Virtual Water and Agricultural Sustainability: Unraveling the Trade–Water Nexus in Ecuador’s Crop Sector Through Empirical Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Virtual Water Use Calculation of Crops
2.2.2. Net Virtual Water Trade for Crops
2.2.3. Ecuador’s Virtual Water Trade Decomposition
2.3. Software and Statistics
3. Results
3.1. The Virtual Water Use in Ecuador’s Crop Production
3.2. Virtual Water Trade of Ecuador’s Seven Principal Crops
3.2.1. Virtual Water Imports
3.2.2. Virtual Water Exports
3.2.3. Net Virtual Water Trade
3.3. Principal Partner Countries in Ecuador’s Virtual Water Trade
3.3.1. Import Trading Partners
3.3.2. Export Trading Partners
3.4. Ecuador’s Virtual Water Trade Determinant Driving Factors
3.4.1. Export Change
3.4.2. Import Change
4. Discussion
Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LMDI | Logarithmic Mean Divisa Index |
| SDG | Sustainable Development Goals |
| GDP | Gross Domestic Product |
| FAO | Food and Agriculture Organization |
| VWT | Virtual Water Trade |
| VWU | Virtual Water Use |
| NVW | Net Virtual Water |
| VWI | Virtual Water Import |
| VWE | Virtual Water Export |
| WF | Water Footprint |
Appendix A
Appendix A.1. Ecuador’s Crop Production



Appendix A.2. Ecuador’s Import and Export

Appendix B
Appendix B.1. Statistics Summary (Data Collection)
| Year | Annual Population | Annual GDP | Import Values | Export Values | Production Values |
|---|---|---|---|---|---|
| 2000 | 12,689,206 | 1,381,5431.3 | 108,196,391 | 3,401,161,673 | 9,113,493,852 |
| 2001 | 1,291,074 | 1,791,303.533 | 127,673,606 | 3,457,238,759 | 9,128,170,705 |
| 2002 | 13,138,472 | 2,059,158.6 | 288,209,003 | 3,659,563,805 | 9,405,906,378 |
| 2003 | 13,372,306 | 2,315,622.219 | 274,138,860 | 4,144,380,269 | 10,767,759,562 |
| 2004 | 13,608,701 | 2,586,209.093 | 332,651,532 | 4,255,802,775 | 12,071,075,835 |
| 2005 | 13,846,163 | 2,909,026.256 | 367,840,151 | 4,567,693,626 | 11,494,566,897 |
| 2006 | 14,086,131 | 3,243,670.009 | 364,685,555 | 5,030,312,173 | 11,210,615,720 |
| 2007 | 14,328,773 | 3,478,924.976 | 390,792,998 | 4,752,125,444 | 12,240,889,707 |
| 2008 | 14,575,202 | 4,194,757.3 | 325,964,318 | 4,775,794,835 | 11,637,615,769 |
| 2009 | 14,825,954 | 4,053,363.103 | 301,695,050 | 6,490,708,581 | 13,256,456,021 |
| 2010 | 15,076,695 | 4,520,309.607 | 545,540,922 | 5,976,951,874 | 13,820,860,816 |
| 2011 | 15,326,227 | 5,153,691.8 | 635,763,715 | 7,624,906,937 | 14,253,165,146 |
| 2012 | 15,572,194 | 5,634,083.915 | 405,188,361 | 7,002,301,127 | 14,163,172,331 |
| 2013 | 15,807,128 | 6,109,290.555 | 241,879,733 | 8,074,294,851 | 13,206,008,280 |
| 2014 | 16,035,124 | 6,405,799.553 | 253,740,307.5 | 8,988,864,920 | 15,616,933,537 |
| 2015 | 16,266,225 | 5,976,159.625 | 131,145,119.7 | 10,391,094,557 | 17,682,813,264 |
| 2016 | 16,505,139 | 5,917,637.872 | 116,494,252.6 | 10,052,497,560 | 14,947,354,184 |
| 2017 | 16,759,519 | 6,233,322.245 | 133,935,493.2 | 12,196,456,104 | 16,967,303,806 |
| 2018 | 17,049,547 | 6,303,919.051 | 134,695,100.8 | 12,574,565,653 | 17,110,998,832 |
| 2019 | 17,340,021 | 6,205,057.474 | 99,506,829.31 | 11,835,531,143 | 18,780,430,749 |
| 2020 | 17,546,065 | 5,463,645.309 | 106,139,798.7 | 13,766,200,552 | 20,117,547,540 |
| 2021 | 17,682,454 | 6,075,802.429 | 128,173,482.1 | 13,616,199,280 | 20,887,451,665 |
| 2022 | 17,823,897 | 6,540,998.245 | 201,858,962.5 | 16,076,801,196 | 21,819,632,725 |
| 2023 | 17,980,083 | 6,609,804.126 | - | - | 23,070,729,092 |
Appendix B.2. Ecuador’s Imported and Exported Virtual Water Amount
| Category | Crop | Water Imports (million m3) | |
|---|---|---|---|
| Green Water | Blue Water | ||
| Grains | Rice | 14.29 | 0.47 |
| Barley | 878.10 | 17.46 | |
| Maize corn | 4888.80 | 26.38 | |
| Fruits | Pineapple | 0.11 | 0.01 |
| Banana | 5.08 | 1.00 | |
| Starch roots/Trees | Potato | 0.70 | 0.87 |
| Cocoa bean | 3.76 | 0.0012 | |
| Category | Crop | Water Exports (million m3) | |
|---|---|---|---|
| Green Water | Blue Water | ||
| Grains | Rice | 20.54 | 75.68 |
| Barley | 0.55 | 34.99 | |
| Maize corn | 286.62 | 117.97 | |
| Fruits | Pineapple | 20.17 | 5276.75 |
| Banana | 631,208.14 | 39,761.13 | |
| Starch roots/Trees | Potato | 12.40 | 17.12 |
| Cocoa bean | 15,069.70 | 134,755.00 | |
Appendix B.3. Logarithmic Mean Divisa Index Analysis of Ecuador’s Virtual Water Trade
| VWT Change (Import) | |||||
|---|---|---|---|---|---|
| Year | Product Structure | Economic Growth | Population | Water Intensity | Total Effect |
| 2000–2001 | −39,731,669.47 | 29,251,202.04 | 1,949,139.293 | 28,013,142.14 | 19,481,814 |
| 2001–2002 | 139,343,541.6 | 27,457,186.82 | 3,445,145.304 | −9,918,939.746 | 160,326,934 |
| 2002–2003 | −59,937,080.59 | 32,422,553.4 | 4,872,770.343 | 8,780,076.838 | −13,861,680 |
| 2003–2004 | 67,658,641.67 | 33,202,657 | 5,264,704.666 | −47,609,833.34 | 58,516,170 |
| 2004–2005 | −73,126,985.73 | 41,108,894.33 | 6,045,758.624 | 61,160,951.77 | 35,188,619 |
| 2005–2006 | 11,917,837.73 | 39,878,497.25 | 6,292,890.147 | −61,285,371.13 | −3,196,146 |
| 2006–2007 | 23,597,973.22 | 26,399,457.3 | 6,439,410.449 | −30,332,337.97 | 26,104,503 |
| 2007–2008 | −232,181,687.8 | 66,643,952.35 | 6,073,422.735 | 94,638,572.68 | −64,825,740 |
| 2008–2009 | 16,304,874.79 | −10,732,704.75 | 5,339,253.863 | −35,267,886.91 | −24,356,463 |
| 2009–2010 | 53,092,740.56 | 44,626,743 | 6,864,215.026 | 139,373,190.4 | 243,956,889 |
| 2010–2011 | −27,250,806.1 | 77,299,128.74 | 9,676,400.965 | 30,499,103.4 | 90,223,827 |
| 2011–2012 | −309,908,075.3 | 45,224,048.85 | 8,079,191.318 | 19,601,927.13 | −237,002,908 |
| 2012–2013 | −263,323,051.2 | 25,487,354.74 | 4,713,118.786 | 70,400,558.71 | −162,722,019 |
| 2013–2014 | −22,983,483.54 | 11,731,760.11 | 3,544,939.875 | 19,652,322.92 | 11,945,539.37 |
| 2014–2015 | −119,604,910.9 | −12,196,735.78 | 2,513,868.372 | 6,678,140.886 | −122,609,637.5 |
| 2015–2016 | 18,760,566.61 | −1,202,999.629 | 1,782,460.76 | −33,990,782.91 | −14,650,755.17 |
| 2016–2017 | 25,418,971.95 | 6,456,607.871 | 1,900,082.894 | −16,333,546.57 | 17,442,116.14 |
| 2017–2018 | −22,941,247.29 | 1,504,794.67 | 2,292,487.591 | 19,901,194.51 | 757,229.48 |
| 2018–2019 | −18,685,751.82 | −1,799,568.33 | 1,923,288.418 | −16,626,020.74 | −35,188,052.47 |
| 2019–2020 | 9,083,482.975 | −12,770,278.81 | 1,185,469.987 | 9,130,463.219 | 6,629,137.37 |
| 2020–2021 | 8,092,130.338 | 12,351,470.39 | 900,575.2649 | 664,621.129 | 22,008,797.12 |
| 2021–2022 | 100,609,836.9 | 13,531,856.15 | 146,1341.13 | 20,857,960.75 | 136,460,995 |
| 2022–2023 | - | - | - | - | - |
| Sum | −715,794,151.4 | 495,875,877.7 | 92,559,935.81 | 277,987,507.2 | 150,629,169.3 |
| VWT Change (Export) | |||||
|---|---|---|---|---|---|
| Year | Product Structure | Economic Growth | Population | Water Intensity | Total Effect |
| 2000–2001 | −893,411,481.6 | 888,331,027.4 | 59,193,495.99 | −17,242.8395 | 54,095,798.95 |
| 2001–2002 | −359,239,403.2 | 494,049,308.8 | 61,990,023.49 | −17,693.08031 | 196,782,236 |
| 2002–2003 | −44,547,494.41 | 455,717,459.3 | 68,489,563.19 | −15,925.0758 | 479,643,603 |
| 2003–2004 | −429,536,650.3 | 461,568,376.6 | 73,187,552.02 | 4742.666134 | 105,224,021 |
| 2004–2005 | −283,385,313.8 | 515,723,070.3 | 75,845,805.4 | −3788.885681 | 308,179,773 |
| 2005–2006 | −142,959,438.8 | 518,861,993.3 | 81,877,245.89 | −2847.377068 | 457,776,953 |
| 2006–2007 | −702,323,493.1 | 339,707,807 | 82,862,233.76 | −4029.603452 | −279,757,482 |
| 2007–2008 | −939,082,952.3 | 885,192,395.4 | 80,669,699.64 | 4085.271353 | 26,783,228.01 |
| 2008–2009 | 1,807,349,973 | −190,117,350 | 94,578,656.5 | −13,583.71116 | 1,711,797,696 |
| 2009–2010 | −1,317,985,742 | 673,347,724.8 | 103,570,264.4 | 7343.211026 | −541,060,410 |
| 2010–2011 | 657,127,794.9 | 882,622,754.8 | 110,487,812.9 | 11,137.4055 | 1,650,249,500 |
| 2011–2012 | −1,316,990,689 | 646,627,172.3 | 115,518,728.9 | 11,136.017 | −554,833,652 |
| 2012–2013 | 355,530,554.6 | 607,437,043.3 | 112,327,190.1 | −1547.004972 | 1,075,293,241 |
| 2013–2014 | 388,419,707.4 | 403,122,473.4 | 121,809,934.5 | 1650.526442 | 913,353,765.8 |
| 2014–2015 | 1,930,725,627 | −670,007,589.2 | 138,095,218 | −2593.441248 | 1,398,810,662 |
| 2015–2016 | −389,501,444.3 | −100,356,798.4 | 148,696,683.6 | −4542.661534 | −341,166,102 |
| 2016–2017 | 1,396,800,175 | 574,855,663.5 | 169,171,403.1 | −1134.04091 | 2,140,826,108 |
| 2017–2018 | 27,900,970.57 | 139,174,987.2 | 212,026,888.2 | 3733.072309 | 379,106,579 |
| 2018–2019 | −754,990,406.3 | −192,331,825 | 205,554,612.9 | −8435.717502 | −741,776,054 |
| 2019–2020 | 3,402,893,839 | −1,621,182,422 | 150,494,999.6 | −3889.217372 | 1,932,202,527 |
| 2020–2021 | −1,416,230,335 | 1,466,579,444 | 106,931,817 | 2984.775368 | 157,283,910.8 |
| 2021–2022 | 924,657,727.1 | 1,101,711,843 | 118,976,791.5 | 15,592.67243 | 2,145,361,954 |
| 2022–2023 | - | - | - | - | - |
| Sum | 1,901,221,524 | 8,280,634,560 | 2,492,356,620.58 | −34,847.04 | 12,674,177,858 |
References
- Du, Y.; Zhao, D.; Qiu, S.; Zhou, F.; Peng, J. How can virtual water trade reshape water stress pattern? A global evaluation based on the metacoupling perspective. Ecol. Indic. 2022, 145, 109712. [Google Scholar] [CrossRef]
- Cuero Espinoza, E.I.; Adeyi, Q.; Ahmad, M.J.; Hwang, H.-S.; Choi, K.-S. Sustainability Synergies Between Water Governance and Agrotourism Development in the Semi-Arid Climate: A Case Study of Esmeraldas Province, Ecuador. Water 2025, 17, 2215. [Google Scholar] [CrossRef]
- Mahlknecht, J.; González-Bravo, R.; Loge, F.J. Water-energy-food security: A Nexus perspective of the current situation in Latin America and the Caribbean. Energy 2020, 194, 116824. [Google Scholar] [CrossRef]
- Faures, J.M.; Eliasson, A.; Hoogeveen, J.; Vallee, D. AQUASTAT-FAO’s Information System on Water and Agriculture. GRID—Magazine, 2001, p. 18. Available online: https://www.fao.org/aquastat/en/overview/methodology/water-use (accessed on 6 November 2025).
- Arab Water Council. Perspectives on Water and Climate Change Adaptation: Arid and Semi-Arid Regions. 2009. Available online: https://www.preventionweb.net/files/12914_PersPap09.AridandSemiAridRegions1.pdf? (accessed on 1 December 2025).
- Leal Filho, W.; Totin, E.; Franke, J.A.; Andrew, S.M.; Abubakar, I.R.; Azadi, H.; Nunn, P.D.; Ouweneel, B.; Williams, P.A.; Simpson, N.P. Understanding responses to climate-related water scarcity in Africa. Sci. Total Environ. 2022, 806, 150420. [Google Scholar] [CrossRef] [PubMed]
- Morante-Carballo, F.; Montalván-Burbano, N.; Quiñonez-Barzola, X.; Jaya-Montalvo, M.; Carrión-Mero, P. What Do We Know about Water Scarcity in Semi-Arid Zones? A Global Analysis and Research Trends. Water 2022, 14, 2685. [Google Scholar] [CrossRef]
- FAO. Coping with Water Scarcity an Action Framework for Agriculture and Food Security. 2012. Available online: https://www.fao.org/4/i3015e/i3015e.pdf? (accessed on 1 December 2025).
- Lu, J.; Jia, L.; Menenti, M.; Zheng, C.; Hu, G.; Ji, D. The impacts of drought on water availability: Spatial and temporal analysis in the Belt and Road region (2001–2020). Int. J. Digit. Earth 2025, 18, 2449706. [Google Scholar] [CrossRef]
- Chapagain, K.; Hoekstra, A.Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Tian, Q.; Man, X.; Wang, M. Virtual water flows and drivers in the international trade of agricultural products of the regional comprehensive economic partnership. Water Sci. Technol. 2024, 89, 730–744. [Google Scholar] [CrossRef]
- de Fraiture, C.; Cai, X.; Amarasinghe, U.; Rosegrant, M.; Molden, D. Does International Cereal Trade Save Water? The Impact of Virtual Water Trade on Global Water Use. 2004. Available online: https://core.ac.uk/download/pdf/48034908.pdf (accessed on 9 October 2025).
- Maroufpoor, S.; Bozorg-Haddad, O.; Maroufpoor, E.; Gerbens-Leenes, P.W.; Loáiciga, H.A.; Savic, D.; Singh, V.P. Optimal virtual water flows for improved food security in water-scarce countries. Sci. Rep. 2021, 11, 21027. [Google Scholar] [CrossRef]
- Adeyi, Q.; Adelodun, B.; Odey, G.; Choi, K.S. Spatio-temporal Dynamics of Water Footprints of Food Consumption in South Korea: A Decomposition Analysis. Environ. Manag. 2025, 75, 2348–2364. [Google Scholar] [CrossRef]
- Odey, G.; Adelodun, B.; Lee, S.; Adeyemi, K.A.; Cho, G.; Choi, K.S. Environmental and Socioeconomic Determinants of Virtual Water Trade of Grain Products: An Empirical Analysis of South Korea Using Decomposition and Decoupling Model. Agronomy 2022, 12, 3105. [Google Scholar] [CrossRef]
- Sun, J.X.; Yin, Y.L.; Sun, S.K.; Wang, Y.B.; Yu, X.; Yan, K. Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations. Agric. Water Manag. 2021, 243, 106407. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Kebede, M.M.; Demeke, B.W.; Carr, J.A.; Chapagain, A.; Dalin, C.; Debaere, P.; D’Odorico, P.; Marston, L.; Ray, C.; et al. Trends and environmental impacts of virtual water trade. Nat. Rev. Earth Environ. 2024, 5, 890–905. [Google Scholar] [CrossRef]
- Tamea, S.; Allamano, P.; Carr, J.A.; Claps, P.; Laio, F.; Ridolfi, L. Local and global perspectives on the virtual water trade. Hydrol. Earth Syst. Sci. 2013, 17, 1205–1215. [Google Scholar] [CrossRef]
- Dalin, C.; Konar, M.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl. Acad. Sci. USA 2012, 109, 5989–5994. [Google Scholar] [CrossRef] [PubMed]
- Vallino, E.; Ridolfi, L.; Laio, F. Trade of economically and physically scarce virtual water in the global food network. Sci. Rep. 2021, 11, 22806. [Google Scholar] [CrossRef]
- Silvestrini, M.M.; Rossi, T.J.A.; Sarti, F.M. Socioeconomic and Environmental Dimensions of Agriculture, Livestock, and Fisheries: A Network Study on Carbon and Water Footprints in Global Food Trade. Standards 2025, 5, 19. [Google Scholar] [CrossRef]
- Prates, R.C. The balance of trade in virtual water in the countries of south america. Int. J. Adv. Eng. Res. Sci. 2019, 6, 323–331. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Virtual Water Trade—A Quantification of Virtual Water Flows Between Nations in Relation to International Crop Trade. 2002. Available online: https://www.waterfootprint.org/resources/Report11.pdf? (accessed on 25 December 2025).
- Arrien, M.M.; Aldaya, M.M.; Rodriguez, C.I. Water Footprint and Virtual Water Trade of Maize in the Province of Buenos Aires, Argentina. Water 2021, 13, 1769. [Google Scholar] [CrossRef]
- Veliz, K.; Chico-Santamarta, L.; Ramirez, A.D. The Environmental Profile of Ecuadorian Export Banana: A Life Cycle Assessment. Foods 2022, 11, 3288. [Google Scholar] [CrossRef]
- Tendata. What Are the Main Agricultural Exports from Ecuador? 2024. Available online: https://www.tendata.com/blogs/export/5477.html (accessed on 13 October 2025).
- International Trade Administration. Ecuador Country Commercial Guide. 2025. Available online: https://www.trade.gov/country-commercial-guides/ecuador-agriculture (accessed on 13 October 2025).
- Vera, J.F.R.; Mera, Y.E.Z.; Pérez-Martín, M.Á. Adapting water resources systems to climate change in tropical areas: Ecuadorian coast. Sci. Total Environ. 2020, 703, 135554. [Google Scholar] [CrossRef] [PubMed]
- Boelens, R.A. The Rules of the Game and the Game of the Rules: Normalization and Resistance in Andean Water Control. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2008. Available online: https://www.researchgate.net/profile/Rutgerd-Boelens/publication/40099015_The_Rules_of_the_Game_and_the_Game_of_the_Rules_Normalization_and_Resistance_in_Andean_Water_Control/links/5f537633458515e96d2f08fd/The-Rules-of-the-Game-and-the-Game-of-the-Rules-Normalization-and-Resistance-in-Andean-Water-Control.pdf (accessed on 19 April 2025).
- FAO; INEC. Food and Agriculture Microdata Catalogue Ecuador—Annual Agricultural Area and Production Survey 2020. 2023. Available online: https://microdata.fao.org/index.php (accessed on 3 May 2025).
- Fang, K.; He, J.; Liu, Q.; Wang, S.; Geng, Y.; Heijungs, R.; Du, Y.; Yue, W.; Xu, A.; Fang, C. Water footprint of nations amplified by scarcity in the Belt and Road Initiative. Heliyon 2023, 9, e12957. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Dong, H.; Geng, Y.; Li, Z.; Liu, Z.; Fujita, T.; Ohnishi, S.; Fujii, M. Uncovering driving forces on urban metabolism—A case of Shenyang. J. Clean. Prod. 2016, 114, 171–179. [Google Scholar] [CrossRef]
- Meng, H.; Xing, L.; Hu, J.; Shen, C.; Zhang, H.; Wu, J. Exploring the characteristics and drivers of virtual cropland trade of major agricultural products in China. J. Clean. Prod. 2024, 448, 141392. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Khan, S.; Majeed, M.T. Drivers of Decoupling Economic Growth from Carbon Emission: Empirical Analysis of ASEAN Countries Using Decoupling and Decomposition Model. Pak. J. Commer. Soc. Sci. 2020, 14, 450–483. Available online: https://www.econstor.eu/handle/10419/222910 (accessed on 6 November 2025).
- Song, J.; Yin, Y.; Xu, H.; Wang, Y.; Wu, P.; Sun, S. Drivers of domestic grain virtual water flow: A study for China. Agric. Water Manag. 2020, 239, 106175. [Google Scholar] [CrossRef]
- Matovelle, C.; Mudarra, M.; Andreo, B. Efficiency analysis of irrigation ditches over different land uses in the Andean region of Ecuador: Implication for nature-based water management strategies. Environ. Earth Sci. 2025, 84, 107. [Google Scholar] [CrossRef]
- Flores, M.; Llambo, Á.; Loza, D.; Naya, S.; Tarrío-Saavedra, J. Predicting rainfall and irrigation requirements of corn in Ecuador. Heliyon 2023, 9, e18334. [Google Scholar] [CrossRef]
- Wikipedia. Ecuador. Wikipedia Fundation. 2025. Available online: https://es.wikipedia.org/wiki/Ecuador (accessed on 21 August 2025).
- Embassy of Ecuador in Washington, DC. Ecuador Facts and Geography. 2009. Available online: https://web.archive.org/web/20090327140334/http://www.ecuador.org/esp/datos_ecuador.htm (accessed on 21 August 2025).
- Wikipedia. Economy of Ecuador. 2025. Available online: https://en.wikipedia.org/wiki/Economy_of_Ecuador (accessed on 22 August 2025).
- Central Bank of Ecuador. The Ecuadorian Economy Reported an Annual Contraction of 2.0% in 2024. 2025. Available online: https://www.bce.fin.ec/en/the-ecuadorian-economy-reported-an-annual-contraction-of-2-0-in-2024/ (accessed on 22 August 2025).
- FAOSTAT. FAOSTAT Database. Food and Agriculture Organization of the United Nations. 2025. Available online: https://www.fao.org/faostat/en/#data/QI (accessed on 22 August 2025).
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- FAO. Crops and Livestock Products. 2025. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 21 October 2025).
- FAOSTAT. Ecuador’s Annual Population. 2025. Available online: https://www.fao.org/faostat/en/#data/OA (accessed on 21 October 2025).
- FAO. Ecuador’s Macro Indicators—GDP. 2025. Available online: https://www.fao.org/faostat/en/#data/MK (accessed on 21 October 2025).
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products Vol. 2. 2010. Available online: http://www.unesco-ihe.org/value-of-water-research-report-series (accessed on 26 August 2025).
- Quishpe-Vásquez, C.; Gámiz-Fortis, S.R.; García-Valdecasas-Ojeda, M.; Castro-Díez, Y.; Esteban-Parra, M.J. Tropical Pacific sea surface temperature influence on seasonal streamflow variability in Ecuador. Int. J. Climatol. 2019, 39, 3895–3914. [Google Scholar] [CrossRef]
- OEC. Banana in Ecuador. 2024. Available online: https://oec.world/en/profile/bilateral-product/bananas/reporter/ecu? (accessed on 23 October 2025).
- Molina, G. Diplomatic tensions between Ecuador and Russia Over Military Equipment Threaten Banana Exports. AP J. 2024. Available online: https://apnews.com/article/ecuador-russia-bananas-military-exports-diplomacy-1c8f21060450b22411af7b6c05e173a3 (accessed on 23 October 2025).
- FAO. Banana Market Review. 2023. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/cd3e1df8-6e70-461a-9963-9827ad69389f/content? (accessed on 23 October 2025).
- TrendEconomy. Annual International Trade Statistics by Country—Ecuador Import and Export. 2024. Available online: https://trendeconomy.com/data/h2/Ecuador/1801? (accessed on 23 October 2025).
- Ruff, S. Agricultural Progress in Ecuador, 1970–82. 1984. Available online: https://ageconsearch.umn.edu/record/147526/files/faer208.pdf (accessed on 16 September 2025).
- Toledo, L.; Salmoral, G.; Viteri-Salazar, O. Rethinking Agricultural Policy in Ecuador (1960–2020): Analysis Based on the Water–Energy–Food Security Nexus. Sustainability 2023, 15, 12850. [Google Scholar] [CrossRef]
- Fu, T.; Xu, C.; Huang, X. Analysis of Virtual Water Trade Flow and Driving Factors in the European Union. Water 2021, 13, 1771. [Google Scholar] [CrossRef]







| Input | Sources |
|---|---|
| Production, Export and Import data | FAO [45] |
| Virtual Water Use Crop Calculation | Author estimation |
| Net Virtual Water Crops Trade | Author estimation |
| Population | FAOSTAT [46] |
| Gross Domestic Product (GDP) | FAO [47] |
| Water Footprint | Hoekstra et al. [44,48] |
| Year | VWI | VWE | NVW |
|---|---|---|---|
| 2000 | 108,196,391 | 3,401,161,673 | −3,292,965,282 |
| 2001 | 127,673,606 | 3,457,238,759 | −3,329,565,153 |
| 2002 | 288,209,003 | 3,659,563,805 | −3,371,354,802 |
| 2003 | 274,138,860 | 4,144,380,269 | −3,870,241,409 |
| 2004 | 332,651,532 | 4,255,802,775 | −3,923,151,243 |
| 2005 | 367,840,151 | 4,567,693,626 | −4,199,853,475 |
| 2006 | 364,685,555 | 5,030,312,173 | −4,665,626,618 |
| 2007 | 390,792,998 | 4,752,125,444 | −4,361,332,446 |
| 2008 | 325,964,318 | 4,775,794,835 | −4,449,830,517 |
| 2009 | 301,695,050 | 6,490,708,581 | −6,189,013,531 |
| 2010 | 545,540,922 | 5,976,951,874 | −5,431,410,952 |
| 2011 | 635,763,715 | 7,624,906,937 | −6,989,143,222 |
| 2012 | 405,188,361 | 7,002,301,127 | −6,597,112,766 |
| 2013 | 241,879,733 | 8,074,294,851 | −7,832,415,118 |
| 2014 | 253,740,307.5 | 8,988,864,920 | −8,735,124,613 |
| 2015 | 131,145,119.7 | 10,391,094,557 | −10,259,949,437 |
| 2016 | 116,494,252.6 | 10,052,497,560 | −9,936,003,308 |
| 2017 | 133,935,493.2 | 12,196,456,104 | −12,062,520,611 |
| 2018 | 134,695,100.8 | 12,574,565,653 | −12,439,870,552 |
| 2019 | 99,506,829.31 | 11,835,531,143 | −11,736,024,314 |
| 2020 | 106,139,798.7 | 13,766,200,552 | −13,660,060,753 |
| 2021 | 128,173,482.1 | 13,616,199,280 | −13,488,025,797 |
| 2022 | 201,858,962.5 | 16,076,801,196 | −15,874,942,234 |
| 2023 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cuero Espinoza, E.I.; Adeyi, Q.; Odey, G.; Hwang, H.-S.; Choi, K.-S. Virtual Water and Agricultural Sustainability: Unraveling the Trade–Water Nexus in Ecuador’s Crop Sector Through Empirical Modeling. Water 2026, 18, 122. https://doi.org/10.3390/w18010122
Cuero Espinoza EI, Adeyi Q, Odey G, Hwang H-S, Choi K-S. Virtual Water and Agricultural Sustainability: Unraveling the Trade–Water Nexus in Ecuador’s Crop Sector Through Empirical Modeling. Water. 2026; 18(1):122. https://doi.org/10.3390/w18010122
Chicago/Turabian StyleCuero Espinoza, Eliana Ivanova, Qudus Adeyi, Golden Odey, Hwa-Seok Hwang, and Kyung-Sook Choi. 2026. "Virtual Water and Agricultural Sustainability: Unraveling the Trade–Water Nexus in Ecuador’s Crop Sector Through Empirical Modeling" Water 18, no. 1: 122. https://doi.org/10.3390/w18010122
APA StyleCuero Espinoza, E. I., Adeyi, Q., Odey, G., Hwang, H.-S., & Choi, K.-S. (2026). Virtual Water and Agricultural Sustainability: Unraveling the Trade–Water Nexus in Ecuador’s Crop Sector Through Empirical Modeling. Water, 18(1), 122. https://doi.org/10.3390/w18010122

