Ecohydrological Pathways of Water Quality Under Climate Change: Nature-Based Solutions for Pollutant Flux Regulation
Abstract
1. Introduction
2. Mechanisms and Drivers of Climate-Induced Water Quality Degradation
| Climate Driver | Water-Quality Impacts | References |
|---|---|---|
| Intensified extreme rainfall | Short-lived, event-scale pulses of suspended sediment and particulate nutrients | [1,13,14,15] |
| Prolonged drought | Higher concentrations of salinity, dissolved nutrients (NH4+, NO3−, PO43−), organic carbon; increased vulnerability to eutrophication | [1,13,16,17,18] |
| Rising water temperatures | Reduced dissolved oxygen and enhanced biogeochemical reaction rates | [19,20,21] |
| Hydroclimatic whiplash (rapid drought–flood transitions) | High-magnitude nutrient and DOC * pulses driven by rewetting and legacy mobilization | [3,22,23,24,25,26] |
2.1. Hydrological Variability and Pollutant Mobilization
2.2. Compound and Rapidly Alternating Extremes—Hydroclimatic Whiplash
2.3. Cross-Scale Implications for Monitoring and Management
3. Ecohydrological and Biogeochemical System Responses
3.1. Hydrological Controls on Pollutant Pathways
3.2. Physical and Biogeochemical Retention in Ecohydrological Buffers
3.3. Vegetation, Root Systems, and Microbial Interactions
3.4. Temperature, Redox Conditions, and Biogeochemical Cycling
| Redox Conditions | Process Sensitivity | Effect on Nitrogen Cycling | Effect on Phosphorus Mobility | Refs. |
|---|---|---|---|---|
| Oxic conditions | Sensitive to temperature, organic-matter supply, and oxygen penetration depth | Increased NO3− production; enhanced nitrification rates | Phosphate retained on Fe(III) oxyhydroxides | [19,20,21,24] |
| Anoxic conditions | Highly dependent on redox duration, Fe availability, and sulfate competition | NO3− removal with potential N2O emission depending on electron availability | P release following Fe(III) reduction; possible vivianite formation under Fe-rich, low-sulfate conditions | [19,21,23,24,25] |
| Alternating oxic–anoxic cycles | Strongly site- and history-dependent; controlled by rewetting intensity and OM lability | Event-scale pulses of inorganic N during drying–rewetting transitions | Oscillating P retention–release linked to Fe redox cycling | [19,23,55,56] |
3.5. Coupling of Carbon, Nitrogen, and Phosphorus Cycles
3.6. Conceptual Synthesis
4. Nature-Based Solutions (NbS) as Ecohydrological Tools for Water-Quality Improvement
| NbS Type | Nitrogen Removal Potential | Phosphorus Removal Potential | Key Limitations/Context Dependence | Refs. |
|---|---|---|---|---|
| Riparian buffer zones/ vegetative filter strips | High for nitrate under shallow groundwater flow paths | Moderate; primarily particulate P retention | Strongly dependent on buffer width, soil saturation, and vegetation type | [6,8,9,10,50,51] |
| Reconnected or restored floodplains | Moderate-to-high during frequent inundation and exchange | Moderate; declines under prolonged saturation | Requires regular hydrological connectivity; risk of internal P release under anoxia | [55,56,66,67,68] |
| Constructed wetlands (surface-flow or hybrid systems) | High but seasonally variable | Moderate; enhanced by Fe-rich substrates | Performance sensitive to hydraulic loading, temperature, and long-term P saturation | [11,12,52,53,54,70] |
| Agricultural/landscape NbS (vegetated ditches, ponds, contour strips) | Low-to-moderate at catchment scale | Low-to-moderate; sediment-driven | Highly distributed effects; cumulative rather than point-scale efficiency | [44,50,63,64] |
| Urban green infrastructure (bioswales, permeable pavements, retention cells) | Moderate for dissolved N under frequent small events | Low-to-moderate; media-dependent | Performance declines during extreme rainfall and bypass flow | [69,71,72,73] |
4.1. Riparian Buffer Zones and Vegetative Filter Strips
4.2. Floodplain Reconnection and River Restoration
4.3. Constructed and Restored Wetlands as Biogeochemical Reactors
4.4. Integrated NbS Systems in Agricultural and Urban Landscapes
4.5. Performance Metrics, Monitoring, and Research Gaps
| Ecohydrological Process | Functional Role in NbS | Sensitivity to Hydrological Extremes | Refs. |
|---|---|---|---|
| Hydraulic residence time | Determines contact between water and reactive substrates; controls N and P transformation efficiency | Markedly reduced during high-flow events; bypassing of treatment zones during floods | [50,52,53,54,70] |
| Redox regime stability | Regulates nitrification–denitrification balance and Fe–P cycling; maintains biogeochemical processing | Susceptible to drought-induced oxidation and rapid shifts following rewetting | [21,23,24,55,56] |
| Hydrological connectivity | Controls activation of flow paths and exchange between buffers and channels | Weakened during droughts; abruptly intensified during whiplash events | [14,15,28,29,30,44] |
| Carbon supply and organic matter availability | Supports denitrification and microbial metabolism; maintains redox heterogeneity | Reduced during prolonged dry periods; episodic pulses after rewetting | [19,23,49,55] |
| Vegetation-mediated uptake and structural control | Provides root-zone oxygenation, stabilizes soils, enhances infiltration and microbial hot spots | Declines under heat stress or prolonged inundation; sensitive to seasonal variability | [45,46,47,69,73] |
5. Integrating Ecohydrology and Nature-Based Solutions into Water-Quality Management Frameworks
5.1. Policy Context and the Need for Systemic Integration
| Policy Framework | Ecohydrological Components | NbS-Relevant Elements | References |
|---|---|---|---|
| EU Water Framework Directive (WFD) | Hydromorphological status; ecological indicators; river-basin planning | Floodplain reconnection, riparian buffers, wetland restoration | [1,77,78] |
| EU Biodiversity Strategy 2030 | Landscape connectivity; habitat restoration | Large-scale wetland restoration, green infrastructure | [77,80] |
| EU Green Deal | Climate adaptation; resilience | Green infrastructure; multi-benefit NbS | [79,80] |
| UN Decade on Ecosystem Restoration (2021–2030) | Ecosystem-function recovery; hydrological–ecological coupling | River and wetland restoration | [77,78] |
| Mission “Restore Our Ocean and Waters” | System-scale resilience; digital water-quality monitoring | Catchment-scale NbS portfolios; floodplain and wetland regeneration | [80] |
5.2. Monitoring, Modeling, and Decision Support
6. Challenges and Future Directions
6.1. Scientific and Technical Challenges
Research Priorities and Methodological Advances
6.2. Implications for Design and Management
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CSO | Combined sewer overflow |
| CW/CWs | Constructed wetland/Constructed wetlands |
| DOC | Dissolved organic carbon |
| DOM | Dissolved organic matter |
| Fe–P | Iron-bound phosphorus |
| GLORICH | Global River Chemistry Database |
| GEMStat | UNEP Global Water Quality Database |
| IPCC | Intergovernmental Panel on Climate Change |
| NbS | Nature-based solutions |
| NH4+ | Ammonium |
| NO3− | Nitrate |
| SWatCh | Surface Water Chemistry dataset |
| TN | Total nitrogen |
| TP | Total phosphorus |
| TSS | Total suspended solids |
| WFD | Water Framework Directive |
References
- IPCC. Climate Change 2022—Impacts, Adaptation and Vulnerability; Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Ayele, G.T. Review of Climate Change Impacts on Water Quantity and Quality in the Murray-Darling Basin, Australia. Water 2024, 16, 3506. [Google Scholar] [CrossRef]
- Na, W.; Najafi, M.R. Rising Risks of Hydroclimatic Swings: A Large Ensemble Study of Dry and Wet Spell Transitions in North America. Glob. Planet. Change 2024, 238, 104476. [Google Scholar] [CrossRef]
- Richardson, C.M.; Peucker-Ehrenbrink, B.; Wyatt, S.; Bourbonnais, A.; Hatje, V.; Frey, C.; Sanders, T.; Varela, D.E.; Paytan, A. Effects of Climate Change on River and Groundwater Nutrient Inputs to the Coastal Ocean. Commun. Earth Environ. 2025, 6, 761. [Google Scholar] [CrossRef]
- Maharjan, S.; Li, W.; Bolten, J.D.; El-Askary, H. The Future Intensification of Hydrological Extremes and Whiplashes in the Contiguous United States Increase Community Vulnerability. Commun. Earth Environ. 2025, 61, 668. [Google Scholar] [CrossRef]
- Zalewski, M. Ecohydrology—The Scientific Background to Use Ecosystem Properties as Management Tools toward Sustainability of Water Resources. Ecol. Eng. 2000, 16, 1–8. [Google Scholar] [CrossRef]
- Zalewski, M. Hydroecology and Ecohydrology: Past, Present and Future. Vadose Zone J. 2011, 10, 773–777. [Google Scholar] [CrossRef]
- Santos, E. Nature-Based Solutions for Water Management in Europe: What Works, What Does Not, and What’s Next? Water 2025, 17, 2193. [Google Scholar] [CrossRef]
- Tsai, Y.; Zabronsky, H.M.; Zia, A.; Beckage, B. Efficacy of Riparian Buffers in Phosphorus Removal: A Meta-Analysis. Front. Water 2022, 4, 882560. [Google Scholar] [CrossRef]
- Wang, D.; Gao, X.; Wu, S.; Zhao, M.; Zheng, X.; Wang, Z.; Zhang, Y.; Fan, C. A Comprehensive Review on Ecological Buffer Zone for Pollutants Removal. Water 2024, 16, 2172. [Google Scholar] [CrossRef]
- Chen, G.; Mo, Y.; Gu, X.; Jeppesen, E.; Xie, T.; Ning, Z.; Li, Y.; Li, D.; Chen, C.; Cui, B.; et al. Sustainability of Global Small-Scale Constructed Wetlands for Multiple Pollutant Control. npj Clean Water 2024, 71, 45. [Google Scholar] [CrossRef]
- Lin, Z.; Li, M.; Yan, P.; Zhang, J.; Xie, H.; Wu, H. Constructed Wetlands for Wastewater Treatment and Reuse: Two Decades of Experience from China. Environ. Res. 2025, 279, 121781. [Google Scholar] [CrossRef]
- Graham, D.J.; Bierkens, M.F.P.; van Vliet, M.T.H. Impacts of Droughts and Heatwaves on River Water Quality Worldwide. J. Hydrol. 2024, 629, 130590. [Google Scholar] [CrossRef]
- Godsey, S.E.; Kirchner, J.W.; Clow, D.W. Concentration-Discharge Relationships Reflect Chemostatic Characteristics of US Catchments. Hydrol. Process. 2009, 23, 1844–1864. [Google Scholar] [CrossRef]
- Knapp, J.L.A.; Von Freyberg, J.; Studer, B.; Kiewiet, L.; Kirchner, J.W. Concentration-Discharge Relationships Vary among Hydrological Events, Reflecting Differences in Event Characteristics. Hydrol. Earth Syst. Sci. 2020, 24, 2561–2576. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; Aghakouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future Climate Risk from Compound Events. Nat. Clim. Change 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Rust, A.J.; Hogue, T.S.; Saxe, S.; McCray, J. Post-Fire Water-Quality Response in the Western United States. Int. J. Wildl. Fire 2018, 27, 203–216. [Google Scholar] [CrossRef]
- Bladon, K.D.; Emelko, M.B.; Silins, U.; Stone, M. Wildfire and the Future of Water Supply. Environ. Sci. Technol. 2014, 48, 8936–8943. [Google Scholar] [CrossRef]
- Velthuis, M.; Veraart, A.J. Temperature Sensitivity of Freshwater Denitrification and N2O Emission-A Meta-Analysis. Global Biogeochem. Cycles 2022, 36, e2022GB007339. [Google Scholar] [CrossRef]
- Zheng, Z.Z.; Wan, X.; Xu, M.N.; Hsiao, S.S.Y.; Zhang, Y.; Zheng, L.W.; Wu, Y.; Zou, W.; Kao, S.J. Effects of Temperature and Particles on Nitrification in a Eutrophic Coastal Bay in Southern China. J. Geophys. Res. Biogeosci. 2017, 122, 2325–2337. [Google Scholar] [CrossRef]
- Chapra, S.C.; Boehlert, B.; Fant, C.; Victor, J.; Bierman, J.; Henderson, J.; Mills, D.; Mas, D.M.L.; Rennels, L.; Jantarasami, L.; et al. Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment. Environ. Sci. Technol. 2017, 51, 8933–8943. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Chapter 6.2 of Section A, National Field Manual for the Collection of Water-Quality Data Book 9. In Handbooks for Water-Resources Investigations; U.S. Geological Survey: Reston, VA, USA, 2006. [Google Scholar]
- Breznikar, A.; Pönisch, D.L.; Lorenz, M.; Jurasinski, G.; Rehder, G.; Voss, M. Rewetting Effects on Nitrogen Cycling and Nutrient Export from Coastal Peatlands to the Baltic Sea. Biogeochemistry 2024, 167, 967–987. [Google Scholar] [CrossRef]
- Heinrich, L.; Rothe, M.; Braun, B.; Hupfer, M. Transformation of Redox-Sensitive to Redox-Stable Iron-Bound Phosphorus in Anoxic Lake Sediments under Laboratory Conditions. Water Res. 2021, 189, 116609. [Google Scholar] [CrossRef]
- Michaelis, T.; Wunderlich, A.; Coskun, Ö.K.; Orsi, W.; Baumann, T.; Einsiedl, F. High-Resolution Vertical Biogeochemical Profiles in the Hyporheic Zone Reveal Insights into Microbial Methane Cycling. Biogeosciences 2022, 19, 4551–4569. [Google Scholar] [CrossRef]
- Wilson, S.J.; Tamborski, J.J.; Song, B.; Bernhardt, P.; Mulholland, M.R. Submarine Groundwater Discharge as a Major Nutrient Source in River-Fed vs. Tidally Dominated Estuaries. Limnol. Oceanogr. 2025, 70, 426–442. [Google Scholar] [CrossRef]
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jézéquel, A.; Mahecha, M.D.; et al. A Typology of Compound Weather and Climate Events. Nat. Rev. Earth Environ. 2020, 17, 333–347. [Google Scholar] [CrossRef]
- Ridder, N.N.; Pitman, A.J.; Westra, S.; Ukkola, A.; Hong, X.D.; Bador, M.; Hirsch, A.L.; Evans, J.P.; Di Luca, A.; Zscheischler, J. Global Hotspots for the Occurrence of Compound Events. Nat. Commun. 2020, 111, 5956. [Google Scholar] [CrossRef]
- Tan, X.X.; Wu, X.; Huang, Z.; Fu, J.; Tan, X.X.; Deng, S.; Liu, Y.; Gan, T.Y.; Liu, B. Increasing Global Precipitation Whiplash Due to Anthropogenic Greenhouse Gas Emissions. Nat. Commun. 2023, 141, 2796. [Google Scholar] [CrossRef] [PubMed]
- Swain, D.L.; Langenbrunner, B.; Neelin, J.D.; Hall, A. Increasing Precipitation Volatility in Twenty-First-Century California. Nat. Clim. Change 2018, 85, 427–433. [Google Scholar] [CrossRef]
- Barendrecht, M.H.; Matanó, A.; Mendoza, H.; Weesie, R.; Rohse, M.; Koehler, J.; de Ruiter, M.; Garcia, M.; Mazzoleni, M.; Aerts, J.C.J.H.; et al. Exploring Drought-to-Flood Interactions and Dynamics: A Global Case Review. Wiley Interdiscip. Rev. Water 2024, 11, e1726. [Google Scholar] [CrossRef]
- Rode, M.; Wade, A.J.; Cohen, M.J.; Hensley, R.T.; Bowes, M.J.; Kirchner, J.W.; Arhonditsis, G.B.; Jordan, P.; Kronvang, B.; Halliday, S.J.; et al. Sensors in the Stream: The High-Frequency Wave of the Present. Environ. Sci. Technol. 2016, 50, 10297–10307. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.A.; Pellerin, B.A.; Miller, M.P.; Capel, P.D.; Tesoriero, A.J.; Duncan, J.M. Monitoring the Riverine Pulse: Applying High-Frequency Nitrate Data to Advance Integrative Understanding of Biogeochemical and Hydrological Processes. Wiley Interdiscip. Rev. Water 2019, 6, e1348. [Google Scholar] [CrossRef]
- Rozemeijer, J.; Jordan, P.; Hooijboer, A.; Kronvang, B.; Glendell, M.; Hensley, R.; Rinke, K.; Stutter, M.; Bieroza, M.; Turner, R.; et al. Best Practice in High-Frequency Water Quality Monitoring for Improved Management and Assessment; a Novel Decision Workflow. Environ. Monit. Assess. 2025, 1974, 353. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Climate Change: Stationarity Is Dead: Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Salas, J.D.; Obeysekera, J. Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events. J. Hydrol. Eng. 2013, 19, 554–568. [Google Scholar] [CrossRef]
- Hartmann, J.; Lauerwald, R.; Moosdorf, N. A Brief Overview of the GLObal RIver Chemistry Database, GLORICH. Procedia Earth Planet. Sci. 2014, 10, 23–27. [Google Scholar] [CrossRef]
- UNEP GEMS/Water Global Freshwater Quality Archive—Dataset—IHP Water Information Network System (IHP-WINS). Available online: https://ihp-wins.unesco.org/dataset/unep-gems-water-global-freshwater-quality-archive (accessed on 12 November 2025).
- Rotteveel, L.; Heubach, F.; Sterling, S.M. The Surface Water Chemistry (SWatCh) Database: A Standardized Global Database of Water Chemistry to Facilitate Large-Sample Hydrological Research. Earth Syst. Sci. Data 2022, 14, 4667–4680. [Google Scholar] [CrossRef]
- Malagó, A.; Bouraoui, F.; Grizzetti, B.; De Roo, A. Modelling Nutrient Fluxes into the Mediterranean Sea. J. Hydrol. Reg. Stud. 2019, 22, 100592. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, B.L.; McDonnell, J.J. Quantifying the Relative Contributions of Riparian and Hillslope Zones to Catchment Runoff. Water Resour. Res. 2003, 39, 1310. [Google Scholar] [CrossRef]
- Vidon, P.G.F.; Hill, A.R. Landscape Controls on the Hydrology of Stream Riparian Zones. J. Hydrol. 2004, 292, 210–228. [Google Scholar] [CrossRef]
- Boano, F.; Harvey, J.W.; Marion, A.; Packman, A.I.; Revelli, R.; Ridolfi, L.; Wörman, A. Hyporheic Flow and Transport Processes: Mechanisms, Models, and Biogeochemical Implications. Rev. Geophys. 2014, 52, 603–679. [Google Scholar] [CrossRef]
- Gordon, B.A.; Dorothy, O.; Lenhart, C.F. Nutrient Retention in Ecologically Functional Floodplains: A Review. Water 2020, 12, 2762. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of Plant Roots on the Resistance of Soils to Erosion by Water: A Review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Blagodatskaya, E. Microbial Hotspots and Hot Moments in Soil: Concept & Review. Soil Biol. Biochem. 2015, 83, 184–199. [Google Scholar] [CrossRef]
- Jacoby, R.P.; Kopriva, S. Metabolic Niches in the Rhizosphere Microbiome: New Tools and Approaches to Analyse Metabolic Mechanisms of Plant-Microbe Nutrient Exchange. J. Exp. Bot. 2019, 70, 1087–1094. [Google Scholar] [CrossRef]
- Burgin, A.J.; Hamilton, S.K. Have We Overemphasized the Role of Denitrification in Aquatic Ecosystems? A Review of Nitrate Removal Pathways. Front. Ecol. Environ. 2007, 5, 89–96. [Google Scholar] [CrossRef]
- Bowles, M.W.; Nigro, L.M.; Teske, A.P.; Joye, S.B. Denitrification and Environmental Factors Influencing Nitrate Removal in Guaymas Basin Hydrothermally Altered Sediments. Front. Microbiol. 2012, 3, 32554. [Google Scholar] [CrossRef] [PubMed]
- Mayer, P.M.; Reynolds, S.K.; McCutchen, M.D.; Canfield, T.J. Meta-Analysis of Nitrogen Removal in Riparian Buffers. J. Environ. Qual. 2007, 36, 1172–1180. [Google Scholar] [CrossRef]
- Valera, C.A.; Pissarra, T.C.T.; Filho, M.V.M.; do Valle Júnior, R.F.; Oliveira, C.F.; Moura, J.P.; Fernandes, L.F.S.; Pacheco, F.A.L. The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code. Water 2019, 11, 549. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment: Five Decades of Experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem Services of Wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef]
- Schönbrunner, I.M.; Preiner, S.; Hein, T. Impact of Drying and Re-Flooding of Sediment on Phosphorus Dynamics of River-Floodplain Systems. Sci. Total Environ. 2012, 432, 329–337. [Google Scholar] [CrossRef]
- Venterink, H.O.; Wiegman, F.; Van der Lee, G.E.M.; Vermaat, J.E. Role of Active Floodplains for Nutrient Retention in the River Rhine. J. Environ. Qual. 2003, 32, 1430–1435. [Google Scholar] [CrossRef]
- Achat, D.L.; Augusto, L.; Gallet-Budynek, A.; Loustau, D. Future Challenges in Coupled C-N-P Cycle Models for Terrestrial Ecosystems under Global Change: A Review. Biogeochemistry 2016, 131, 173–202. [Google Scholar] [CrossRef]
- Zalewski, M.; Kiedrzyńska, E.; Wagner, I.; Izydorczyk, K.; Boczek, J.M.; Jurczak, T.; Krauze, K.; Frankiewicz, P.; Godlewska, M.; Wojtal-Frankiewicz, A.; et al. Ecohydrology and Adaptation to Global Change. Ecohydrol. Hydrobiol. 2021, 21, 393–410. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Zwolsman, J.J.G. Impact of Summer Droughts on the Water Quality of the Meuse River. J. Hydrol. 2008, 353, 1–17. [Google Scholar] [CrossRef]
- Welti, N.; Bondar-Kunze, E.; Tritthart, M.; Pinay, G.; Hein, T. Nitrogen Dynamics in Complex Danube River Floodplain Systems: Effects of Restoration. River Syst. 2012, 20, 71–85. [Google Scholar] [CrossRef]
- González del Tánago, M.; Gurnell, A.M.; Belletti, B.; García de Jalón, D. Indicators of River System Hydromorphological Character and Dynamics: Understanding Current Conditions and Guiding Sustainable River Management. Aquat. Sci. 2015, 781, 35–55. [Google Scholar] [CrossRef]
- Mahajan, P.; Jaspal, D.; Malviya, A. Adsorption of Dyes Using Custard Apple and Wood Apple Waste: A Review. J. Indian Chem. Soc. 2023, 100, 100948. [Google Scholar] [CrossRef]
- Christianson, L.E.; Cooke, R.A.; Hay, C.H.; Helmers, M.J.; Feyereisen, G.W.; Ranaivoson, A.Z.; McMaine, J.T.; McDaniel, R.; Rosen, T.R.; Pluer, W.T.; et al. Effectiveness of Denitrifying Bioreactors on Water Pollutant Reduction from Agricultural Areas. Trans. ASABE 2021, 64, 641–658. [Google Scholar] [CrossRef]
- Kyllmar, K.; Bechmann, M.; Deelstra, J.; Iital, A.; Blicher-Mathiesen, G.; Jansons, V.; Koskiaho, J.; Povilaitis, A. Long-Term Monitoring of Nutrient Losses from Agricultural Catchments in the Nordic-Baltic Region—A Discussion of Methods, Uncertainties and Future Needs. Agric. Ecosyst. Environ. 2014, 198, 4–12. [Google Scholar] [CrossRef]
- Verhoeven, J.T.A.; Arheimer, B.; Yin, C.; Hefting, M.M. Regional and Global Concerns over Wetlands and Water Quality. Trends Ecol. Evol. 2006, 21, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Schipper, L.A.; Robertson, W.D.; Gold, A.J.; Jaynes, D.B.; Cameron, S.C. Denitrifying Bioreactors-An Approach for Reducing Nitrate Loads to Receiving Waters. Ecol. Eng. 2010, 36, 1532–1543. [Google Scholar] [CrossRef]
- Noe, G.B.; Hupp, C.R. Retention of Riverine Sediment and Nutrient Loads by Coastal Plain Floodplains. Ecosystems 2009, 12, 728–746. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetlands Ecol Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Schoumans, O.F.; Chardon, W.J.; Bechmann, M.E.; Gascuel-Odoux, C.; Hofman, G.; Kronvang, B.; Rubæk, G.H.; Ulén, B.; Dorioz, J.M. Mitigation Options to Reduce Phosphorus Losses from the Agricultural Sector and Improve Surface Water Quality: A Review. Sci. Total Environ. 2014, 468, 1255–1266. [Google Scholar] [CrossRef]
- Perdana, M.C.; Sochacki, A.; COmez, F.O.; Silva, A.M.T.; Tiritan, M.E.; Berchova, K.; Chval, Z.; Lexa, M.; Ren, T.; Beesley, L.; et al. The Resilience of Constructed Wetlands Treating Greywater: The Effect of Operating Conditions and Seasonal Temperature Decline. Environ. Sci. Water Res. Technol. 2024, 10, 3206–3216. [Google Scholar] [CrossRef]
- Dzakpasu, M.; Scholz, M.; McCarthy, V.; Jordan, S.; Sani, A. Adaptive Neuro-Fuzzy Inference System for Real-Time Monitoring of Integrated-Constructed Wetlands. Water Sci. Technol. 2015, 71, 22–30. [Google Scholar] [CrossRef]
- Retta, B.; Coppola, E.; Ciniglia, C.; Grilli, E. Constructed Wetlands for the Wastewater Treatment: A Review of Italian Case Studies. Appl. Sci. 2023, 13, 6211. [Google Scholar] [CrossRef]
- Ledesma, J.L.J.; Musolff, A.; Sponseller, R.A.; Lupon, A.; Peñarroya, X.; Jativa, C.; Bernal, S. The Riparian Zone Controls Headwater Hydrology and Biogeochemistry, Doesn’t It? Reassessing Linkages Across European Ecoregions. Glob. Biogeochem. Cycles 2025, 39, e2024GB008250. [Google Scholar] [CrossRef]
- Washington, B.N.; Groffman, P.M.; Duncan, J.M.; Band, L.E.; Miller, A.J. Long-Term Changes in Riparian Connectivity and Groundwater Chemistry in an Urban Watershed. J. Environ. Qual. 2025, 54, 257–274. [Google Scholar] [CrossRef]
- Malá, J.; Bílková, Z.; Hrich, K.; Schrimpelová, K.; Kriška, M.; Šereš, M. Sustainability of Denitrifying Bioreactors with Various Fill Media. Plant Soil Environ. 2017, 63, 442–448. [Google Scholar] [CrossRef]
- Swain, D.L.; Abatzoglou, J.T.; Albano, C.M.; Brunner, M.I.; Diffenbaugh, N.S.; Kolden, C.; Prein, A.F.; Singh, D.; Skinner, C.B.; Swetnam, T.W.; et al. Increasing Hydroclimatic Whiplash Can Amplify Wildfire Risk in a Warming Climate. Glob. Change Biol. 2025, 31, e70075. [Google Scholar] [CrossRef] [PubMed]
- Grizzetti, B.; Pistocchi, A.; Liquete, C.; Udias, A.; Bouraoui, F.; Van De Bund, W. Human Pressures and Ecological Status of European Rivers. Sci. Rep. 2017, 71, 205. [Google Scholar] [CrossRef]
- European Commission. EU Biodiversity Strategy for 2030-Bringing Nature Back into Our Lives. COM(2020) 380 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52020DC0380 (accessed on 14 December 2025).
- Valizadeh, N.; Shamseldin, A.Y.; Wotherspoon, L. Indicator-Based Hydrological Resilience Framework for Urban Stormwater Management Systems. Preprint 2023. [Google Scholar] [CrossRef]
- European Commission. EU Mission “Restore Our Ocean and Waters by 2030”. Available online: https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/restore-our-ocean-and-waters_en (accessed on 14 December 2025).
- Yan, H.; Yang, H.; Guo, X.; Zhao, S.; Jiang, Q. Payments for Ecosystem Services as an Essential Approach to Improving Ecosystem Services: A Review. Ecol. Econ. 2022, 201, 107591. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Hansen, R. Principles for Urban Nature-Based Solutions. Ambio 2022, 51, 1388–1401. [Google Scholar] [CrossRef]
- Audet, J.; Zak, D.; Bidstrup, J.; Hoffmann, C.C. Nitrogen and Phosphorus Retention in Danish Restored Wetlands. Ambio 2019, 49, 324–336. [Google Scholar] [CrossRef]
- Djodjic, F.; Geranmayeh, P.; Collentine, D.; Markensten, H.; Futter, M. Cost Effectiveness of Nutrient Retention in Constructed Wetlands at a Landscape Level. J. Environ. Manag. 2022, 324, 116325. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.R.D. Edge-of-Field Technologies for Phosphorus Retention from Agricultural Drainage Discharge. Appl. Sci. 2020, 10, 634. [Google Scholar] [CrossRef]
- Blaen, P.J.; Khamis, K.; Lloyd, C.; Comer-Warner, S.; Ciocca, F.; Thomas, R.M.; MacKenzie, A.R.; Krause, S. High-Frequency Monitoring of Catchment Nutrient Exports Reveals Highly Variable Storm Event Responses and Dynamic Source Zone Activation. J. Geophys. Res. Biogeosci. 2017, 122, 2265–2281. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Pallett, D.W.; Schäfer, S.M.; Macrae, M.L.; Bowes, M.J.; Farrand, P.; Warwick, A.C.; King, S.M.; Williams, R.J.; Armstrong, L.; et al. Biogeochemical and Climate Drivers of Wetland Phosphorus and Nitrogen Release: Implications for Nutrient Legacies and Eutrophication Risk. J. Environ. Qual. 2020, 49, 1703–1716. [Google Scholar] [CrossRef] [PubMed]
- Vigiak, O.; Udias, A.; Pistocchi, A.; Zanni, M.; Aloe, A.; Grizzetti, B. Probability Maps of Anthropogenic Impacts Affecting Ecological Status in European Rivers. Ecol. Indic. 2021, 126, 107684. [Google Scholar] [CrossRef]
- Kauark-Fontes, B.; Marchetti, L.; Salbitano, F. Integration of Nature-Based Solutions (NBS) in Local Policy and Planning toward Transformative Change. Evidence from Barcelona, Lisbon, and Turin. Ecol. Soc. Publ. 2023, 28, 1388–1401. [Google Scholar] [CrossRef]
- Choi, C.; Berry, P.; Smith, A. The Climate Benefits, Co-Benefits, and Trade-Offs of Green Infrastructure: A Systematic Literature Review. J. Environ. Manag. 2021, 291, 112583. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, G.; Muldoon-Smith, K.; Kumar, B.; Singh, P.; Gupta, A. Assessing the Value of Urban Green Infrastructure Ecosystem Services for High-Density Urban Management and Development: Case from the Capital Core Area of Beijing, China. Sustainability 2021, 13, 12115. [Google Scholar] [CrossRef]
- Pace, S.; Hood, J.M.; Raymond, H.; Moneymaker, B.; Lyon, S.W. High-Frequency Monitoring to Estimate Loads and Identify Nutrient Transport Dynamics in the Little Auglaize River, Ohio. Sustainability 2022, 14, 16848. [Google Scholar] [CrossRef]
- Hoffmann, C.C.; Kronvang, B.; Audet, J. Evaluation of Nutrient Retention in Four Restored Danish Riparian Wetlands. Hydrobiologia 2011, 674, 5–24. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing Water Ecosystem Services for Water Resource Management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Hermoso, V.; Carvalho, S.B.; Giakoumi, S.; Goldsborough, D.; Katsanevakis, S.; Leontiou, S.; Markantonatou, V.; Rumes, B.; Vogiatzakis, I.N.; Yates, K.L. The EU Biodiversity Strategy for 2030: Opportunities and Challenges on the Path towards Biodiversity Recovery. Environ. Sci. Policy 2022, 127, 263–271. [Google Scholar] [CrossRef]
- Otto, F.E.L. Attribution of Extreme Events to Climate Change. Annu. Rev. Environ. Resour. 2023, 48, 813–828. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-Based Solutions to Climate Change Mitigation and Adaptation in Urban Areas: Perspectives on Indicators, Knowledge Gaps, Barriers, and Opportunities for Action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as Large-Scale Nature-Based Solutions: Status and Challenges for Research, Engineering and Management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kudzin, M.H.; Mrozińska, Z.; Sikora, M.; Żyłła, R. Ecohydrological Pathways of Water Quality Under Climate Change: Nature-Based Solutions for Pollutant Flux Regulation. Water 2026, 18, 347. https://doi.org/10.3390/w18030347
Kudzin MH, Mrozińska Z, Sikora M, Żyłła R. Ecohydrological Pathways of Water Quality Under Climate Change: Nature-Based Solutions for Pollutant Flux Regulation. Water. 2026; 18(3):347. https://doi.org/10.3390/w18030347
Chicago/Turabian StyleKudzin, Marcin H., Zdzisława Mrozińska, Monika Sikora, and Renata Żyłła. 2026. "Ecohydrological Pathways of Water Quality Under Climate Change: Nature-Based Solutions for Pollutant Flux Regulation" Water 18, no. 3: 347. https://doi.org/10.3390/w18030347
APA StyleKudzin, M. H., Mrozińska, Z., Sikora, M., & Żyłła, R. (2026). Ecohydrological Pathways of Water Quality Under Climate Change: Nature-Based Solutions for Pollutant Flux Regulation. Water, 18(3), 347. https://doi.org/10.3390/w18030347

