The Effect and Adjustment of Ferrate Species in Ferrate-Based Advanced Oxidation Processes for Wastewater Treatment: A Systematic Review
Abstract
:1. Introduction
2. Key Fe Species in Ferrate-Based AOP Systems
2.1. Photocatalysis
2.2. Fenton-like Reaction
2.3. O3
2.4. Persulfate
3. Adjustment of the Fe Species in Ferrate-Based AOP Systems
3.1. pH
3.2. Oxidant Dosage
3.3. Dosing Pattern
3.4. Reducing and Complexing Additives
4. Effect of Wastewater Composition and Compatibility with Traditional Treatment Methods
5. Conclusions and Prospects
- (1)
- In a practical wastewater process, the stability of reactive Fe species under the condition of variable wastewater composition might limit their large-scale practical application. The relevant research on Fe(VI) regulation was mainly carried out in pure water systems or for specific contaminants, with fewer studies on the removal of organic pollutants in actual wastewater. Based on the selective and nonselective oxidation of Fe(VI) and AOPs, further study of the different oxidation pathways triggered by adjusting the Fe species is required to guide research on natural organic matter resistance reduction during wastewater treatment. It is necessary to strengthen the research on the treatment efficiency of organic pollutants in actual wastewater.
- (2)
- The development of cost-effective ferrate production methods and stable ferrate formulations is essential for its large-scale application. Combining ferrate-AOP with other treatment methods can address specific limitations and improve overall treatment performance. In situ production of high-valent Fe is required to develop more promising wastewater treatment processes based on ferrate-AOP techniques. Recently, new methods for generating Fe(IV)-based single-atom catalysts and the electrochemical synthesis of high-valence Fe species provide new prospects for generating Fe(VI). More efforts are needed to develop efficient Fe recycling and utilization in ferrate-AOP. While scaling up ferrate AOPs for large-scale applications faces economic and technological challenges, the potential benefits in terms of treatment efficiency and broad applicability make it a promising area for future research and development.
- (3)
- A detailed characterization of the Fe(VI) decomposition byproducts is required. Although the residue particles from Fe(VI) activate ozone and PMS, their surface morphology and Fe valence are unclear. Moreover, a quantitative analysis of Fe(V) and Fe(IV) is required.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Rosario-Ortiz, F.L.; Lei, Y.; Pan, Y.; Lei, X.; Westerhoff, P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. Environ. Sci. Technol. 2022, 56, 11111–11131. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.-M.; Xu, Y.-L.; Liang, J.-K.; Peng, L.; Zhang, X.-Y.; Du, Y.; Lu, Y.; Li, X.-Z.; Wu, Q.-Y.; Guan, Y.-T. Surrogates for on-line monitoring of the attenuation of trace organic contaminants during advanced oxidation processes for water reuse. Water Res. 2021, 190, 116733. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Cheng, M.; Zhong, H.; Liu, Z.; Liu, Y.; Yang, X.; Liang, Q. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chem. Eng. J. 2020, 384, 123265. [Google Scholar] [CrossRef]
- Cruz-Cruz, A.; Rivas-Sanchez, A.; Gallareta-Olivares, G.; González-González, R.B.; Cárdenas-Alcaide, M.F.; Iqbal, H.M.N.; Parra-Saldívar, R. Carbon-based materials: Adsorptive removal of antibiotics from water. Water Emerg. Contam. Nanoplast. 2023, 2, 2. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, B.; Gao, B.; Cheng, N.; Feng, Q.; Chen, M.; Wang, S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. J. Hazard. Mater. 2023, 442, 130075. [Google Scholar] [CrossRef]
- Tufail, A.; Price, W.E.; Mohseni, M.; Pramanik, B.K.; Hai, F.I. A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: Mechanisms, factors, degradation products, and effluent toxicity. J. Water Process Eng. 2021, 40, 101778. [Google Scholar] [CrossRef]
- He, H.; Wang, L.; Liu, Y.; Qiu, W.; Liu, Z.; Ma, J. Improvement of Fe(VI) oxidation by NaClO on degrading phenolic substances and reducing DBPs formation potential. Sci. Total Environ. 2023, 864, 161080. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Jiang, J.; Yang, T.; Cao, Y. Oxidative treatment of NOM by selective oxidants in drinking water treatment and its impact on DBP formation in postchlorination. Sci. Total Environ. 2023, 858, 159908. [Google Scholar] [CrossRef]
- Shao, B.; Don, H.; Feng, L.; Qiao, J.; Guan, X. Influence of sulfite/Fe(VI) molar ratio on the active oxidants generation in Fe(VI)/sulfite process. J. Hazard. Mater. 2020, 384, 121303. [Google Scholar] [CrossRef]
- He, S.; Chen, Y.; Li, X.; Zeng, L.; Zhu, M. Heterogeneous Photocatalytic Activation of Persulfate for the Removal of Organic Contaminants in Water: A Critical Review. ACS EST Eng. 2022, 2, 527–546. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Talaei, M.R.; Rezania, S. An overview on production and application of ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater. J. Environ. Chem. Eng. 2017, 5, 1828–1842. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, X.; Zhang, S.; Luo, X.; Geng, H.; Liu, J.; Tong, X.; Zhang, Y.; Sun, P.; Zhao, L. Synergistic action of ferrate and biochar in the removal of trichloroethylene from water: Little biochar addition, large ferrate activity improvement. J. Environ. Chem. Eng. 2023, 11, 110165. [Google Scholar] [CrossRef]
- Jiang, J.Q. Research progress in the use of ferrate(VI) for the environmental remediation. J. Hazard. Mater. 2007, 146, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K. Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coord. Chem. Rev. 2013, 257, 495–510. [Google Scholar] [CrossRef]
- Sharma, V.K.; Zboril, R.; Varma, R.S. Ferrates: Greener oxidants with multimodal action in water treatment technologies. Acc. Chem. Res. 2015, 48, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Nie, J.; Yang, X.; Guan, X. Degradation of tetrabromobisphenol A by ferrate(VI)-CaSO3 process: Kinetics, products, and impacts on following disinfection by-products formation. J. Hazard. Mater. 2021, 412, 125297. [Google Scholar] [CrossRef]
- Marbaniang, C.V.; Sathiyan, K.; McDonald, T.J.; Lichtfouse, E.; Mukherjee, P.; Sharma, V.K. Metal ion-induced enhanced oxidation of organic contaminants by ferrate: A review. Environ. Chem. Lett. 2023, 21, 1729–1743. [Google Scholar] [CrossRef]
- Sharma, V.K.; Feng, M.; Dionysiou, D.D.; Zhou, H.C.; Jinadatha, C.; Manoli, K.; Smith, M.F.; Luque, R.; Ma, X.; Huang, C.H. Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. Environ. Sci. Technol. 2022, 56, 30–47. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, N.; Li, M.; Bai, M.; Wang, H. Potassium ferrate enhances ozone treatment of pharmaceutical wastewaters: Oxidation and catalysis. J. Water Process Eng. 2022, 49, 103055. [Google Scholar] [CrossRef]
- Shaida, M.A.; Verma, S.; Talukdar, S.; Kumar, N.; Mahtab, M.S.; Naushad, M.; Farooqi, I.H. Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J. Mol. Liq. 2023, 374, 121259. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, J.-Q. Synergistic Effect of Ferrate with Various Water Processing Techniques-A Review. Water 2022, 14, 2497. [Google Scholar] [CrossRef]
- Sharma, V.K.; Graham, N.J.; Li, X.Z.; Yuan, B.L. Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions. Environ. Sci. Pollut. Res. Int. 2010, 17, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Mura, S.; Malfatti, L.; Greppi, G.; Innocenzi, P. Ferrates for water remediation. Rev. Environ. Sci. Bio/Technol. 2016, 16, 15–35. [Google Scholar] [CrossRef]
- Yu, J.; Jiao, R.; Sun, H.; Xu, H.; He, Y.; Wang, D. Removal of microorganic pollutants in aquatic environment: The utilization of Fe(VI). J. Environ. Manag. 2022, 316, 115328. [Google Scholar] [CrossRef]
- Dar, A.A.; Pan, B.; Qin, J.; Zhu, Q.; Lichtfouse, E.; Usman, M.; Wang, C. Sustainable ferrate oxidation: Reaction chemistry, mechanisms and removal of pollutants in wastewater. Environ. Pollut. 2021, 290, 117957. [Google Scholar] [CrossRef]
- Yu, J.; Sumita; Zhang, K.; Zhu, Q.; Wu, C.; Huang, S.; Zhang, Y.; Yao, S.; Pang, W. A Review of Research Progress in the Preparation and Application of Ferrate(VI). Water 2023, 15, 699. [Google Scholar] [CrossRef]
- Dong, F.; Fu, C.; Feng, M.; Wang, D.; Song, S.; Li, C.; Lichtfouse, E.; Li, J.; Lin, Q.; Sharma, V.K. Simultaneous generation of free radicals, Fe(IV) and Fe(V) by ferrate activation: A review. Chem. Eng. J. 2024, 481, 148669. [Google Scholar] [CrossRef]
- He, T.; Zhou, B.; Chen, H.; Yuan, R. Degradation of organic chemicals in aqueous system through ferrate-based processes: A review. J. Environ. Chem. Eng. 2022, 10, 108706. [Google Scholar] [CrossRef]
- Fan, W.-Y.; Zhang, X.; Guo, P.-C.; Sheng, G.-P. Highly efficient removal of phosphonates by ferrate-induced oxidation coupled with in situ coagulation. J. Hazard. Mater. 2023, 451, 131104. [Google Scholar] [CrossRef]
- Chu, Y.; Xu, M.; Li, X.; Lu, J.; Yang, Z.; Lv, R.; Liu, J.; Lv, L.; Zhang, W. Oxidation of emerging contaminants by S(IV) activated ferrate: Identification of reactive species. Water Res. 2024, 251, 121100. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, X.; Li, H.; Wang, C.; Zhang, T. Combination of peroxymonosulfate and Fe(VI) for enhanced degradation of sulfamethoxazole: The overlooked roles of high-valent iron species. Chem. Eng. J. 2023, 453, 139742. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiang, L.; Wang, Z.; Liu, Y.; Damascene Harindintwali, J.; Bian, Y.; Jiang, X.; Schaeffer, A.; Wang, F.; Dionysiou, D.D. New insights into the Ferrate-Sulfite system for the degradation of polycyclic aromatic Hydrocarbons: A dual role for sulfite. Chem. Eng. J. 2023, 477, 147157. [Google Scholar] [CrossRef]
- Pan, B.; Feng, M.; Qin, J.; Dar, A.A.; Wang, C.; Ma, X.; Sharma, V.K. Iron(V)/Iron(IV) species in graphitic carbon nitride-ferrate(VI)-visible light system: Enhanced oxidation of micropollutants. Chem. Eng. J. 2022, 428, 132610. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Du, Q.; Liu, T.; Dai, X.; Du, Y.; Zhang, H.; Zhou, P.; Xiong, Z.; Lai, B. Ferrate(VI)/percarbonate for the oxidation of micropollutants: Interactive activation and release of low-concentration hydrogen peroxide for efficient electron utilization. J. Hazard. Mater. 2024, 469, 134029. [Google Scholar] [CrossRef]
- Wang, P.; Ding, Y.; Zhu, L.; Zhang, Y.; Zhou, S.; Xie, L.; Li, A. Oxidative degradation/mineralization of dimethyl phthalate (DMP) from plastic industrial wastewater using ferrate(VI)/TiO2 under ultraviolet irradiation. Environ. Sci. Pollut. Res. Int. 2022, 29, 15159–15171. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yin, C.; Zhang, M.; Zhu, J.; Ai, X.; Shi, W.; Peng, G. Enhanced Fe(III)/Fe(II) Redox Cycle for Persulfate Activation by Reducing Sulfur Species. Catalysts 2022, 12, 1435. [Google Scholar] [CrossRef]
- Feng, M.; Jinadatha, C.; McDonald, T.J.; Sharma, V.K. Accelerated Oxidation of Organic Contaminants by Ferrate(VI): The Overlooked Role of Reducing Additives. Environ. Sci. Technol. 2018, 52, 11319–11327. [Google Scholar] [CrossRef]
- Sharma, V.K.; Chenay, B.V.N. Heterogeneous photocatalytic reduction of Fe(VI) in UV-irradiated titania suspensions: Effect of ammonia. J. Appl. Electrochem. 2005, 35, 775–781. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Wang, Y.; Ngo, H.H.; Wang, J. Research and application of active species based on high-valent iron for the degradation of pollutants: A critical review. Sci. Total Environ. 2024, 924, 171430. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Feng, L.; Wang, Y.; Jia, H. New insights on UV-activated transformation of polynuclear Fe-hydroxide and iron(III) (hydr)oxide for enhanced removal of natural organic matter by ferrate. J. Water Process Eng. 2022, 49, 103183. [Google Scholar] [CrossRef]
- Yuan, B.L.; Li, X.Z.; Graham, N. Reaction pathways of dimethyl phthalate degradation in TiO2-UV-O2 and TiO2-UV-Fe(VI) systems. Chemosphere 2008, 72, 197–204. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhao, J. The efficient degradation of diclofenac by ferrate and peroxymonosulfate: Performances, mechanisms, and toxicity assessment. Environ. Sci. Pollut. Res. 2023, 30, 11959–11977. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, K.; Li, C.; Zhang, T.; Gao, N. Oxidation of Sulfonamides in Aqueous Solution by UV-TiO2-Fe(VI). Biomed Res. Int. 2015, 2015, 973942. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Li, Y.; Huang, X.; Liu, H.; Qu, J. Fe(VI)-assisted photocatalytic degradating of microcystin-LR using titanium dioxide. J. Photochem. Photobiol. A Chem. 2006, 178, 106–111. [Google Scholar] [CrossRef]
- Yang, T.; Mai, J.; Cheng, H.; Zhu, M.; Wu, S.; Tang, L.; Liang, P.; Jia, J.; Ma, J. UVA-LED-Assisted Activation of the Ferrate(VI) Process for Enhanced Micropollutant Degradation: Important Role of Ferrate(IV) and Ferrate(V). Environ. Sci. Technol. 2022, 56, 1221–1232. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, M.; Zhou, P.; Liu, Y.; Du, Y.; He, C.; Yao, G.; Lai, B. Enhanced ferrate(VI)) oxidation of sulfamethoxazole in water by CaO2: The role of Fe(IV) and Fe(V). J. Hazard. Mater. 2022, 425, 128045. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, F.; Meng, J.; Shao, B.; Dong, H.; Chu, W.; Cao, T.; Wei, G.; Wang, H.; Guan, X. Overlooked Role of Fe(IV) and Fe(V) in Organic Contaminant Oxidation by Fe(VI). Environ. Sci. Technol. 2020, 54, 9702–9710. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Zhou, H.; Zhou, P.; Lai, L.; Liu, W.; Ao, Z.; Yao, G.; Zhang, H.; Lai, B. Insights into the role of in-situ and ex-situ hydrogen peroxide for enhanced ferrate(VI) towards oxidation of organic contaminants. Water Res. 2021, 203, 117548. [Google Scholar] [CrossRef]
- Widhiastuti, F.; Fan, L.; Paz-Ferreiro, J.; Chiang, K. Oxidative treatment of bisphenol A by Fe(VI) and Fe(VI)/H2O2 and identification of the degradation products. Environ. Technol. Innov. 2022, 28, 102643. [Google Scholar] [CrossRef]
- Li, W.; Tang, R.; Xiong, S.; Li, L.; Zhou, Z.; Su, L.; Gong, D.; Deng, Y. High-valent metal-oxo species in catalytic oxidations for environmental remediation and energy conversion. Coord. Chem. Rev. 2024, 510, 215840. [Google Scholar] [CrossRef]
- Sharma, V.K.; O’Connor, D.B.; Cabelli, D.E. Sequential one-electron reduction of Fe(V) to Fe(III) by cyanide in alkaline medium. J. Phys. Chem. B 2001, 105, 11529–11532. [Google Scholar] [CrossRef]
- Pan, B.; Liao, M.; Zhao, Y.; Lv, Y.; Qin, J.; Sharma, V.K.; Wang, C. Visible light activation of ferrate(VI) by oxygen doped ZnIn2S4/black phosphorus nanolayered heterostructure: Accelerated oxidation of trimethoprim. J. Hazard. Mater. 2023, 460, 132413. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.-Y.; Du, Y.; Dai, X.; Liu, T.; Wang, Z.-J.; Li, J.; Zhang, H.; Zhou, P.; Lai, B. Ferrate(VI)-based synergistic oxidation processes (Fe(VI)-SOPs): Promoted reactive species production, micropollutant/microorganism elimination, and toxicity reduction. Chem. Eng. J. 2024, 489, 151180. [Google Scholar] [CrossRef]
- Lin, Y.; Qiao, J.; Sun, Y.; Dong, H. The profound review of Fenton process: What’s the next step? J. Environ. Sci. 2025, 147, 114–130. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M.; Luo, C.; Nesnas, N.; Huang, C.-H.; Sharma, V.K. Effect of Metal Ions on Oxidation of Micropollutants by Ferrate(VI): Enhancing Role of FeIV Species. Environ. Sci. Technol. 2021, 55, 623–633. [Google Scholar] [CrossRef]
- Wang, J.; Kim, J.; Ashley, D.C.; Sharma, V.K.; Huang, C.H. Peracetic Acid Enhances Micropollutant Degradation by Ferrate(VI) through Promotion of Electron Transfer Efficiency. Environ. Sci. Technol. 2022, 56, 11683–11693. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Wang, X.; Guo, H.; Zhu, T.; Ni, B.-J.; Liu, Y. Percarbonate-strengthened ferrate pretreatment for enhancing short-chain fatty acids production from sewage sludge. Sci. Total Environ. 2023, 904, 166771. [Google Scholar] [CrossRef]
- Xue, J.; Zhu, Z.; Zong, Y.; Huang, C.; Wang, M. Oxidative Degradation of Dimethyl Phthalate (DMP) by the Fe(VI)/H2O2 Process. Acs Omega 2019, 4, 9467–9472. [Google Scholar] [CrossRef]
- Li, Y.N.; Duan, Z.H.; Wang, Y.F.; Yuan, Z.J.; Wang, G.Y. Preliminary treatment of phenanthrene in coking wastewater by a combined potassium ferrate and Fenton process. Int. J. Environ. Sci. Technol. 2018, 16, 4483–4492. [Google Scholar] [CrossRef]
- Martins, A.F.; Frank, C.d.S.; Wilde, M.L. Treatment of a trifluraline effluent by means of oxidation-coagulation with Fe(VI) and combined Fenton processes. Clean-Soil Air Water 2007, 35, 88–99. [Google Scholar] [CrossRef]
- Han, Q.; Dong, W.; Wang, H.; Ma, H.; Gu, Y.; Tian, Y. Degradation of tetrabromobisphenol A by a ferrate(vi)-ozone combination process: Advantages, optimization, and mechanistic analysis. Rsc Adv. 2019, 9, 41783–41793. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zheng, F.; Dong, H.; Pan, F.; Sun, L.; Aleksandr, N.; Yuan, X. Enhanced oxidation of micropollutants by ozone/ferrate(VI) process: Performance, mechanism, and toxicity assessment. J. Water Process Eng. 2023, 55, 104211. [Google Scholar] [CrossRef]
- Zhang, Y.-S.; Chen, X.-J.; Huang, X.-T.; Bai, C.-W.; Zhang, Z.-Q.; Duan, P.-J.; Chen, F. Buffer-free ozone-ferrate(VI) systems for enhanced oxidation of electron-deficient contaminants: Synergistic enhancement effects, systematic toxicity assessment, and practical applications. Water Res. 2024, 260, 121907. [Google Scholar] [CrossRef]
- Prucek, R.; Tucek, J.; Kolarik, J.; Filip, J.; Marusak, Z.; Sharma, V.K.; Zboril, R. Ferrate(VI)-Induced Arsenite and Arsenate Removal by In Situ Structural Incorporation into Magnetic Iron(III) Oxide Nanoparticles. Environ. Sci. Technol. 2013, 47, 3283–3292. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Chu, W.; Xu, K.; Xia, X.; Gong, H.; Tan, Y.; Pu, S. Efficient degradation, mineralization and toxicity reduction of sulfamethoxazole under photo-activation of peroxymonosulfate by ferrate (VI). Chem. Eng. J. 2020, 389, 124084. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Li, X.; He, H.; Yang, C. Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants. Chem. Eng. J. 2018, 353, 533–541. [Google Scholar] [CrossRef]
- Feng, M.; Cizmas, L.; Wang, Z.; Sharma, V.K. Synergistic effect of aqueous removal of fluoroquinolones by a combined use of peroxymonosulfate and ferrate(VI). Chemosphere 2017, 177, 144–148. [Google Scholar] [CrossRef]
- Sheikhi, S.; Dehghanzadeh, R.; Maryamabadi, A.; Aslani, H. Chlorpyrifos removal from aqueous solution through sequential use of coagulation and advanced oxidation processes: By-products, degradation pathways, and toxicity assessment. Environ. Technol. Innov. 2021, 23, 101564. [Google Scholar] [CrossRef]
- Pi, R.; Yang, Z.; Chai, J.; Qi, Y.; Sun, X.; Zhou, Y. Peroxysulfur species-mediated enhanced oxidation of micropollutants by ferrate(VI): Peroxymonosulfate versus peroxydisulfate. J. Hazard. Mater. 2024, 475, 134871. [Google Scholar] [CrossRef]
- Dinc, O.; Waclawek, S.; Solis, R.R.; Dionysiou, D.D. Synergistic oxidative removal of sulfamethoxazole using Ferrate(VI) and peroxymonosulfate. Chem. Eng. J. 2024, 488, 151085. [Google Scholar] [CrossRef]
- López-Vinent, N.; Cruz-Alcalde, A.; Moussavi, G.; del Castillo Gonzalez, I.; Hernandez Lehmann, A.; Giménez, J.; Giannakis, S. Improving ferrate disinfection and decontamination performance at neutral pH by activating peroxymonosulfate under solar light. Chem. Eng. J. 2022, 450, 137904. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Chen, Q.; Zhang, X. Synergistic effect of ferrate (VI)-ozone integrated pretreatment on the improvement of water quality and fouling alleviation of ceramic UF membrane in reclaimed water treatment. J. Membr. Sci. 2018, 567, 216–227. [Google Scholar] [CrossRef]
- Liu, J.; He, K.; Zhang, J.; Li, C.; Zhang, Z. Coupling ferrate pretreatment and in-situ ozonation/ceramic membrane filtration for wastewater reclamation: Water quality and membrane fouling. J. Membr. Sci. 2019, 590, 117310. [Google Scholar] [CrossRef]
- Li, C.; Lin, H.; Armutlulu, A.; Xie, R.; Zhang, Y.; Meng, X. Hydroxylamine-assisted catalytic degradation of ciprofloxacin in ferrate/persulfate system. Chem. Eng. J. 2019, 360, 612–620. [Google Scholar] [CrossRef]
- Chen, N.; Lee, D.; Kang, H.; Cha, D.; Lee, J.; Lee, C. Catalytic persulfate activation for oxidation of organic pollutants: A critical review on mechanisms and controversies. J. Environ. Chem. Eng. 2022, 10, 107654. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Wang, S.; Liu, W.; Zhou, G.; Xie, Y.; Guan, X. Both Fe(IV) and Radicals Are Active Oxidants in the Fe(II)/Peroxydisulfate Process. Environ. Sci. Technol. Lett. 2020, 7, 219–224. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, W.; Pang, S.; Gao, Y.; Zhou, Y.; Cao, Y.; Jiang, J. Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes. Water Res. 2020, 172, 115504. [Google Scholar] [CrossRef]
- He, C.; Zhang, X.; Lv, P.; Sui, H.; Li, X.; He, L. Efficient remediation of o-dichlorobenzene-contaminated soil using peroxomonosulfate-ferrate-FeS hybrid oxidation system. J. Taiwan Inst. Chem. Eng. 2021, 119, 23–32. [Google Scholar] [CrossRef]
- Ji, F.; Li, C.; Wei, X.; Yu, J. Efficient performance of porous Fe2O3 in heterogeneous activation of peroxymonosulfate for decolorization of Rhodamine B. Chem. Eng. J. 2013, 231, 434–440. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Yan, D.; Chen, H.; Zhang, M.; Wang, J.; Yang, G. Application of Fe(II)/peroxymonosulfate for efficient alkali lignin wastewater treatment: Insight into the synergistic interactions between redox reactions and coagulation. Sep. Purif. Technol. 2024, 328, 125037. [Google Scholar] [CrossRef]
- Zeng, H.; Cheng, Y.; Repo, E.; Yu, X.; Xing, X.; Zhang, T.; Zhao, X. Trace Iron as single-electron shuttle for interdependent activation of peroxydisulfate and HSO3−/O2 enables accelerated generation of radicals. Water Res. 2022, 223, 118935. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Chu, Y.; Li, N.; Lai, B.; Zhang, W.; Liu, C.; Li, J. A critical review of environmental remediation via iron-mediated sulfite advanced oxidation processes. Chem. Eng. J. 2023, 455, 140859. [Google Scholar] [CrossRef]
- Rao, D.; Dong, H.; Niu, M.; Wang, X.; Qiao, J.; Sun, Y.; Guan, X. Mechanistic Insights into the Markedly Decreased Oxidation Capacity of the Fe(II)/S2O82− Process with Increasing pH. Environ. Sci. Technol. 2022, 56, 13131–13141. [Google Scholar] [CrossRef]
- Meng, S.; Zhou, P.; Sun, Y.; Zhang, P.; Zhou, C.; Xiong, Z.; Zhang, H.; Liang, J.; Lai, B. Reducing agents enhanced Fenton-like oxidation (Fe(III)/Peroxydisulfate): Substrate specific reactivity of reactive oxygen species. Water Res. 2022, 218, 118412. [Google Scholar] [CrossRef] [PubMed]
- Widhiastuti, F.; Fan, L.; Paz-Ferreiro, J.; Chiang, K. Oxidative degradation of bisphenol A in municipal wastewater reverse osmosis concentrate (ROC) using ferrate(VI)/hydrogen peroxide. Process Saf. Environ. Prot. 2022, 163, 58–67. [Google Scholar] [CrossRef]
- Li, C.; Li, X.Z.; Graham, N. A study of the preparation and reactivity of potassium ferrate. Chemosphere 2005, 61, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, A.; Yang, B.; Hu, X.; Repo, E.; Xiao, K.; Zeng, H.; Zhao, X. Cost-Effective FeIVO2+ Generation for Antibiotics Removal in Electrochlorination of Mariculture Wastewater. ACS EST Water 2023, 3, 2512–2521. [Google Scholar] [CrossRef]
- Topaloglu, A.K.; Kahraman, B.F. Textile dye removal in wastewater by peroxymonosulfate (PMS) activation on a zero-valent iron nanoparticle-modified ultrafiltration catalytic membrane (nZVI@PES). Environ. Sci. Pollut. Res. 2023, 30, 94779–94789. [Google Scholar] [CrossRef]
- Sheikhi, S.; Jebalbarezi, B.; Dehghanzadeh, R.; Maryamabadi, A.; Aslani, H. Sulfamethoxazole oxidation in secondary treated effluent using Fe(VI)/PMS and Fe(VI)/H2O2 processes: Experimental parameters, transformation products, reaction pathways and toxicity evaluation. J. Environ. Chem. Eng. 2022, 10, 107446. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; Wang, J. Strategy of combining radiation with ferrate oxidation for enhancing the degradation and mineralization of carbamazepine. Sci. Total Environ. 2019, 687, 1028–1033. [Google Scholar] [CrossRef]
- Dong, H.; Wei, G.; Yin, D.; Guan, X. Mechanistic insight into the generation of reactive oxygen species in sulfite activation with Fe(III) for contaminants degradation. J. Hazard. Mater. 2020, 384, 121497. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, Y.; Pang, S.-Y.; Wang, Z.; Shen, Y.-M.; Jiang, J. Quantitative evaluation of relative contribution of high-valent iron species and sulfate radical in Fe(VI) enhanced oxidation processes via sulfur reducing agents activation. Chem. Eng. J. 2020, 387, 124077. [Google Scholar] [CrossRef]
- Manoli, K.; Li, R.; Kim, J.; Feng, M.; Huang, C.-H.; Sharma, V.K. Ferrate(VI)-peracetic acid oxidation process: Rapid degradation of pharmaceuticals in water. Chem. Eng. J. 2022, 429, 132384. [Google Scholar] [CrossRef]
- Gao, L.; Guo, Y.; Zhan, J.; Yu, G.; Wang, Y. Assessment of the validity of the quenching method for evaluating the role of reactive species in pollutant abatement during the persulfate-based process. Water Res. 2022, 221, 118730. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, C.; Su, J.; He, Z.; Xu, J.; Bian, Y.; Kim, H.; Guan, X. Enhanced sulfamethoxazole removal in water and wastewater by ferrate(VI)/perborate system via borate buffering. J. Hazard. Mater. 2025, 492, 138261. [Google Scholar] [CrossRef]
Experimental System | Experimental Condition | Active Specie | Adjustments | Pollutant | Enhancement Effect | Reference |
---|---|---|---|---|---|---|
UV-TiO2-Fe(VI) | [Fe(VI)]: 50.0 μM; [TiO2]: 0.5 g/L; light intensity: 0.15 mW/cm2 at 254 nm; pH 9.0 | h+ and OH | pH | Sulfadiazine/Sulfamerazine/Sulfamethoxazole: 20.0 μM | UV-TiO2-Fe(VI): 89.2%, 83.4%, 82.0%; UV-TiO2: 71.3%, 72.7%, 76.0%; Fe(VI): 65.2%, 66.0%, 71.9% | [43] |
Fe(VI)-UV-TiO2 | [Fe(VI)]: 80.0 μM; [TiO2]: 2.0 g/L; light intensity: 4.0 mW/cm2 at 340–420 nm; pH 6.0 | Fe(V) and Fe(IV) | pH | Microcystin-LR: 1.0–2.0 mg/L | Fe(VI)-UV-TiO2: 100.0%; UV-TiO2: 63.0%; Fe(VI): 54.0% | [44] |
Fe(VI)-UVA-light-emitting diode (LED) | [Fe(VI)]: 75.0 μM; LED bulb: 3.0 W; UVA: 37.0 mW/cm2; pH 8.0 | Fe(V) and Fe(IV) | pH | Sulfamethoxazole: 5.0 μM | Fe(VI)-UVA-LED: Reacting 2.6−7.2-fold faster than for Fe(VI) | [45] |
UV-TiO2-Fe(VI) | [Fe(VI)]: 30.0 mg/L; [TiO2]: 0.05 g/L mg/L; light intensity: 9 W at 365 nm; pH 9.0 | h+ and•OH | pH and oxidant dosage | Dimethyl phthalate: 0.3 mg/L | UV-TiO2-Fe(VI): 95.2%; UV-TiO2: 51.8%; Fe(VI): 23.5% | [35] |
Fe(VI)-UV-TiO2 | [Fe(VI)]: 9.0 mg/L; [TiO2]: 40.0 mg/L; light intensity: 0.4 mW/cm2 at 365 nm; pH 9.0 | Holes, OH, and Fe(V) | Oxidant dosage | Dimethyl phthalate: 11.6 mg/L | Fe(VI)-UV-TiO2: 83.0%; UV-TiO2: 68.0%; Fe(VI): negligible | [41] |
Fe(VI)-Visible light-g-C3N4 | [Fe(VI)]: 100.0 μM; [g-C3N4]: 50.0 mg/L; visible light; pH 9.0 | Fe(V) and Fe(IV) | Oxidant dosage | Carbamazepine: 5.0 μM | Fe(VI)-Visible light-g-C3N4: 100.0%; Visible light-g-C3N4: 41.0%; Fe(VI)-Visible light: 38.0% | [33] |
Fe(VI)-CaO2 | [Fe(VI)]: 50.0 μM; [CaO2]: 50.0 μM; pH 8.0 | Fe(V) and Fe(IV) | Oxidant dosage | Sulfamethoxazole: 5.0 μM | Fe(VI)-CaO2: 82.7%; CaO2: negligible; Fe(VI): 35.4% | [46] |
Fe(VI)-H2O2 | [Fe(VI)]: 50.0 μM; [H2O2]: 0–30.0 μM; pH 8.0 | Fe(V) and Fe(IV) | Oxidant dosage | Caffeine: 5.0 mM | kapp between caffeine and Fe(VI): 12.8 to 171.8 M−1s−1 with H2O2 from 0 to 30.0 μM | [47] |
Fe(VI)-H2O2 | [Fe(VI)]: 50.0 μM; [H2O2]: 70.0 μM; pH 7.0–9.0 | Fe(V) and Fe(IV) | Oxidant dosage | Sulfamethoxazole: 5.0 μM | Fe(VI)-H2O2: 78.0%; H2O2: negligible; Fe(VI): 35.0% | [48] |
Fe(VI)-H2O2 | [Fe(VI)]: 250.0 μM; [H2O2]: 2.5 mM; pH 8.0 | Fe(V) and Fe(IV) | Oxidant dosage | Bisphenol A: 50.0 μg/L | Fe(VI)-H2O2: 97.7%; H2O2: 23.5%; Fe(VI): 85.5% | [49] |
Fe(VI)-UV | [Fe(VI)]: 0.2 mM; light intensity: 26.0 μW/cm2 at 254 nm; pH 7.0 | O2•−,•OH, Fe(V) and Fe(IV) | Dosing pattern | Lake water | Fe(VI)-UV: UV254 removal increased; TOC removal increased than Fe(VI) | [40] |
Experimental System | Experimental Condition | Active Specie | Adjustments | Pollutant | Enhancement Effect | Reference |
---|---|---|---|---|---|---|
Fe(VI)-PMS | [Fe(VI)]: 0.05 mM; [PMS]: 0.05 mM; pH 5.2 | SO4•− and •OH | pH | Sulfamethoxazole: 0.1 mM | Fe(VI)-PMS: 55.5% in 30 min; PMS: negligible; Fe(VI): 20.0% | [65] |
Fe(VI)-PMS | [Fe(VI)]: 2.5 mM; [PMS]: 5.0 mM; pH 6.0 | SO4•− and •OH | Oxidant dosage | Atrazine: 46.5 μM | Fe(VI)-PMS: 81.5% in 60 min; PMS: negligible; Fe(VI): 11.7% | [66] |
Fe(VI)-PMS | [Fe(VI)]: 100.0 μM; [PMS]: 500.0 μM; pH 6.0 | SO4•− and •OH | Oxidant dosage | Diclofenac: 5.0 μM | Fe(VI)-PMS: 93.5% in 15 min; PMS: negligible; Fe(VI): 42.2% | [42] |
Fe(VI)-PMS | [Fe(VI)]: 30.0 μM; [PMS]: 30.0 μM; pH 7.0 | SO4•− and •OH | Oxidant dosage | Enrofloxacin/marbofloxacin/ofloxacin: 30.0 μM | Fe(VI)-PMS: 48.0%, 55.0% and 59.0%; PMS: 19.0%, 21.0% and 18.0%; Fe(VI): 14.0%, 10.0% and 13.0% | [67] |
Fe(VI)-PMS | [Fe(VI)]: 10.0 mg/L; [PMS]: 2.0 mg/L; pH 7.0 | SO4•− and •OH | Oxidant dosage | Chlorpyrifos: 2.0 mg/L | Fe(VI)-PMS: 94.8% in 90 min; PMS: 56.5%; Fe(VI): 83.0% | [68] |
Fe(VI)-PDS/PMS | [Fe(VI)]: 0.25 mM; [PDS]: 0.5 mM; [PMS]: 0.5 mM; pH 7.0 | SO4•−, 1O2, •OH, Fe(V) and Fe(IV) | pH and Oxidant dosage | Ibuprofen: 20 μM | Fe(VI)-PDS: 31.1%; Fe(VI)-PMS: 92.8% | [69] |
Fe(VI)-PMS | [Fe(VI)]: 50 mM; [PMS]: 200 mM; pH 7.0 | SO4•−, Fe(V) and Fe(IV) | pH and Oxidant dosage | Sulfamethoxazole: 10 µM | Fe(VI)-PMS: >80% in 15 min | [70] |
Fe(VI)-PMS-light | [Fe(VI)]: 1.0 mg/L; [PMS]: 5.0 mg/L; Solar irradiance: 550 W/m2; T: 35.0 °C; pH 6.5 | SO4•− and •OH | Oxidant dosage | Sulfamethoxazole: 0.1 mg/L | Fe(VI)-PMS-light: 70.0% in 60 min; PMS-light: 20.0% | [71] |
Fe(VI)-O3 | [Fe(VI)]: 300.0 μM; [O3]: 13.5 mg/L; pH 7.0 | •OH | Dosing pattern | Dissolved organic carbon (DOC): 8.4 mg/L; UV254: 0.174 | Fe(VI)-O3: 53.0% (DOC); Ozonation: 23.0% (DOC); Fe(VI): 21.0% (DOC); Fe(VI)-O3: 70.0% (UV254); Ozonation: 44.0% (UV254); Fe(VI): 35.0% (UV254) | [19] |
Fe(VI)-O3 | [Fe(VI)]: 150.0 μM; [O3]: 10.0 mg/L; O3: 100.0 mL/min; pH 6.3–6.4 | •OH | Dosing pattern | DOC: 7.5 mg/L; UV254: 0.15 | Fe(VI)-O3: 70.5% (DOC), 80.5% (UV254); O3: 26.7% (DOC), 60.0% (UV254) | [72] |
Fe(VI)-O3 | [Fe(VI)]: 0.5 μM; [O3]: 0.5 μM; pH 7.0 | •OH | Dosing pattern | Tetrabromobisphenol A:1.8 μM | Fe(VI)-O3: 68.9% in 1 min Ozonation: 11.7%; Fe(VI): 32.0% | [61] |
Fe(VI)-O3 | [Fe(VI)]: 25.0 μM; [O3]: 52 μM; pH 5–9 | •OH | pH | Sulfamethoxazole/diclofenac sodium: 20 μM | Fe(VI)-O3: 98.4% and 94.3%; O3: slightly enhanced than the Fe(VI) alone process; Fe(VI): 65.3% and 85.5% | [62] |
Fe(VI)-O3 | [Fe(VI)]: 0.2 mM; [O3]: 15.1 mg/L; pH 5–9 | •OH | pH | Atrazine: 5 mg/L | Fe(VI)-O3: 90.1% in 18 min | [63] |
Fe(VI)-O3-ceramic membrane | [Fe(VI)]: 150.0 μM; [O3]: 10 mg/L; filtration flux: 90 L/(m2·h); pH 6.0–6.4 | •OH | Dosing pattern | DOC: 6.0 mg/L; UV254: 0.1; Protein: 3.0 mg/L | Fouling transmembrane pressure decreased 96.7% with Fe(VI)-O3 | [73] |
Fe(VI)-PDS | [Fe(VI)]: 90.0 μM; [PDS]: 90.0 μM; pH 4.0 | SO4•− and •OH | Reducing and complexing additives | Ciprofloxacin: 30.0 μM | Fe(VI)-PDS: 72.6% in 15 min; PDS: negligible; Fe(VI): 54.2% | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Luo, X.; Ma, X.; Kemacheevakul, P.; Qu, S.; Huang, J.; Chea, T.G.; Sun, P.; Zhao, L.; Zhang, Y.; et al. The Effect and Adjustment of Ferrate Species in Ferrate-Based Advanced Oxidation Processes for Wastewater Treatment: A Systematic Review. Water 2025, 17, 1343. https://doi.org/10.3390/w17091343
Wang Y, Luo X, Ma X, Kemacheevakul P, Qu S, Huang J, Chea TG, Sun P, Zhao L, Zhang Y, et al. The Effect and Adjustment of Ferrate Species in Ferrate-Based Advanced Oxidation Processes for Wastewater Treatment: A Systematic Review. Water. 2025; 17(9):1343. https://doi.org/10.3390/w17091343
Chicago/Turabian StyleWang, Yushu, Xiao Luo, Xiaoke Ma, Patiya Kemacheevakul, Sen Qu, Junxiang Huang, Tarloh G. Chea, Peizhe Sun, Lin Zhao, Youjun Zhang, and et al. 2025. "The Effect and Adjustment of Ferrate Species in Ferrate-Based Advanced Oxidation Processes for Wastewater Treatment: A Systematic Review" Water 17, no. 9: 1343. https://doi.org/10.3390/w17091343
APA StyleWang, Y., Luo, X., Ma, X., Kemacheevakul, P., Qu, S., Huang, J., Chea, T. G., Sun, P., Zhao, L., Zhang, Y., & Yang, Y. (2025). The Effect and Adjustment of Ferrate Species in Ferrate-Based Advanced Oxidation Processes for Wastewater Treatment: A Systematic Review. Water, 17(9), 1343. https://doi.org/10.3390/w17091343