pH-Dependent Reactivity, Radical Pathways, and Nitrosamine Byproduct Formation in Peroxynitrite-Mediated Advanced Oxidation Processes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedures
2.3. Analytical Methods
2.3.1. HPLC Analysis of Organic Pollutants
2.3.2. GC-MS Analysis of NDMA
2.3.3. UPLC-QTOF-MS Analysis of Products
2.3.4. Calculation of the Exposure of HO•, CO3•− and ONOO−
- (1)
- Calculation of the exposure of HO•.
- (2)
- Calculation of the exposure of CO3•−:
- (3)
- Calculation of the exposure of ONOO−:
2.3.5. Relative Contributions of HO•, CO3•− and Reactive Nitrogen Radicals to Micropollutant Degradation
- (1)
- The removal of HO• to micropollutant degradation can be estimated by:
- (2)
- The removal of CO3•− to micropollutant degradation can be estimated by:
- (3)
- Calculation of the removal of reactive nitrogen radicals to micropollutant degradation:
2.3.6. Influence of BPA on Peroxynitrite Decay
3. Results and Discussion
3.1. Decomposition of Peroxynitrite at Different pH
3.2. Roles of HO• and RNS in Micropollutant Degradation
3.3. Impact of HCO3− on Peroxynitrite-Mediated Pollutant Degradation
3.4. Impact of Borate Buffer on Peroxynitrite-Mediated Pollutant Degradation
3.5. Peroxynitrite-Driven Degradation Pathways of Bisphenol A
- (i)
- Hydroxylation and Nitration Pathways: BPA can undergo hydroxylation by HO• to form TP1 (m/z 243.1024) or be attacked by •NO2 to form TP6 (m/z 272.0953). TP6 (m/z 272.0953) subsequently undergoes further hydroxylation to yield TP7 (m/z 288.0879). Studies indicate that carbon atoms in BPA connected to the hydroxyl group and its adjacent carbon exhibit relatively high FED2 values, suggesting that the aromatic ring is more susceptible to substitution by both HO• and •NO2 [46].
- (ii)
- β-Scission pathway: Following the cleavage of the β C–C bond in BPA, a phenoxy radical and a phenol cation are formed [47]. The phenoxy radical undergoes hydroxylation to produce TP4 (m/z 151.076). TP4 (m/z 151.076) can react with •NO2 to yield TP5 (m/z 196.0612). Previous density functional theory calculations on BPA molecules have revealed that the carbon atom adjacent to the hydroxyl group is the most vulnerable site for radical attack [48]. The product structures align with existing research findings that the phenolic hydroxyl group can direct HO•/•NO2 addition to the ortho and/or para positions. Direct attack by NO2 on the aromatic ring of the phenol cation yields two nitrophenol derivatives: TP2 (m/z 138.0207) and TP3 (m/z 183.0048). Detection of these nitration products confirms the pivotal role of NO2 in redirecting the BPA degradation pathway [45].
3.6. Formation of Nitrosamine Disinfection Byproducts
4. Conclusions and Engineering Implications
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, R.; Yang, W.; Rezaei, B.; Bendtsen, E.B.; Guo, K.; Tang, K.; Andersen, H.R.; Keller, S.S.; Zhang, Y. On the mechanism and selectivity of a novel iodine/peracetic acid process for the efficient and rapid elimination of micropollutants. Chem. Eng. J. 2024, 479, 147815. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Wang, H.; Feng, Y.; Yang, Y.; Zhou, Y.; An, N.; Zhao, X. Biochar matrix anchoring pure phase Fe3C to promote advanced oxidation: A reliable pathway for organic wastewater purification. Sep. Purif. Technol. 2025, 362, 131845. [Google Scholar] [CrossRef]
- Li, Z.; Wu, X.; Sun, J.; Wei, B.; Ma, Y.; Liu, H. Computational study on degradation mechanisms, efficiencies and toxicity of BPA and its analogs in UV/H2O2 and fenton/ H2O2 systems. Chem. Eng. J. 2025, 526, 171542. [Google Scholar] [CrossRef]
- Yang, S.; Duan, X.; Liu, J.; Wu, P.; Li, C.; Dong, X.; Zhu, N.; Dionysiou, D.D. Efficient peroxymonosulfate activation and bisphenol a degradation derived from mineral-carbon materials: Key role of double mineral-templates. Appl. Catal. B Environ. 2020, 267, 118701. [Google Scholar] [CrossRef]
- Lu, S.; Shang, C.; Sun, B.; Xiang, Y. Dominant Dissolved Oxygen-Independent Pathway to Form Hydroxyl Radicals and the Generation of Reactive Chlorine and Nitrogen Species in Breakpoint Chlorination. Environ. Sci. Technol. 2023, 57, 150–159. [Google Scholar] [CrossRef]
- Wu, L.; Patton, S.D.; Liu, H. Mechanisms of oxidative removal of 1,4-dioxane via free chlorine rapidly mixing into monochloramine: Implications on water treatment and reuse. J. Hazard. Mater. 2022, 440, 129760. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, C.; Zhu, B.-Z.; Huang, C.-H.; An, T.; Meng, F.; Fang, J. Reactive nitrogen species are also involved in the transformation of micropollutants by the UV/monochloramine process. Environ. Sci. Technol. 2019, 53, 11142–11152. [Google Scholar] [CrossRef]
- Sun, P.; Meng, T.; Wang, Z.; Zhang, R.; Yao, H.; Yang, Y.; Zhao, L. Degradation of organic micropollutants in UV/NH2Cl advanced oxidation process. Environ. Sci. Technol. 2019, 53, 9024–9033. [Google Scholar] [CrossRef]
- Sharma, V.K.; Manoli, K.; Ma, X. Reactivity of nitrogen species with inorganic and organic compounds in water. Chemosphere 2022, 302, 134911. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Qiu, W.; Li, J.; Pang, S.; Zhang, Z.; Jiang, J. Mechanism, kinetics and DBP formation of UV/NH2Cl process on contaminant removal in aqueous solution: A review. Chem. Eng. J. 2021, 420, 130405. [Google Scholar] [CrossRef]
- Cao, Z.; Yu, X.; Zheng, Y.; Aghdam, E.; Sun, B.; Song, M.; Wang, A.; Han, J.; Zhang, J. Micropollutant abatement by the UV/chloramine process in potable water reuse: A review. J. Hazard. Mater. 2022, 424, 127341. [Google Scholar] [CrossRef]
- Lobachev, V.L.; Rudakov, E.S. The chemistry of peroxynitrite. Reaction mechanisms and kinetics. Russ. Chem. Rev. 2006, 75, 375–396. [Google Scholar] [CrossRef]
- Merényi, G.; Lind, J. Thermodynamics of peroxynitrite and its CO2 adduct. Chem. Res. Toxicol. 1997, 10, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Alcolado, C.I.; Jiménez, E.; García-Río, L.; Poblete, F.J. Aqueous-phase degradation mechanism of parabens, emerging contaminants, by peroxynitrite. ACS EST Water 2025, 5, 4147–4155. [Google Scholar] [CrossRef]
- Alcolado, C.I.; Garcia-Rio, L.; Mejuto, J.C.; Moreno, I.; Poblete, F.J.; Tejeda, J. Oxidation of aldehydes used as food additives by peroxynitrite. Antioxidants 2023, 12, 743. [Google Scholar] [CrossRef]
- Vione, D.; Maurino, V.; Minero, C.; Lucchiari, M.; Pelizzetti, E. Nitration and hydroxylation of benzene in the presence of nitrite/nitrous acid in aqueous solution. Chemosphere 2004, 56, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, N.; Long, Y.-T.; Qian, X.; Yang, Y. Understanding the selectivity of a multichannel fluorescent probe for peroxynitrite over hypochlorite. Bioconjug. Chem. 2016, 27, 341–353. [Google Scholar] [CrossRef]
- Duan, J.; Cao, Y.; Yang, Q.; Li, W.; Huang, Q.; Guo, Q.; Jiang, J. Involvement of inorganic nitrogen species (NOX−(x = 2, 3)) in the degradation of organic contaminants in environmental waters via UV irradiation or chemical oxidation: A dual-edged approach. Sci. Total Environ. 2025, 963, 178500. [Google Scholar] [CrossRef]
- Kodamatani, H.; Kubo, S.; Takeuchi, A.; Kanzaki, R.; Tomiyasu, T. Sensitive detection of nitrite and nitrate in seawater by 222 nm UV-irradiated photochemical conversion to peroxynitrite and ion chromatography-luminol chemiluminescence system. Environ. Sci. Technol. 2023, 57, 5924–5933. [Google Scholar] [CrossRef]
- Liu, T.; Chen, J.; Li, N.; Xiao, S.; Huang, C.-H.; Zhang, L.; Xu, Y.; Zhang, Y.; Zhou, X. Unexpected role of nitrite in promoting transformation of sulfonamide antibiotics by peracetic acid: Reactive nitrogen species contribution and harmful disinfection byproduct formation potential. Environ. Sci. Technol. 2022, 56, 1300–1309. [Google Scholar] [CrossRef]
- Lehnig, M. Radical mechanisms of the decomposition of peroxynitrite and the peroxynitrite–CO2 adduct and of reactions with l-tyrosine and related compounds as studied by 15N chemically induced dynamic nuclear polarization. Arch. Biochem. Biophys. 1999, 368, 303–318. [Google Scholar] [CrossRef]
- Lehnig, M.; Jakobi, K. 15N CIDNP during reaction of the oxoperoxonitrate–CO2 adduct with bovine albumin and L-tyrosine derivatives. J. Chem. Soc. Perkin Trans. 2000, 2, 2016–2021. [Google Scholar] [CrossRef]
- Kirsch, M.; Korth, H.-G.; Wensing, A.; Sustmann, R.; De Groot, H. Product formation and kinetic simulations in the pH range 1–14 account for a free-radical mechanism of peroxynitrite decomposition. Arch. Biochem. Biophys. 2003, 418, 133–150. [Google Scholar] [CrossRef]
- Merényi, G.; Lind, J.; Goldstein, S.; Czapski, G. Mechanism and thermochemistry of peroxynitrite decomposition in water. J. Phys. Chem. A 1999, 103, 5685–5691. [Google Scholar] [CrossRef]
- Bonini, M.G.; Mason, R.P.; Augusto, O. The mechanism by which 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (tempol) diverts peroxynitrite decomposition from nitrating to nitrosating species. Chem. Res. Toxicol. 2002, 15, 506–511. [Google Scholar] [CrossRef]
- Ferkous, H.; Hamdaoui, O.; Pétrier, C. Sonochemical formation of peroxynitrite in water: Impact of ultrasonic frequency and power. Ultrason. Sonochem. 2023, 98, 106488. [Google Scholar] [CrossRef]
- Robert Carola, J.P.H.; Noback, C.R. Human Anatomy & Physiology, 2nd ed.; McGraw-Hill College: New York, NY, USA, 1992. [Google Scholar]
- Radi, R.; Cosgrove, T.P.; Beckman, J.S.; Freeman, B.A. Peroxynitrite-induced luminol chemiluminescence. Biochem. J. 1993, 290, 51–57. [Google Scholar] [CrossRef]
- Prolo, C.; Piacenza, L.; Radi, R. Peroxynitrite: A multifaceted oxidizing and nitrating metabolite. Curr. Opin. Chem. Biol. 2024, 80, 102459. [Google Scholar] [CrossRef]
- Lai, W.W.-P.; Hsu, M.-H.; Lin, A.Y.-C. The role of bicarbonate anions in methotrexate degradation via UV/TiO2: Mechanisms, reactivity and increased toxicity. Water Res. 2017, 112, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Beckman, J.S.; Chen, J.; Ischiropoulos, H.; Crow, J.P. Oxidative chemistry of peroxynitrite. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1994; Volume 233, pp. 229–240. [Google Scholar] [CrossRef]
- Wang, W.-L.; Wu, Q.-Y.; Du, Y.; Huang, N.; Hu, H.-Y. Elimination of chlorine-refractory carbamazepine by breakpoint chlorination: Reactive species and oxidation byproducts. Water Res. 2018, 129, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Du, Y.; Zhou, Y.; Wu, Q.; Zheng, S.; Fang, J. Formation of nitro(so) and chlorinated products and toxicity alteration during the UV/monochloramine treatment of phenol. Water Res. 2021, 194, 116914. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O•− in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Huang, Y.; Kong, M.; Westerman, D.; Xu, E.G.; Coffin, S.; Cochran, K.H.; Liu, Y.; Richardson, S.D.; Schlenk, D.; Dionysiou, D.D. Effects of HCO3– on degradation of toxic contaminants of emerging concern by UV/NO3–. Environ. Sci. Technol. 2018, 52, 12697–12707. [Google Scholar] [CrossRef]
- Goldstein, S.; Saha, A.; Lymar, S.V.; Czapski, G. Oxidation of peroxynitrite by inorganic radicals: A pulse radiolysis study. J. Am. Chem. Soc. 1998, 120, 5549–5554. [Google Scholar] [CrossRef]
- Brienza, M.; Manasfi, R.; Chiron, S. Relevance of N-nitrosation reactions for secondary amines in nitrate-rich wastewater under UV-C treatment. Water Res. 2019, 162, 22–29. [Google Scholar] [CrossRef]
- Kissner, R.; Nauser, T.; Bugnon, P.; Lye, P.G.; Koppenol, W.H. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem. Res. Toxicol. 1997, 10, 1285–1292. [Google Scholar] [CrossRef]
- Squadrito, G.L.; Pryor, W.A. Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med. 1998, 25, 392–403. [Google Scholar] [CrossRef]
- Denicola, A.; Freeman, B.A.; Trujillo, M.; Radi, R. Peroxynitrite reaction with carbon dioxide/bicarbonate: Kinetics and influence on peroxynitrite-mediated oxidations. Arch. Biochem. Biophys. 1996, 333, 49–58. [Google Scholar] [CrossRef]
- Koppenol, W.H.; Serrano-Luginbuehl, S.; Nauser, T.; Kissner, R. Thinking outside the cage: A new hypothesis that accounts for variable yields of radicals from the reaction of CO2 with ONOO–. Chem. Res. Toxicol. 2020, 33, 1516–1527. [Google Scholar] [CrossRef]
- Petersson, F.; Jonsson, M. The reactivity of hydroxyl radicals toward boric acid as a function of pH. J. Phys. Chem. A 2024, 128, 7593–7600. [Google Scholar] [CrossRef]
- Buxton, G.V.; Sellers, R.M. Reactivity of the hydrated electron and the hydroxyl radical with boric acid in aqueous solutions. Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem. 1987, 29, 137–140. [Google Scholar] [CrossRef]
- Sikora, A.; Zielonka, J.; Lopez, M.; Dybala-Defratyka, A.; Joseph, J.; Marcinek, A.; Kalyanaraman, B. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway. Chem. Res. Toxicol. 2011, 24, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Frassati, S.; Carena, L.; Barbaro, E.; Roman, M.; Feltracco, M.; Minella, M.; Sordello, F.; Minero, C.; Spolaor, A.; Scalabrin, E.; et al. Photodegradation of bisphenol A and identification of photoproducts in artificial snow under UVA radiation. Environ. Pollut. 2025, 381, 126503. [Google Scholar] [CrossRef]
- Zhou, S.; Li, L.; Wu, Y.; Zhu, S.; Zhu, N.; Bu, L.; Dionysiou, D.D. UV365 induced elimination of contaminants of emerging concern in the presence of residual nitrite: Roles of reactive nitrogen species. Water Res. 2020, 178, 115829. [Google Scholar] [CrossRef]
- Fu, Z.; Lin, Z.; Jian, J.; Zhang, S.; Zhang, F.; Wang, Y.; He, Y.; Liu, L.; Wang, Y.; Zhan, H.; et al. Synergistic enhancement of bisphenol A photodegradation by BiOCl via nitrite-induced charge separation and reactive oxygen species generation: A dual role for nitrite in pollutant degradation and transformation. J. Environ. Chem. Eng. 2026, 14, 120680. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, M.; Deng, Y.; Liu, M.; Chen, Y.; Gao, N.; Du, E.; Chu, W.; Guo, H. Generality and diversity on the kinetics, toxicity and DFT studies of sulfate radical-induced transformation of BPA and its analogues. Water Res. 2022, 219, 118506. [Google Scholar] [CrossRef]
- Vione, D.; Maurino, V.; Minero, C.; Pelizzetti, E. Nitration and photonitration of naphthalene in aqueous systems. Environ. Sci. Technol. 2005, 39, 1101–1110. [Google Scholar] [CrossRef]
- Schreiber, I.M.; Mitch, W.A. Enhanced Nitrogenous Disinfection By Product Formation near the Breakpoint: Implications for Nitrification Control. Environ. Sci. Technol. 2007, 41, 7039–7046. [Google Scholar] [CrossRef]
- Schreiber, I.M.; Mitch, W.A. Influence of the Order of Reagent Addition on NDMA Formation during Chloramination. Environ. Sci. Technol. 2005, 39, 3811–3818. [Google Scholar] [CrossRef]
- Charrois, J.W.A.; Hrudey, S.E. Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations. Water Res. 2007, 41, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Mower, H.F.; Pignatelli, B.; Celan, I.; Friesen, M.D.; Nishino, H.; Ohshima, H. Formation of N-nitrosamines and N-nitramines by the reaction of secondary amines with peroxynitrite and other reactive nitrogen species: Comparison with nitrotyrosine formation. Chem. Res. Toxicol. 2000, 13, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Yang, J.; Zhang, C.; Song, Y.; Jiang, J.; Ma, J. The role of biochar in algal source water treatment: Algal cells integrity and N-nitrosodimethylamine (NDMA) formation potential. J. Hazard. Mater. 2025, 492, 138292. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, Z.; Rao, D.; Zhang, J.; Sun, B. pH-Dependent Reactivity, Radical Pathways, and Nitrosamine Byproduct Formation in Peroxynitrite-Mediated Advanced Oxidation Processes. Water 2026, 18, 97. https://doi.org/10.3390/w18010097
Chen Z, Rao D, Zhang J, Sun B. pH-Dependent Reactivity, Radical Pathways, and Nitrosamine Byproduct Formation in Peroxynitrite-Mediated Advanced Oxidation Processes. Water. 2026; 18(1):97. https://doi.org/10.3390/w18010097
Chicago/Turabian StyleChen, Zhe, Dandan Rao, Jian Zhang, and Bo Sun. 2026. "pH-Dependent Reactivity, Radical Pathways, and Nitrosamine Byproduct Formation in Peroxynitrite-Mediated Advanced Oxidation Processes" Water 18, no. 1: 97. https://doi.org/10.3390/w18010097
APA StyleChen, Z., Rao, D., Zhang, J., & Sun, B. (2026). pH-Dependent Reactivity, Radical Pathways, and Nitrosamine Byproduct Formation in Peroxynitrite-Mediated Advanced Oxidation Processes. Water, 18(1), 97. https://doi.org/10.3390/w18010097

