The Application of an Infrared-Based ECG Acquisitor in an Online Healthy Assessment System: The Effect of Temperature on Cardiac Function in Carp (Cyprinus carpio)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Husbandry
2.2. Experimental Setup
2.3. Assessment of Physiological Parameters in Cyprinus carpio
2.4. Statistical Analysis
3. Results
3.1. Effects of Temperature on ECG Index of Cyprinus carpio
3.2. SOM Profiles
3.3. Pearson Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearson, H. The rise of eco-anxiety: Scientists wake up to the mental-health toll of climate change. Nature 2024, 628, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Glass, M.L.; Wood, S.C. Cardio-Respiratory Control in Vertebrates; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Gradil, K.J.; Garner, S.R.; Wilson, C.C.; Farrell, A.P.; Neff, B.D. Relationship between cardiac performance and environment across populations of Atlantic salmon (Salmo salar): A common garden experiment implicates local adaptation. Evol. Ecol. 2016, 30, 877–886. [Google Scholar] [CrossRef]
- Kraskura, K.; Hardison, E.A.; Eliason, E.J. Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Sci. Clentific Rep. 2023, 13, 17900. [Google Scholar] [CrossRef] [PubMed]
- Anttila, K.; Casselman, M.T.; Schulte, P.M.; Farrell, A.P. Optimum Temperature in Juvenile Salmonids: Connecting Subcellular Indicators to Tissue Function and Whole-Organism Thermal Optimum. Physiol. Biochem. Zoolocgy 2013, 86, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Eliason, E.J.; Clark, T.D.; Hinch, S.G.; Farrell, A.P. Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon. Conserv. Physiol. 2013, 1, cot008. [Google Scholar] [CrossRef]
- Steinhausen, M.F.; Sandblom, E.; Eliason, E.J.; Verhille, C.; Farrell, A.P. The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka). J. Exp. Biol. 2008, 211, 3915–3926. [Google Scholar] [CrossRef]
- Haixiu, W. Study on the Ecological Flow of Coreius Pawning During the Integrated Water Temperature and High Flow Pulse Process; Changjiang River Scientific Research Institute: Wuhan, China, 2020. [Google Scholar]
- Schwieterman, G.D.; Hardison, E.A.; Cox, G.K.; Van Wert, J.C.; Birnie-Gauvin, K.; Eliason, E.J. Mechanisms of cardiac collapse at high temperature in a marine teleost (Girella nigrians). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2023, 286, 111512. [Google Scholar] [CrossRef]
- Casselman, M.T.; Anttila, K.; Farrell, A.P. Using maximum heart rate as a rapid screening tool to determine optimum temperature for aerobic scope in Pacific salmon Oncorhynchus spp. J. Fish Biol. 2012, 80, 358–377. [Google Scholar] [CrossRef]
- Barry, H.; Iglesies-Grau, J.; Chaseling, G.K.; Paul, J.; Gosselin, C.; D’Oliviera-Sousa, C.; Juneau, M.; Harel, F.; Kaiser, D.; Pelletier-Galarneau, M.; et al. The Effect of Heat Exposure on Myocardial Blood Flow and Cardiovascular Function. Ann. Intern. Med. 2024, 177, 901–910. [Google Scholar] [CrossRef]
- Guo, J.; Xue, T.; Cao, M.; Han, X.Y.; Pan, Z.Y.; Huang, D.M.; Sun, W.; Mi, J.R.; Liu, Y.L.; Guan, T.J. Ambient temperature anomalies induce electrocardiogram abnormalities: Findings from a nationwide longitudinal study. Environ. Res. 2024, 246, 117996. [Google Scholar] [CrossRef]
- Svendsen, E.; Okland, F.; Fore, M.; Randeberg, L.L.; Finstad, B.; Olsen, R.E.; Alfredsen, J.A. Optical measurement of tissue perfusion changes as an alternative to electrocardiography for heart rate monitoring in Atlantic salmon (Salmo salar). Anim. Biotelemetry 2021, 9, 41. [Google Scholar] [CrossRef]
- Yousaf, M.N.; Ron, O.; Hagen, P.P.; McGurk, C. Monitoring fish welfare using heart rate bio-loggers in farmed Atlantic salmon (Salmo salar L.): An insight into the surgical recovery. Aquaculture 2022, 555, 738211. [Google Scholar] [CrossRef]
- Brijs, J.; Sandblom, E.; Axelsson, M.; Sundell, K.; Sundh, H.; Huyben, D.; Broström, R.; Kiessling, A.; Berg, C.; Gräns, A. The final countdown: Continuous physiological welfare evaluation of farmed fish during common aquaculture practices before and during harvest. Aquaculture 2018, 495, 903–911. [Google Scholar] [CrossRef]
- Lonthair, J.; Ern, R.; Esbaugh, A.J. The early life stages of an estuarine fish, the red drum (Sciaenops ocellatus), are tolerant to high pCO2. Ices J. Mar. Sci. 2017, 74, 1042–1050. [Google Scholar] [CrossRef]
- Campbell, H.A.; Egginton, S. The vagus nerve mediates cardio-respiratory coupling that changes with metabolic demand in a temperate nototheniod fish. J. Exp. Biol. 2007, 210, 2472–2480. [Google Scholar] [CrossRef]
- Lefrançois, C.; Claireaux, G. Influence of ambient oxygenation and temperature on metabolic scope and scope for heart rate in the common sole Solea solea. Mar. Ecol. Prog. Ser. 2003, 259, 273–284. [Google Scholar] [CrossRef]
- Selye, H. The Evolution of the Stress Concept: The originator of the concept traces its development from the discovery in 1936 of the alarm reaction to modern therapeutic applications of syntoxic and catatoxic hormones. Am. Sci. 1973, 61, 692–699. [Google Scholar] [PubMed]
- Wei, D.X. Studies on the Effects of Different Pollutants on ECG of Cyprinus Carpio. Master’s Thesis, Shandong Normal University, Jinan, China, 2024. [Google Scholar]
- Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 2011, 91, 279–288. [Google Scholar] [CrossRef]
- Shen, Y.; Arablouei, R.; Hoog, F.d.; Malan, J.; Sharp, J.; Shouri, S.; Clark, T.D.; Lefevre, C.; Kroon, F.; Severati, A.; et al. Estimating Heart Rate and Detecting Feeding Events of Fish Using an Implantable Biologger. In Proceedings of the 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Sydney, NSW, Australia, 21–24 April 2020; pp. 37–48. [Google Scholar]
- Svendsen, E.; Føre, M.; Randeberg, L.L.; Olsen, R.E.; Finstad, B.; Remen, M.; Bloecher, N.; Alfredsen, J.A. ECG augmented pulse oximetry in Atlantic salmon (Salmo salar)—A pilot study. Comput. Electron. Agric. 2023, 212, 108081. [Google Scholar] [CrossRef]
- Le, T.; Zhang, J.; Nguyen, A.H.; Torres, R.S.T.; Vo, K.; Dutt, N.; Lee, J.; Ding, Y.H.; Xu, X.L.; Lau, M.P.H.; et al. A novel wireless ECG system for prolonged monitoring of multiple zebrafish for heart disease and drug screening studies. Biosens. Bioelectron. 2022, 197, 113808. [Google Scholar] [CrossRef]
- Deng, Y.C.; Hu, T.Y.; Chen, J.; Zeng, J.J.; Yang, J.Q.; Ke, Q.Z.; Miao, L.W.; Chen, Y.J.; Li, R.; Zhang, R.X.; et al. Non-invasive methods for heart rate measurement in fish based on photoplethysmography. J. Exp. Biol. 2024, 227, jeb246464. [Google Scholar] [CrossRef] [PubMed]
- Rabosky, D.L. Speciation rate and the diversity of fishes in freshwaters and the oceans. J. Biogeogr. 2020, 47, 1207–1217. [Google Scholar] [CrossRef]
- Winton, J.R. Fish health management. In Fish Hatchery Management, 2nd ed.; American Fisheries Society: Bethesda, MD, USA, 2001; pp. 559–640. [Google Scholar]
- Li, Y.; Chen, K.; Gui, B.; Yang, C.; He, L.; Liao, L.; Zhu, Z.; Wang, Y.; Huang, R. Effect of long-term temperature-controlled rearing on growth traits and sexual maturity of common carp (Cyprinus carpio). Aquaculture 2024, 593, 741271. [Google Scholar] [CrossRef]
- Ren, B. The Effect of Pollutants on the Behavior and Electrocardiogram of Some Cyprinidae Fishes. Master’s Thesis, Shandong Normal University, Jinan, China, 2021. [Google Scholar]
- Wang, B.; Ma, G.X.; Liu, Y.; Wang, Y.F.; Du, X.X.; Shi, Q.; Mao, H.P. Effects of Different Temperatures on the Antibacterial, Immune and Growth Performance of Crucian Carp Epidermal Mucus. Fishes 2021, 6, 66. [Google Scholar] [CrossRef]
- Wei, D.X.; Wang, L.; Poopal, R.K.; Ren, Z.M. IR-based device to acquire real-time online heart ECG signals of fish (Cyprinus carpio) to evaluate the water quality*. Environ. Pollut. 2023, 337. [Google Scholar] [CrossRef]
- Ren, B.X.; Yu, Y.X.; Poopal, R.K.; Qiao, L.L.; Ren, B.C.; Ren, Z.M. IR-Based Novel Device for Real-Time Online Acquisition of Fish Heart ECG Signals. Environ. Sci. Technol. 2022, 56, 4262–4271. [Google Scholar] [CrossRef]
- Anderson, W.G.; Booth, R.; Beddow, T.A.; McKinley, R.S.; Finstad, B.; Okland, F.; Scruton, D. Remote monitoring of heart rate as a measure of recovery in angled Atlantic salmon, Salmo salar (L.). Hydrobiologia 1998, 372, 233–240. [Google Scholar] [CrossRef]
- Nofrizal; Yanase, K.; Arimoto, T. Effect of temperature on the swimming endurance and post-exercise recovery of jack mackerel Trachurus japonicus as determined by ECG monitoring. Fish. Sci. 2009, 75, 1369–1375. [Google Scholar] [CrossRef]
- Nofrizal, N.; Arimoto, T. ECG monitoring on swimming endurance and heart rate of jack mackerel Trachurus japonicus during repeated exercise. Asian Fish. Sci. 2011, 20, 78–87. [Google Scholar]
- Riyanto, M.; Arimoto, T. Temperature effect on heart rate of jack mackerel Trachurus japonicus during swimming exercise. Fish. Sci. 2014, 80, 1241–1248. [Google Scholar] [CrossRef]
- Kwon, I.; Kim, T. Monitoring the effect of water temperature on the heart rate of olive flounder (Paralichthys olivaceus) using a bio-logger. Aquaculture 2023, 575, 739739. [Google Scholar] [CrossRef]
- Vornanen, M. The temperature dependence of electrical excitability in fish hearts. J. Exp. Biol. 2016, 219, 1941–1952. [Google Scholar] [CrossRef] [PubMed]
- Ballesta, S.; Hanson, L.M.; Farrell, A.P. The effect of adrenaline on the temperature dependency of cardiac action potentials in pink salmon Oncorhynchus gorbuscha. J. Fish Biol. 2012, 80, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Hachim, M.; Rouyer, T.; Dutto, G.; Kerzerho, V.; Bernard, S.; Bourjea, J.; McKenzie, D.J. Oxygen uptake, heart rate and activities of locomotor muscles during a critical swimming speed protocol in the gilthead sea bream Sparus aurata. J. Fish Biol. 2021, 98, 886–890. [Google Scholar] [CrossRef]
- Kalinin, A.L.; Costa, M.J.; Rantin, F.T.; Glass, M.L. Effects of temperature on cardiac function in teleost fish. In Cardio-Respiratory Control in Vertebrates; Springer: Berlin/Heidelberg, Germany, 2009; pp. 121–160. [Google Scholar] [CrossRef]
- Haverinen, J.; Vornanen, M. Reduced ventricular excitability causes atrioventricular block and depression of heart rate in fish at critically high temperatures. J. Exp. Biol. 2020, 223, jeb225227. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, P.C.; Gamperl, A.K. The effects of acute changes in temperature and oxygen availability on cardiac performance in winter flounder (Pseudopleuronectes americanus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 155, 245–252. [Google Scholar] [CrossRef]
- Morita, A.; Tsukuda, H. The effect of thermal acclimation on the electrocardiogram of goldfish. J. Therm. Biol. 1994, 19, 343–348. [Google Scholar] [CrossRef]
- Halsey, L.G.; Green, J.A.; Twiss, S.D.; Arnold, W.; Burthe, S.J.; Butler, P.J.; Cooke, S.J.; Grémillet, D.; Ruf, T.; Hicks, O. Flexibility, variability and constraint in energy management patterns across vertebrate taxa revealed by long-term heart rate measurements. Funct. Ecol. 2019, 33, 260–272. [Google Scholar] [CrossRef]
- Wascher, C.A.F.; Kotrschal, K.; Arnold, W. Free-living greylag geese adjust their heart rates and body core temperatures to season and reproductive context. Sci. Rep. 2018, 8, 2142. [Google Scholar] [CrossRef]
- Berezowski, J.; Rüegg, S.R.; Faverjon, C. Complex system approaches for animal health surveillance. Front. Vet. Sci. 2019, 6, 153. [Google Scholar] [CrossRef]
- Bartlett, P.C.; Van Buren, J.W.; Neterer, M.; Zhou, C. Disease surveillance and referral bias in the veterinary medical database. Prev. Vet. Med. 2010, 94, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Wascher, C.A.F. Heart rate as a measure of emotional arousal in evolutionary biology. Philos. Trans. R. Soc. B 2021, 376, 20200479. [Google Scholar] [CrossRef] [PubMed]
- Little, A.G.; Loughland, I.; Seebacher, F. What do warming waters mean for fish physiology and fisheries? J. Fish Biol. 2020, 97, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.D.; Schneider, R.C.; Liggins, G.C.; Schuette, A.H.; Elliott, R.L.; Guppy, M.; Hochachka, P.W.; Qvist, J.; Falke, K.J.; Zapol, W.M. Heart-Rate and Body-Temperature during free diving of weddell seals. Am. J. Physiol. 1987, 253, R344–R351. [Google Scholar] [CrossRef]
- Arel, E.; Rolland, L.; Thireau, J.; Torrente, A.G.; Bechard, E.; Bride, J.; Jopling, C.; Demion, M.; Le Guennec, J.-Y. The effect of hypothermia and osmotic shock on the electrocardiogram of adult zebrafish. Biology 2022, 11, 603. [Google Scholar] [CrossRef]
- Le, T.; Lenning, M.; Clark, I.; Bhimani, I.; Fortunato, J.; Marsh, P.; Xu, X.L.; Cao, H. Acquisition, Processing and Analysis of Electrocardiogram in Awake Zebrafish. IEEE Sens. J. 2019, 19, 4283–4289. [Google Scholar] [CrossRef]
Heart Rate | P | R | T | PR | QRS | QT | ||
---|---|---|---|---|---|---|---|---|
Temperature | r | 0.844 | 0.088 | 0.286 | 0.31 | −0.860 | −0.302 | −0.375 |
p | 0.001 ** | 0.785 | 0.368 | 0.326 | <0.001 *** | 0.34 | 0.23 |
Species | Temperature (°C) | Heart Rate (Beats/min) | Reference |
---|---|---|---|
Salmo salar | 8 ± 1 | 40 ± 0.28 | [33] |
16.5 ± 1 | 66.9 ± 0.5 | ||
20 ± 2 | 72.3 ± 0.4 | ||
Trachurus japonicus | 10 | 25.3 ± 5.7 | [34] |
15 | 38.9 ± 11.1 | ||
22 | 67.2 ± 13.2 | ||
Trachurus japonicus | 15 | 38.3 ± 10.3 | [35] |
22 | 56.5 ± 13.1 | ||
Trachurus japonicus | 10 | 36.5 ± 7.7 | [36] |
15 | 56.1 ± 9.3 | ||
22 | 75.2 ± 9.3 | ||
Paralichthys olivaceus | 15 | 35 ± 8.70 | [37] |
25 | 59 ± 20.99 | ||
Cyprinus carpio | 18 | 30 ± 3.07 | Present study |
22 | 44 ± 4.65 | ||
26 | 56 ± 7.39 | ||
30 | 60 ± 2.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Ren, Z. The Application of an Infrared-Based ECG Acquisitor in an Online Healthy Assessment System: The Effect of Temperature on Cardiac Function in Carp (Cyprinus carpio). Water 2025, 17, 1387. https://doi.org/10.3390/w17091387
Yu M, Ren Z. The Application of an Infrared-Based ECG Acquisitor in an Online Healthy Assessment System: The Effect of Temperature on Cardiac Function in Carp (Cyprinus carpio). Water. 2025; 17(9):1387. https://doi.org/10.3390/w17091387
Chicago/Turabian StyleYu, Miao, and Zongming Ren. 2025. "The Application of an Infrared-Based ECG Acquisitor in an Online Healthy Assessment System: The Effect of Temperature on Cardiac Function in Carp (Cyprinus carpio)" Water 17, no. 9: 1387. https://doi.org/10.3390/w17091387
APA StyleYu, M., & Ren, Z. (2025). The Application of an Infrared-Based ECG Acquisitor in an Online Healthy Assessment System: The Effect of Temperature on Cardiac Function in Carp (Cyprinus carpio). Water, 17(9), 1387. https://doi.org/10.3390/w17091387