Comparative Analysis of Nonlinear Models from Different Domains: A Case Study on the Quality of Groundwater in an Alluvial Aquifer in Northwestern Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Experimental Data
2.3. Nonlinear Models
Domain: | ||
Domain: |
Domain: | ||
Domain: |
3. Results
3.1. Increasing Monothonic Models (Nitrate Concentration Vs. Pumping Rate)
3.2. Decreasing Monothonic Models (Nitrate Concentration Vs. Distance)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Luca Peña, L.V.; Taelman, S.E.; Préat, N.; Boone, L.; Van der Biest, K.; Custódio, M.; Hernandez Lucas, S.; Everaert, G.; Dewulf, J. Towards a Comprehensive Sustainability Methodology to Assess Anthropogenic Impacts on Ecosystems: Review of the Integration of Life Cycle Assessment, Environmental Risk Assessment and Ecosystem Services Assessment. Sci. Total Environ. 2022, 808, 152125. [Google Scholar] [CrossRef] [PubMed]
- Amundson, K.K.; Borton, M.A.; Wilkins, M.J. Anthropogenic Impacts on the Terrestrial Subsurface Biosphere. Nat. Rev. Microbiol. 2025, 23, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of Anthropogenic Impacts on Global Drought Frequency, Duration, and Intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar] [CrossRef]
- Jain, D.; Bhatnagar, S.; Sachdeva, K. Impact of Degrading Air Quality on Mode Choice and Emissions—Study of Ten Global Cities. World Dev. Sustain. 2022, 1, 100002. [Google Scholar] [CrossRef]
- You, G. A Comprehensive Approach for Calibrating Anthropogenic Effects on Atmosphere Degradation. Renew. Sustain. Energy Rev. 2024, 191, 114226. [Google Scholar] [CrossRef]
- Vigiak, O.; Udias, A.; Pistocchi, A.; Zanni, M.; Aloe, A.; Grizzetti, B. Probability Maps of Anthropogenic Impacts Affecting Ecological Status in European Rivers. Ecol. Indic. 2021, 126, 107684. [Google Scholar] [CrossRef]
- Bonisławska, M.; Nędzarek, A.; Rybczyk, A.; Tański, A. The Influence of Anthropogenic Pollution on the Physicochemical Conditions of the Waters of the Lower Section of the Sąpólna River. Water 2023, 16, 35. [Google Scholar] [CrossRef]
- Dusaucy, J.; Gateuille, D.; Perrette, Y.; Naffrechoux, E. Microplastic Pollution of Worldwide Lakes. Environ. Pollut. 2021, 284, 117075. [Google Scholar] [CrossRef]
- Alava, J.J.; McMullen, K.; Jones, J.; Barragán-Paladines, M.J.; Hobbs, C.; Tirapé, A.; Calle, P.; Alarcón, D.; Muñoz-Pérez, J.P.; Muñoz-Abril, L.; et al. Multiple Anthropogenic Stressors in the Galápagos Islands’ Complex Social–Ecological System: Interactions of Marine Pollution, Fishing Pressure, and Climate Change with Management Recommendations. Integr. Environ. Assess. Manag. 2023, 19, 870–895. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global Soil Pollution by Toxic Elements: Current Status and Future Perspectives on the Risk Assessment and Remediation Strategies—A Review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- Jadeja, N.B.; Banerji, T.; Kapley, A.; Kumar, R. Water Pollution in India—Current Scenario. Water Secur. 2022, 16, 100119. [Google Scholar] [CrossRef]
- Kranjcevic, L.; Srajbek, M.; Grbcic, L.; Carija, Z. Analysis of Well Field Nitrates Pollution Distribution in Agricultural Area. In Proceedings of the 29th International DAAAM Symposium “Intelligent Manufacturing & Automation”, Zadar, Croatia, 24–27 October 2018; pp. 1053–1058. [Google Scholar]
- van der Gun, J. Groundwater Resources Sustainability. In Global Groundwater; Elsevier: Amsterdam, The Netherlands, 2021; pp. 331–345. [Google Scholar]
- Zhang, Y.; Yan, Y.; Yao, R.; Wei, D.; Huang, X.; Luo, M.; Wei, C.; Chen, S.; Yang, C. Natural Background Levels, Source Apportionment and Health Risks of Potentially Toxic Elements in Groundwater of Highly Urbanized Area. Sci. Total Environ. 2024, 935, 173276. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wang, L.; Chai, N.; Liu, T.; Jin, Z.; Rinklebe, J. Groundwater Hydrochemistry, Source Identification and Pollution Assessment in Intensive Industrial Areas, Eastern Chinese Loess Plateau. Environ. Pollut. 2021, 278, 116930. [Google Scholar] [CrossRef]
- Kou, X.; Ding, J.; Li, Y.; Li, Q.; Mao, L.; Xu, C.; Zheng, Q.; Zhuang, S. Tracing Nitrate Sources in the Groundwater of an Intensive Agricultural Region. Agric. Water Manag. 2021, 250, 106826. [Google Scholar] [CrossRef]
- Cabrera, A.; Cendón, D.I.; Aparicio, V.; Currell, M.J. Intensive Agriculture, a Pesticide Pathway to >100 m Deep Groundwater below Dryland Agriculture, Cordoba Pampas, Argentina. J. Hydrol. 2024, 643, 131989. [Google Scholar] [CrossRef]
- Uliasz-Misiak, B.; Winid, B.; Lewandowska-Śmierzchalska, J.; Matuła, R. Impact of Road Transport on Groundwater Quality. Sci. Total Environ. 2022, 824, 153804. [Google Scholar] [CrossRef]
- Bijay-Singh; Craswell, E. Fertilizers and Nitrate Pollution of Surface and Ground Water: An Increasingly Pervasive Global Problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global Diagnosis of Nitrate Pollution in Groundwater and Review of Removal Technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xie, X.; Hou, Q.; Han, D.; Song, J.; Huang, G. Spatial Distribution, Sources, and Human Health Risk Assessment of Elevated Nitrate Levels in Groundwater of an Agriculture-Dominant Coastal Area in Hainan Island, China. J. Hydrol. 2024, 634, 131088. [Google Scholar] [CrossRef]
- Fossen Johnson, S. Methemoglobinemia: Infants at Risk. Curr. Probl. Pediatr. Adolesc. Health Care 2019, 49, 57–67. [Google Scholar] [CrossRef]
- Costa Santos, R.; Aguilar da Silva, R.; Moreira dos Santos, M.; Botelho Bovo, A.; Furtado da Silva, A. Assessing Nitrate Contamination in Groundwater for Public Supply: A Study in a Small Brazilian Town. Groundw. Sustain. Dev. 2024, 25, 101084. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future Global Urban Water Scarcity and Potential Solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Bouziotas, D.; Rozos, E.; Makropoulos, C. Water and the City: Exploring Links between Urban Growth and Water Demand Management. J. Hydroinformatics 2015, 17, 176–192. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Cai, X. Global Water Demand and Supply Projections. Water Int. 2002, 27, 170–182. [Google Scholar] [CrossRef]
- Kamra, S.K.; Lal, K.; Singh, O.P.; Boonstra, J. Effect of Pumping on Temporal Changes in Groundwater Quality. Agric. Water Manag. 2002, 56, 169–178. [Google Scholar] [CrossRef]
- Gӧdeke, S.H.; Malik, O.A.; Lai, D.T.C.; Bretzler, A.; Schirmer, M.; Mansor, N.H. Water Quality Investigation in Brunei Darussalam: Investigation of the Influence of Climate Change. Environ. Earth Sci. 2020, 79, 419. [Google Scholar] [CrossRef]
- Changming, L.; Jingjie, Y.; Kendy, E. Groundwater Exploitation and Its Impact on the Environment in the North China Plain. Water Int. 2001, 26, 265–272. [Google Scholar] [CrossRef]
- Costall, A.R.; Harris, B.D.; Teo, B.; Schaa, R.; Wagner, F.M.; Pigois, J.P. Groundwater Throughflow and Seawater Intrusion in High Quality Coastal Aquifers. Sci. Rep. 2020, 10, 9866. [Google Scholar] [CrossRef]
- Sappa, G.; Iacurto, S.; Ferranti, F.; De Filippi, F.M. Groundwater Quality Assessment in a Karst Coastal Region of the West Aurunci Mountains (Central Italy). Geofluids 2019, 2019, 3261713. [Google Scholar] [CrossRef]
- Lovrinović, I.; Bergamasco, A.; Srzić, V.; Cavallina, C.; Holjević, D.; Donnici, S.; Erceg, J.; Zaggia, L.; Tosi, L. Groundwater Monitoring Systems to Understand Sea Water Intrusion Dynamics in the Mediterranean: The Neretva Valley and the Southern Venice Coastal Aquifers Case Studies. Water 2021, 13, 561. [Google Scholar] [CrossRef]
- Gomaa, S.M.; Hassan, T.M.; Helal, E. Assessment of Seawater Intrusion under Different Pumping Scenarios in Moghra Aquifer, Egypt. Sci. Total Environ. 2021, 781, 146710. [Google Scholar] [CrossRef]
- Ha, K.; Lee, E.; An, H.; Kim, S.; Park, C.; Kim, G.-B.; Ko, K.-S. Evaluation of Seasonal Groundwater Quality Changes Associated with Groundwater Pumping and Level Fluctuations in an Agricultural Area, Korea. Water 2020, 13, 51. [Google Scholar] [CrossRef]
- Dennehy, K.F.; Litke, D.W.; McMahon, P.B. The High Plains Aquifer, USA: Groundwater Development and Sustainability. Geol. Soc. Lond. Spec. Publ. 2002, 193, 99–119. [Google Scholar] [CrossRef]
- Lim, J.-W.; Bae, G.-O.; Lee, K.-K. Groundwater Vulnerability Assessment by Determining Maximum Contaminant Loading Limit in the Vicinity of Pumping Wells. Geosci. J. 2009, 13, 79–85. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N.; Castaldelli, G.; Jovanovic, N. Monitoring and Modeling Nitrate Persistence in a Shallow Aquifer. Water Air Soil Pollut. 2011, 217, 83–93. [Google Scholar] [CrossRef]
- Baba, A.; Tayfur, G. Groundwater Contamination and Its Effect on Health in Turkey. Environ. Monit. Assess. 2011, 183, 77–94. [Google Scholar] [CrossRef]
- Nemčić-Jurec, J.; Konjačić, M.; Jazbec, A. Monitoring of Nitrates in Drinking Water from Agricultural and Residential Areas of Podravina and Prigorje (Croatia). Environ. Monit. Assess. 2013, 185, 9509–9520. [Google Scholar] [CrossRef]
- Debele, B.; Srinivasan, R.; Parlange, J.-Y. Coupling Upland Watershed and Downstream Waterbody Hydrodynamic and Water Quality Models (SWAT and CE-QUAL-W2) for Better Water Resources Management in Complex River Basins. Environ. Model. Assess. 2008, 13, 135–153. [Google Scholar] [CrossRef]
- Arabgol, R.; Sartaj, M.; Asghari, K. Predicting Nitrate Concentration and Its Spatial Distribution in Groundwater Resources Using Support Vector Machines (SVMs) Model. Environ. Model. Assess. 2016, 21, 71–82. [Google Scholar] [CrossRef]
- Abdullah, S.; Ismail, M.; Ahmed, A.N.; Abdullah, A.M. Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support. Atmosphere 2019, 10, 667. [Google Scholar] [CrossRef]
- Rovira, J.; Paredes-Ahumada, J.A.; Barceló-Ordinas, J.M.; García-Vidal, J.; Reche, C.; Sola, Y.; Fung, P.L.; Petäjä, T.; Hussein, T.; Viana, M. Non-Linear Models for Black Carbon Exposure Modelling Using Air Pollution Datasets. Environ. Res. 2022, 212, 113269. [Google Scholar] [CrossRef] [PubMed]
- Tompić, T.; Dobša, J.; Legen, S.; Tompić, N.; Medić, H. Modeling the Growth Pattern of In-Season and off-Season Ross 308 Broiler Breeder Flocks. Poult. Sci. 2011, 90, 2879–2887. [Google Scholar] [CrossRef]
- Wojnarowska, A.; Pałka, S.; Otwinowska-Mindur, A.; Ptak, E. Comparison of Two Non-Linear Functions Describing the Growth of Popielno White and New Zealand White Rabbits. Anim. Sci. Genet. 2022, 18, 7. [Google Scholar] [CrossRef]
- Eberhardt, L.L.; Breiwick, J.M. Models for Population Growth Curves. ISRN Ecol. 2012, 2012, 815016. [Google Scholar] [CrossRef]
- Rammig, A.; Bebi, P.; Bugmann, H.; Fahse, L. Adapting a Growth Equation to Model Tree Regeneration in Mountain Forests. Eur. J. For. Res. 2006, 126, 49–57. [Google Scholar] [CrossRef]
- Cole, T.J.; Pan, H.; Butler, G.E. A Mixed Effects Model to Estimate Timing and Intensity of Pubertal Growth from Height and Secondary Sexual Characteristics. Ann. Hum. Biol. 2014, 41, 76–83. [Google Scholar] [CrossRef]
- Asadi, M.; Di Crescenzo, A.; Sajadi, F.A.; Spina, S. A Generalized Gompertz Growth Model with Applications and Related Birth-Death Processes. Ric. Mat. 2023, 72, 1–36. [Google Scholar] [CrossRef]
- Dobša, J.; Kovač, I. Nonlinear Growth Models for Modelling Time Series of Groundwater Nitrate Concentrations. Environ. Model. Assess. 2018, 23, 175–184. [Google Scholar] [CrossRef]
- Madani, A.; Hagage, M.; Elbeih, S.F. Random Forest and Logistic Regression Algorithms for Prediction of Groundwater Contamination Using Ammonia Concentration. Arab. J. Geosci. 2022, 15, 1619. [Google Scholar] [CrossRef]
- Srajbek, M.; Kovac, I.; Novotni-Horcicka, N.; Kranjcevic, L. Assessment of average contributions of point and diffuse pollution sources to nitrate concentration in groundwater by nonlinear regression. Environ. Eng. Manag. J. 2020, 19, 95–104. [Google Scholar] [CrossRef]
- Kovač, I.; Šrajbek, M.; Kranjčević, L.; Novotni-Horčička, N. Nonlinear Models of the Dependence of Nitrate Concentrations on the Pumping Rate of a Water Supply System. Geosci. J. 2020, 24, 585–595. [Google Scholar] [CrossRef]
- Kovač, I.; Šrajbek, M.; Klišanin, N.; Gilja, G. Analysis of the Distance between the Measured and Assumed Location of a Point Source of Pollution in Groundwater as a Function of the Variance of the Estimation Error. Hydrology 2023, 10, 199. [Google Scholar] [CrossRef]
- Šrajbek, M.; Kranjčević, L.; Kovač, I.; Biondić, R. Groundwater Nitrate Pollution Sources Assessment for Contaminated Wellfield. Water 2022, 14, 255. [Google Scholar] [CrossRef]
- Novotni-Horčička, N.; Šrajbek, M.; Kovač, I. Nitrati u Regionalnom Vodovodu Varaždin (Nitrates in the Regional Water Supply System Varaždin). In Proceedings of the Voda i Javna Vodoopskrba, Krk, Croatia, 4–7 October 2010; Hrvatski Zavod za Javno Zdravstvo (HZJZ): Zagreb, Croatia, 2010; pp. 123–131. [Google Scholar]
- Urumović, K. O Kvartnom Vodonosnom Kopleksu u Području Varaždina. Geološki Vjesn. 1971, 43, 109–118. [Google Scholar]
- Kovač, I.; Kovačev-Marinčić, B.; Novotni-Horčička, N.; Mesec, J.; Vugrinec, J. Komparativna Analiza Koncentracije Nitrata u Gornjem i Donjem Sloju Varaždinskog Vodonosnika. Rad. Zavoda Znan. Varaždin 2017, 28, 41–57. [Google Scholar] [CrossRef]
- Larva, O.; Brkić, Ž.; Marković, T. Vulnerability and Risk of Contamination of the Varaždin Aquifer System, NW Croatia. Sustainability 2023, 15, 16502. [Google Scholar] [CrossRef]
- González-Tello, P.; Camacho, F.; Vicaria, J.M.; González, P.A. A Modified Nukiyama–Tanasawa Distribution Function and a Rosin–Rammler Model for the Particle-Size-Distribution Analysis. Powder Technol. 2008, 186, 278–281. [Google Scholar] [CrossRef]
- Goutelle, S.; Maurin, M.; Rougier, F.; Barbaut, X.; Bourguignon, L.; Ducher, M.; Maire, P. The Hill Equation: A Review of Its Capabilities in Pharmacological Modelling. Fundam. Clin. Pharmacol. 2008, 22, 633–648. [Google Scholar] [CrossRef]
- Srinivasan, B. A Guide to the Michaelis–Menten Equation: Steady State and Beyond. FEBS J. 2022, 289, 6086–6098. [Google Scholar] [CrossRef]
- Frazar, S.; Gold, A.J.; Addy, K.; Moatar, F.; Birgand, F.; Schroth, A.W.; Kellogg, D.Q.; Pradhanang, S.M. Contrasting Behavior of Nitrate and Phosphate Flux from High Flow Events on Small Agricultural and Urban Watersheds. Biogeochemistry 2019, 145, 141–160. [Google Scholar] [CrossRef]
- Buškulić, P.; Kovač, Z.; Matiatos, I.; Parlov, J. Tracing Nitrate Contamination Sources and Dynamics in an Unconfined Alluvial Aquifer System (Velika Gorica Well Field, Croatia). Environ. Sci. Process. Impacts 2025, 27, 154–171. [Google Scholar] [CrossRef] [PubMed]
- Buškulić, P.; Parlov, J.; Kovač, Z.; Brenko, T.; Pejić, M. Determination of Nitrate Migration and Distribution through Eutric Cambisols in an Area without Anthropogenic Sources of Nitrate (Velika Gorica Well Field, Croatia). Sustainability 2023, 15, 16529. [Google Scholar] [CrossRef]
- Karlović, I.; Posavec, K.; Larva, O.; Marković, T. Numerical Groundwater Flow and Nitrate Transport Assessment in Alluvial Aquifer of Varaždin Region, NW Croatia. J. Hydrol. Reg. Stud. 2022, 41, 101084. [Google Scholar] [CrossRef]
- Michaelis, M.; Menten, M.L. Die Kinetik Der Invertinwirkung. Biochem. Z. 1913, 49, 333–369. [Google Scholar]
- Hill, A.V. The Possible Effects of The Aggregation of The Molecules of Haemoglobin on Its Dissociation Curves. J. Physiol. 1910, 40, 4–7. [Google Scholar]
- Rosin, P.; Rammler, E. The Law Governing the Fineness of Powdered Coal. J. Inst. Fuel 1933, 7, 109–122. [Google Scholar]
- Gödeke, S.; Vogt, C.; Schirmer, M. Estimation of Kinetic Monod Parameters for Anaerobic Degradation of Benzene in Groundwater. Environ. Geol. 2008, 55, 423–431. [Google Scholar] [CrossRef]
- Fryar, A.E. Fundamentals of Ground Water: (Franklin, W. Schwartz and Hubao Zhang). Environ. Eng. Geosci. 2005, 11, 285–286. [Google Scholar] [CrossRef]
- Rama, F.; Busico, G.; Arumi, J.L.; Kazakis, N.; Colombani, N.; Marfella, L.; Hirata, R.; Kruse, E.E.; Sweeney, P.; Mastrocicco, M. Assessment of Intrinsic Aquifer Vulnerability at Continental Scale through a Critical Application of the Drastic Framework: The Case of South America. Sci. Total Environ. 2022, 823, 153748. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Niknam, A.R.R.; Jamali, V.; Pourghasemi, H.R. Aquifer Vulnerability Identification Using DRASTIC-LU Model Modification by Fuzzy Analytic Hierarchy Process. Model. Earth Syst. Environ. 2022, 8, 5365–5380. [Google Scholar] [CrossRef]
- Alam, S.M.K.; Li, P.; Fida, M. Groundwater Nitrate Pollution Due to Excessive Use of N-Fertilizers in Rural Areas of Bangladesh: Pollution Status, Health Risk, Source Contribution, and Future Impacts. Expo. Health 2024, 16, 159–182. [Google Scholar] [CrossRef]
- Nakagawa, K.; Amano, H.; Persson, M.; Berndtsson, R. Spatiotemporal Variation of Nitrate Concentrations in Soil and Groundwater of an Intensely Polluted Agricultural Area. Sci. Rep. 2021, 11, 2598. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Kilanehei, F.; Nazari-Sharabian, M. Impact of Pumping Rate on Contaminant Transport in Groundwater—A Numerical Study. Hydrology 2021, 8, 103. [Google Scholar] [CrossRef]
- Cheong, J.-Y.; Hamm, S.-Y.; Lee, J.-H.; Lee, K.-S.; Woo, N.-C. Groundwater Nitrate Contamination and Risk Assessment in an Agricultural Area, South Korea. Environ. Earth Sci. 2012, 66, 1127–1136. [Google Scholar] [CrossRef]
- Herrera, P.A.; Marazuela, M.A.; Hofmann, T. Parameter Estimation and Uncertainty Analysis in Hydrological Modeling. WIREs Water 2022, 9, e1569. [Google Scholar] [CrossRef]
Bartolovec | Varaždin | ||
---|---|---|---|
Q (106 m3/year) | c (mg/L NO3−) | h (km) | c (mg/L NO3−) |
1.303133 | 11.08 | 1.1354 | 74.14 |
1.904633 | 12.50 | 1.03439 | 75.35 |
3.282591 | 17.80 | 0.95488 | 76.7 |
2.626296 | 18.30 | 0.87774 | 80.04 |
2.948416 | 19.21 | 0.91627 | 76.71 |
2.856326 | 15.66 | 0.79949 | 81.42 |
2.296502 | 16.53 | 0.69324 | 85.92 |
2.409855 | 15.37 | 0.59389 | 87.8 |
2.687779 | 16.10 | 1.50497 | 65.03 |
2.723874 | 16.00 | 1.11395 | 71.67 |
2.97143 | 18.33 | 0.86569 | 77.4 |
3.191996 | 17.88 | 1.35501 | 68.62 |
4.333628 | 19.18 | 0.54867 | 87 |
4.538436 | 19.73 | ||
4.154271 | 21.93 | ||
3.103338 | 20.52 | ||
0 | 8.80 |
Function | Modified Model | Linearized Model |
---|---|---|
Logistic | ||
Gompertz | ||
Richards | ||
Michaelis–Menten [67] | ||
Hill 1 [68] | ||
Hill 2 | ||
Rosin–Rammler 1 [69] | ||
Rosin–Rammler 2 |
Function | Modified Model | Linearized Model |
---|---|---|
Logistic | ||
Gompertz | ||
Richards | ||
Michaelis–Menten | ||
Hill 1 | ||
Hill 2 | ||
Rosin–Rammler 1 | ||
Rosin–Rammler 2 |
Function | A | B | C | D | E | K | R2 | SS | AIC | AICC | r | t |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Logistic | 8.5262 | 20.4705 | 36.6291 | 1.6710 | - | 4 | 0.8737 | 23.5830 | 13.5643 | 16.4215 | 0.9349 | 10.202 |
Gompertz | 8.9504 | 20.8885 | 9.2358 | 1.1752 | - | 4 | 0.8717 | 23.9491 | 13.8262 | 16.6834 | 0.7181 | 3.996 |
Richards | 8.4047 | 20.4332 | 54.4400 | −1.7484 | 1.1952 | 5 | 0.8737 | 23.5777 | 15.5605 | 20.1759 ↓ | 0.8701 | 6.837 |
Michaelis–Menten | 7.9916 | 57.3746 | 12.5358 | - | - | 3 | 0.8222 | 33.1905 | 17.3739 | 18.9739 | 0.8850 | 7.362 |
Hill 1 | 8.2710 | 24.9841 | 6.8457 | - | - | 3 | 0.8559 | 26.9037 | 13.8039 | 15.4039 | 0.8578 | 6.464 |
Hill 2 | 9.0309 | 21.2748 | 3.6161 | 18.9408 | - | 4 | 0.8714 | 24.0080 | 13.8679 | 16.3251 | 0.7732 | 4.722 |
Rosin–Rammler 1 | 8.3255 | 21.0037 | 0.1570 | - | - | 3 | 0.8665 | 24.9164 | 12.4993 | 14.0993 ↑ | 0.8491 | 6.226 |
Rosin–Rammler 2 | 8.8881 | 20.3112 | 0.0879 | 2.6698 | - | 4 | 0.8738 | 23.5627 | 13.5497 | 16.4069 | 0.8770 | 7.069 |
tα = 2.131 |
Parameter | Estimate | Standard Error | t-Value df = 14 | p-Value | Lo. Conf Limit | Up. Conf Limit |
---|---|---|---|---|---|---|
A | 7.99183 | 1.47667 | 5.412056 | 0.000092 | 4.8247 | 11.1590 |
B | 57.38562 | 46.71992 | 1.228290 | 0.239588 | −42.8187 | 157.5899 |
C | 12.53966 | 16.06566 | 0.780526 | 0.448078 | −21.9177 | 46.9971 |
Function | A | B | C | D | E | K | R2 | SS | AIC | AICc | r | t |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Logistic | 57.8916 | 109.7870 | 4.7012 | 2.1920 | - | 4 | 0.9702 | 17.1041 | 11.5668 | 15.5668 | 0.9861 | 19.684 |
Gompertz | 59.1397 | 94.3393 | 5.8972 | 2.2277 | - | 4 | 0.9707 | 16.8360 | 11.3614 | 15.3614 | 0.9857 | 19.401 |
Richards | 38.2582 | 145.4918 | 0.1902 | 2.7890 | 4.2528 | 5 | 0.9698 | 17.3786 | 13.7738 | 20.4404 ↓ | 0.8822 | 6.214 |
Michaelis–Menten | −5.3808 | 110.2567 | 2.3613 | - | - | 3 | 0.9696 | 17.4948 | 9.8604 | 12.0422 | 0.9863 | 19.830 |
Hill 1 | 46.3523 | 97.7448 | 1.3395 | - | - | 3 | 0.9706 | 16.8920 | 9.4046 | 11.5864 ↑ | 0.9864 | 19.904 |
Hill 2 | 55.2058 | 93.9119 | 1.1247 | 2.7158 | - | 4 | 0.9710 | 16.6822 | 11.2421 | 15.2421 | 0.9860 | 19.612 |
Rosin–Rammler 1 | 60.3845 | 96.2983 | 0.8494 | - | - | 3 | 0.9703 | 17.0772 | 9.5463 | 11.7282 | 0.9858 | 19.470 |
Rosin–Rammler 2 | 58.5428 | 97.8412 | 0.8250 | 1.8040 | - | 4 | 0.9704 | 17.0356 | 11.5146 | 15.5146 | 0.9862 | 19.757 |
tα = 2201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovač, I.; Šrajbek, M.; Sakač, N.; Nemčić-Jurec, J. Comparative Analysis of Nonlinear Models from Different Domains: A Case Study on the Quality of Groundwater in an Alluvial Aquifer in Northwestern Croatia. Water 2025, 17, 1378. https://doi.org/10.3390/w17091378
Kovač I, Šrajbek M, Sakač N, Nemčić-Jurec J. Comparative Analysis of Nonlinear Models from Different Domains: A Case Study on the Quality of Groundwater in an Alluvial Aquifer in Northwestern Croatia. Water. 2025; 17(9):1378. https://doi.org/10.3390/w17091378
Chicago/Turabian StyleKovač, Ivan, Marko Šrajbek, Nikola Sakač, and Jasna Nemčić-Jurec. 2025. "Comparative Analysis of Nonlinear Models from Different Domains: A Case Study on the Quality of Groundwater in an Alluvial Aquifer in Northwestern Croatia" Water 17, no. 9: 1378. https://doi.org/10.3390/w17091378
APA StyleKovač, I., Šrajbek, M., Sakač, N., & Nemčić-Jurec, J. (2025). Comparative Analysis of Nonlinear Models from Different Domains: A Case Study on the Quality of Groundwater in an Alluvial Aquifer in Northwestern Croatia. Water, 17(9), 1378. https://doi.org/10.3390/w17091378