- Pollard, P. Bacterial activity in plant (schoenoplectus validus) biofilms of constructed wetlands. Water Res. 2010, 44, 5939–5948. [Google Scholar] [CrossRef] [PubMed]
- Iasur-Kruh, L.; Hadar, Y.; Milstein, D.; Gasith, A.; Minz, D. Microbial population and activity in wetland microcosms constructed for improving treated municipal wastewater. Microb. Ecol. 2010, 59, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Jiang, L.; Wen, Y.; Yao, Z.; Zhou, Q. Treatment of polluted landscape lake water and community analysis of ammonia-oxidizing bacteria in constructed wetland. J Environ. Sci. Health A 2009, 44, 722–731. [Google Scholar] [CrossRef]
- Tuszynska, A.; Obarska-Pempkowiak, H. Dependence between quality and removal effectiveness of organic matter in hybrid constructed wetlands. Bioresour. Technol. 2008, 99, 6010–6016. [Google Scholar] [CrossRef] [PubMed]
- Hijosa-Valsero, M.; Matamoros, V.; Sidrach-Cardona, R.; Martin-Villacorta, J.; Becares, E.; Bayona, J. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmacueticals and personal care products from urban wastewaters. Water Res. 2010, 44, 3669–3678. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhu, W.; Tong, W. Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands. J Environ. Sci. (China) 2009, 21, 750–757. [Google Scholar] [CrossRef]
- Imfeld, G.; Braeckevelt, M.; Kuschk, P.; Richnow, H. Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 2009, 74, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Bonnineau, C.; Guasch, H.; Proia, L.; Ricart, M.; Geiszinger, A.; Romani, A.M.; Sabater, S. Fluvial biofilms: A pertinent tool to assess beta-blockers toxicity. Aquat. Toxicol. 2010, 96, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Ricart, M.; Guasch, H.; Alberch, M.; Barceló, D.; Bonnineau, C.; Geiszinger, A.; Farré, M.; Ferrer, J.; Ricciardi, F.; Romani, A.M.; et al. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biolfilms. Aquat. Toxicol. 2010, 100, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Writer, J.H.; Barbert, L.B.; Ryan, J.N.; Bradley, P.M. Biodegradation and attenuation of steroidal hormones and alkylphenols by stream biofilms and sediments. Environ. Sci. Technol. 2011, 45, 4370–4376. [Google Scholar] [CrossRef] [PubMed]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gullicks, H.; Hasan, H.; Das, D.; Moretti, C.; Hung, Y.-T. Biofilm Fixed Film Systems. Water 2011, 3, 843-868. https://doi.org/10.3390/w3030843
Gullicks H, Hasan H, Das D, Moretti C, Hung Y-T. Biofilm Fixed Film Systems. Water. 2011; 3(3):843-868. https://doi.org/10.3390/w3030843
Chicago/Turabian StyleGullicks, Harvey, Hasibul Hasan, Dipesh Das, Charles Moretti, and Yung-Tse Hung. 2011. "Biofilm Fixed Film Systems" Water 3, no. 3: 843-868. https://doi.org/10.3390/w3030843