Diagnosis and Assessment of a Combined Oxylag and High Rate Algal Pond (COHRAP) for Sustainable Water Reuse: Case Study of the University Campus in Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Design Criteria
2.3. Wastewater Treatment Pilot Plant Description
2.4. Hydraulic Flow and Operational Conditions
2.5. Sampling and Monitoring
2.6. Analytical Procedures
2.7. Phytotoxicity Tests of the HRAP Effluent
2.8. Energy Consumption and Operational Costs of WWTDPP
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of Raw Wastewater
3.2. Loading Rate, Efficiency and Effluent Quality
3.3. Microalgae Community
3.4. Microalgae Production, SS and VSS Variation in HRAP
3.5. Heavy Metal (Hm) Content and Removal in WWTDPP
3.6. Bacteria Removal
3.7. Phytotoxicity of Treated Wastewater and Potential Reuse for Agriculture Purposes
3.8. Operational Costs of WWTDPP
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COHRAP | Combined Oxylag and high rate algal pond |
COD | Chemical oxygen demand |
BOD | Biochemical oxygen demand |
TSS | Total suspended solids |
HRAP | High rate algal pond |
PE | Population equivalents |
WWTDPP | Wastewater treatment demonstration pilot plant |
HDPE | High density polyethylene membrane |
HRT | Hydraulic retention time |
Algae productivity | |
TN | Total nitrogen |
HM | Heavy metal |
GR | Germination rate |
GI | Germination indices |
ISA-CM | Higher agronomic institute of Chott Mariem |
FP | Facultative pond |
RF | Rock filter |
DW | Dry weight |
TC | Total coliforms |
FC | Fecal coliforms |
References
- Nikuze, M.J.; Niyomukiza, J.B.; Nshimiyimana, A.; Kwizera, J.P. Assessment of the efficiency of the wastewater treatment plant: A case of Gacuriro Vision City. IOP Conf. Ser. Earth Environ. Sci 2020, 448, 012046. [Google Scholar] [CrossRef]
- UNESCO World Water Assessment Programme (WWAP). The United Nations World Water Development Report: Leaving No One Behind; UNESCO: Paris, France, 2019; p. 186. [Google Scholar]
- Pirsaheb, M.; Khamutian, R.; Khodadadian, M. A comparison between extended aeration sludge and conventional activated sludge treatment for removal of linear alkylbenzene sulfonates (Case study: Kermanshah and Paveh WWTP). Desalin. Water Treat. 2014, 52, 4673–4680. [Google Scholar] [CrossRef]
- Zobeidi, A.; Bebba, A.A.; Douadi, A. Effects of hydraulic retention time on organic loading rate in efficiency of aerated lagoons in treating rural domestic wastewater at El-Oued (South-East Algeria). Orient. J. Chem. 2017, 33, 1890–1898. [Google Scholar]
- Cockx, A.; Boumansour, B.E.; Line, A.; Vasel, J. Modeling the hydraulics and oxygen transfer in the “Oxylag” bioreactor. In Proceedings of the Conference: Second European Congress of Chemical Engineering (ECCE2), Montpellier, France, 5–7 October 1999. [Google Scholar]
- Bontoux, J.; Picot, B. Possibilites et limites des bassins lagunaires dans l’epuration des eaux usees. Water Pollut. Res. J. Can. 1994, 29, 545. [Google Scholar] [CrossRef]
- Abid, A.; Jellal, J.E.; Bamaarouf, M.; Ihmaine, E.G.H. Optimization of Kinetic Model for High Rate Algal Pond Design. IJEE 2015, 6, 134–140. [Google Scholar]
- Garfí, M.; Flores, L.; Ferrer, I. Life Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal ponds. J. Clean. Prod. 2017, 161, 211–219. [Google Scholar] [CrossRef]
- Heubeck, S.; Craggs, R.J.; Shilton, A. Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond. Water Sci. Technol. 2007, 55, 193. [Google Scholar] [CrossRef]
- Arbib, Z.; Ruiz, J.; Alvarez, P.; Garrido, C.; Barragan, J.; Perales, J.A. Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol. Eng. 2013, 52, 143–153. [Google Scholar] [CrossRef]
- Couto, E.A.; Calijuri, M.L.; Assemany, P.P.; Tango, M.D.; Santiago, A.F. Influence of solar radiation on nitrogen recovery by the biomass grown in high rate ponds. Ecol. Eng. 2015, 81, 140–145. [Google Scholar] [CrossRef]
- Craggs, R.; Park, J.; Heubeck, S.; Sutherland, D. High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. N. Z. J. Bot. 2014, 52, 60–73. [Google Scholar] [CrossRef]
- Park, J.B.K.; Craggs, R.J.; Shilton, A.N. Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Res. 2011, 45, 6637–6649. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D.L.; Howard-Williams, C.; Turnbull, M.H.; Broady, P.A.; Craggs, R.J. Seasonal variation in light utilisation, biomass production and nutrient removal by wastewater microalgae in a full-scale high-rate algal pond. J. Appl. Phycol. 2014, 26, 1317–1329. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Kang, D.; Wu, C.; Wu, Y. Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: A review. Rev. Environ. Sci. Biotechnol. 2017, 16, 717–735. [Google Scholar] [CrossRef]
- Nie, J.; Sun, Y.; Zhou, Y.; Kumar, M.; Usman, M.; Li, J.; Shao, J.; Wang, L.; Tsang, D.C.W. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Sci. Total Environ. 2020, 707, 136080. [Google Scholar] [CrossRef]
- Suresh Kumar, K.; Dahms, H.U.; Won, E.J.; Lee, J.S.; Shin, K.H. Microalgae—A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Gaignard, C.; Laroche, C.; Pierre, G.; Dubessay, P.; Delattre, C.; Gardarin, C.; Gourvil, P.; Probert, I.; Dubuffet, A.; Michaud, P. Screening of marine microalgae: Investigation of new exopolysaccharide producers. Algal Res. 2019, 44, 101711. [Google Scholar] [CrossRef]
- Yang, W.; Song, W.; Li, J.; Zhang, X. Bioleaching of heavy metals from wastewater sludge with the aim of land application. Chemosphere 2020, 249, 126134. [Google Scholar] [CrossRef]
- Park, J.B.; Weaver, L.; Davies-Colley, R.; Stott, R.; Williamson, W.; Mackenzie, M.; McGill, E.; Lin, S.; Webber, J.; Craggs, R.J. Comparison of faecal indicator and viral pathogen light and dark disinfection mechanisms in wastewater treatment pond mesocosms. J. Environ. Manag. 2021, 286, 112197. [Google Scholar] [CrossRef]
- Davies-Colley, R.J. Pond Disinfection in Pond Treatment Technology; Shilton, A., Ed.; IWA Scientific and Technical Report Series; IWA Publishing: London, UK, 2005; pp. 100–136. [Google Scholar]
- Craggs, R.; Sutherland, D.; Campbell, H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol. 2012, 24, 329–337. [Google Scholar] [CrossRef]
- Shahid, A.; Malik, S.; Zhu, H.; Xu, J.; Nawaz, M.Z.; Nawaz, S.; Asraful Alam, M.; Mehmood, M.A. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation: A review. Sci. Total Environ. 2020, 704, 135303. [Google Scholar] [CrossRef] [PubMed]
- Arashiro, L.T.; Ferrer, I.; Rousseau, D.P.; Van Hulle, S.W.; Garfí, M. The effect of primary treatment of wastewater in high rate algal pond systems: Biomass and bioenergy recovery. Bioresour. Technol. 2019, 280, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Craggs, R.J.; Heubeck, S.; Lundquist, T.J.; Benemann, J.R. Algal biofuels from wastewater treatment high rate algal ponds. Water Sci. Technol. 2011, 63, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Van Den Hende, S.; Beelen, V.; Julien, L.; Lefoulon, A.; Vanhoucke, T.; Coolsaet, C.; Sonnenholzner, S.; Vervaeren, H.; Rousseau, D.P.L. Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: An outdoor pilot-scale study. Bioresour. Technol. 2016, 218, 969–979. [Google Scholar] [CrossRef]
- Álvarez-González, A.; Uggetti, E.; Serrano, L.; Gorchs, G.; Escolà Casas, M.; Matamoros, V.; Gonzalez-Flo, E.; Díez-Montero, R. The potential of wastewater grown microalgae for agricultural purposes: Contaminants of emerging concern, heavy metals and pathogens assessment. Environ. Pollut. 2023, 324, 121399. [Google Scholar] [CrossRef]
- Young, P.; Taylor, M.; Fallowfield, H.J. Mini-review: High rate algal ponds, flexible systems for sustainable wastewater treatment. World J. Microbiol. Biotechnol. 2017, 33, 117. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Turnbull, M.H.; Craggs, R.J. Environmental drivers that influence microalgal species in fullscale wastewater treatment High rate algal ponds. Water Res. 2017, 124, 504–512. [Google Scholar] [CrossRef]
- Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. A Look Back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from Algae; National Renewable Energy Laboratory: Applewood, CO, USA, 1998; pp. 1–249. [Google Scholar]
- Sutherland, D.L.; Turnbull, M.H.; Craggs, R.J. Increased Pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Res. 2014, 53, 271–281. [Google Scholar] [CrossRef]
- Amini, H.; Hashemisohi, A.; Wang, L.; Shahbazi, A.; Bikdash, M.; KC, D.; Yuan, W. Numerical and experimental investigation of hydrodynamics and light transfer in open raceway ponds at various algal cell concentrations and medium depths. Chem. Eng. Sci. 2016, 156, 11–23. [Google Scholar] [CrossRef]
- Buchanan, N.A.; Young, P.; Cromar, N.J.; Fallowfield, H.J. Performance of a high rate algal pond treating septic tank effluent from a community wastewater management scheme in rural South Australia. Algal Res. 2018, 35, 325–332. [Google Scholar] [CrossRef]
- Posadas, E.; Muñoz, R.; Guieysse, B. Integrating nutrient removal and solid management restricts the feasibility of algal biofuel generation via wastewater treatment. Algal Res. 2017, 22, 39–46. [Google Scholar] [CrossRef]
- Tyagi, R.D.; Couillard, D. Toxic effects of inhibitors in biological wastewater treatment processes. Can. J. Chem. Eng. 1988, 66, 97–106. [Google Scholar] [CrossRef]
- Couto, E.D.; Calijuri, M.L.; Assemany, P.P.; Cecon, P.R. Evaluation of high rate ponds operational and design strategies for algal biomass production and domestic wastewater treatment. Sci. Total Environ. 2021, 791, 148362. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, F.G.G.; Gómez, V.A.; Torre, R.M.; de Godos Crespo, I. Scale-down of high-rate algae ponds systems for urban wastewater reuse. J. Water Process Eng. 2023, 56, 104342. [Google Scholar] [CrossRef]
- Dahamsheh, A.; Wedyan, M. Evaluation and assessment of performance of Al-Hussein bin Talal University (AHU) wastewater treatment plants. Int. J. Adv. Appl. Sci. 2017, 4, 84–89. [Google Scholar] [CrossRef]
- Tunisian Standards NT 106.03; Reuse of Treated Wastewater in Agriculture—Physicochemical and Biological Specifications. National Institute for Standardization and Industrial Properties (INNORPI, Tunisia): Tunis, Tunisia, 1989. (In French)
- Cromar, N.J.; Fallowfield, H.J. Effect of nutrient loading and retention time on performance of high rate algal ponds. J. Appl. Phycol. 1997, 9, 301–309. [Google Scholar] [CrossRef]
- Solimeno, A.; García, J. Microalgae and bacteria dynamics in high rate algal ponds based on modelling results: Long-term application of BIO_ALGAE model. Sci. Total Environ. 2019, 650, 1818–1831. [Google Scholar] [CrossRef]
- Chisti, Y. Green Energy and Technology. In Algae Biotechnology: Products and Processes.; Bux, F., Chisti, Y., Eds.; Springer: Cham, Switzerland, 2016; pp. 1–344. [Google Scholar]
- John, D.M.; Whitton, B.A.; Brook, A.J. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae, 1st ed.; Cambridge University Press: Cambridge, UK, 2002; pp. 1–18. [Google Scholar]
- Raschke, R.L. Diatom community response to phosphorus in the Everglades National Park USA. Phycologia 1993, 32, 48–58. [Google Scholar] [CrossRef]
- Velásquez-Orta, S.B.; Yáñez-Noguez, I.; Ramírez, I.M.; Orta-Ledesma, M.T. Pilot-scale microalgae cultivation and wastewater treatment using high-rate ponds: A meta-analysis. Environ. Sci. Pollut. Res. 2024, 31, 46994–47021. [Google Scholar] [CrossRef]
- Park, J.B.; Craggs, R.J. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci. Technol. 2010, 61, 633–639. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 15th ed.; American Public Health Association and Water Pollution Control Federation: Washington, DC, USA, 2000; pp. 12–56. [Google Scholar]
- ISO 10260; Water Quality, Measurement of Biochem. Parameters; Spectrometric Determination of the Chlorophyll-a Concentration. ISO: Geneva, Switzerland, 1992.
- USEPA. SW-846 Test Method 3051A. Microwave assisted acid digestion of sediments, sludges, soils and oils. In Test Methods for Evaluating Solid Waste, 2nd ed.; US Environmental Protection Agency: Washington, DC, USA, 1998; pp. 1–30. [Google Scholar]
- ISO 17294-2:2023; Water Quality, Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes. ISO: Geneva, Switzerland, 2003.
- Grimah, K.; Abdelmottalib, N.; Lazrak, A.; Chlaida, M. Physicochemical characterization of university campus wastewater for internal treatment system installation (Casablanca, Morocco). ER&T 2024, 7, 13–26. [Google Scholar]
- Melián, J.H.; Araña, J.; Díaz, O.G.; Bujalance, M.A.; Rodríguez, J.D. Effect of stone filters in a pond–wetland system treating raw wastewater from a university campus. Desalination 2009, 237, 277–284. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGrawHill: New York, NY, USA, 2003; pp. 1–53. [Google Scholar]
- Molle, P.; Liénard, A.; Boutin, C.; Merlin, G.; Iwema, A. How to treat raw sewage with constructed wetlands: An overview of the French systems. Water Sci. Technol. 2005, 51, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elmaksoud, S.; Abdo, S.M.; Gad, M.; Hu, A.; El-Liethy, M.A.; Rizk, N.; Marouf, M.A.; Hamza, I.A.; Doma, H.S. Pathogens Removal in a Sustainable and Economic High-Rate Algal Pond Wastewater Treatment System. Sustainability 2021, 13, 13232. [Google Scholar] [CrossRef]
- Antoniou, P.; Hamilton, J.; Koopman, B.; Jain, R.; Holloway, B.; Lyberatos, G.; Svoronos, S.A. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Res. 1990, 24, 97–101. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Howard-Williams, C.; Turnbull, M.H.; Broady, P.A.; Craggs, R.J. The effects of CO2 addition along a pH gradient on wastewater microalgal photo-physiology, biomass production and nutrient removal. Water Res. 2015, 70, 9–26. [Google Scholar] [CrossRef]
- Arcila, J.S.; Buitrón, G. Microalgae–bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. J. Chem. Technol. Biotechnol. 2016, 91, 2862–2870. [Google Scholar] [CrossRef]
- Oliver, R.L.; Ganf, G.G. Freshwater Blooms. In Ecology of Cyanobacteria: Their Diversity in Time and Space; Whitton, B.A., Potts, M., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 149–194. [Google Scholar] [CrossRef]
- García, J.; Green, B.F.; Lundquist, T.; Mujeriego, R.; Hernández-Mariné, M.; Oswald, W.J. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresour. Technol. 2006, 97, 1709–1715. [Google Scholar] [CrossRef]
- Reynolds, C.S. The Ecology of Freshwater Phytoplankton; Cambridge University Press: Cambridge, UK, 1984; p. 384. [Google Scholar]
- Cosgrove, J.J. Marine Phytoplankton Primary Production and Ecophysiology Using Chlorophyll-A Fluorescence. Ph.D. Thesis in Philosophy, Murdoch University, Perth, Australia, 2007. [Google Scholar]
- Reynolds, C.S. Phytoplankton periodicity: The interactions of form, function and environmental variability. Freshw. Biol. 1984, 14, 111–142. [Google Scholar] [CrossRef]
- Reynolds, C.S. Physical determinants of phytoplankton succession. In Plankton Ecology; Sommer, U., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 9–56. [Google Scholar]
- Sutherland, D.L.; Park, J.; Heubeck, S.; Ralph, P.J.; Craggs, R.J. Size matters—Microalgae production and nutrient removal in wastewater treatment high rate algal ponds of three different sizes. Algal Res. 2020, 45, 101734. [Google Scholar] [CrossRef]
- Klausmeier, C.A.; Litchman, E.; Daufresne, T.; Levin, S.A. Optimal nitrogen-to phosphorus stoichiometry of phytoplankton. Nature 2004, 429, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Church, J.; Lee, S.J.; Park, J.; Lee, W.H. Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environ. Eng. Sci. 2016, 33, 882–897. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Li, H.; Ding, Y. Removal of metals from water using a novel high-rate algal pond and submerged macrophyte pond treatment reactor. Water Sci. Technol. 2019, 79, 1447–1457. [Google Scholar] [CrossRef]
- Oswald, W.J. The role of microalgae in liquid waste treatment and reclamation. In Micro-Algal Biotechnology; Borowitzka, M.A., Borowitzka, L.J., Eds.; Cambridge U.P.: Cambridge, UK, 1988; pp. 255–282. [Google Scholar]
- Malik, A. Metal bioremediation through growing cells. Environ. Int. 2004, 30, 261–278. [Google Scholar] [CrossRef]
- Eggleton, J.; Thomas, K.V. A Review of Factors Affecting the Release and Bioavailability of Contaminants during Sediment Disturbance Events. Environ. Int. 2004, 30, 973–980. [Google Scholar] [CrossRef]
- Khalil, Z.I.; Asker, M.M.; El-Sayed, S.; Kobbia, I.A. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World J. Microbiol. Biotechnol. 2010, 26, 1225–1231. [Google Scholar] [CrossRef]
- Aung, W.L.; Hlaing, N.N.; Aye, N.K. Biosorption of Lead (Pb2+) by using Chlorella vulgaris. IJCEBS 2013, 1, 2320–4087. [Google Scholar]
- Yang, J.; Cao, J.; Xing, G.; Yuan, H. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour. Technol. 2015, 175, 537–544. [Google Scholar] [CrossRef]
- Yong, J.J.J.Y.; Chew, K.W.; Khoo, K.S.; Show, P.L.; Chang, J.S. Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnol. Adv. 2021, 47, 107684. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003; European Union: Luxembourg, 2019.
- Markou, G.; Wang, L.; Ye, J.; Unc, A. Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns. Biotechnol. Adv. 2018, 36, 1238–1254. [Google Scholar] [CrossRef] [PubMed]
- Tunisian Standards NT 106.20; Fertilizers—Sludge from Urban Wastewater Treatment Works. National Institute of Standardization and Industrial Properties—INNORPI, Tunisia: Tunis, Tunisia, 2002. (In French)
- Marzougui, N.; Ounalli, N.; Sabbahi, S.; Fezzani, T.; Abidi, F.; Jebari, S.; Melki, S.; Berndtsson, R.; Oueslati, W. How Can Sewage Sludge Use in Sustainable Tunisian Agriculture Be Increased? Sustainability 2022, 14, 13722. [Google Scholar] [CrossRef]
- Wanjohi, L.; Mwasi, S.; Mwamburi, L.; Isaboke, J. Efficiency of university of Eldoret wastewater treatment plant, Kenya. AER J. 2019, 3, 99–109. [Google Scholar]
- Araki, S.; González, J.M.; De Luis, E.; Bécares, E. Viability of nematode eggs in high rate algal ponds: The effect of physico-chemical conditions. Water Sci. Technol. 2000, 42, 371–374. [Google Scholar] [CrossRef]
- Verbyla, M.E. Pathogen Removal in Natural Wastewater Treatment and Resource Recovery Systems: Solutions for Small Cities in an Urbanizing World. Ph.D. Thesis, Civil and Environmental Engineering, University of South Florida, Tampa, FL, USA, 2015. [Google Scholar]
- Chambonniere, P.; Bronlund, J.; Guieysse, B. Pathogen removal in high-rate algae pond: State of the art and opportunities. Appl. Phycol. 2021, 33, 1501–1511. [Google Scholar] [CrossRef]
- Albornoz, L.L.; Centurião, T.C.; Giacobbo, A.; Ferreira, J.Z.; Bernardes, A.M. Influence of rain events on the efficiency of a compact wastewater treatment plant: A case study on a university campus aiming water reuse for agriculture. Environ. Sci. Pollut. Res. 2020, 27, 41350–41360. [Google Scholar] [CrossRef]
- Kohlheb, N.; Affereden, M.V.; Lara, E.; Arbib, Z.; Conthe, M.; Poitzsch, C.; Marquartdt, T.; Becker, M.Y. Assessing the life-cycle sustainability of algae and bacteria-based wastewater treatment systems: High-rate algae pond and sequencing batch reactor. J. Environ. Manag. 2020, 264, 110459. [Google Scholar] [CrossRef]
- Robles, Á.; Capson-Tojo, G.; Gales, A.; Viruela, A.; Sialve, B.; Seco, A.; Steyer, J.P.; Ferrer, J. Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale. Bioresour. Technol. 2020, 301, 122672. [Google Scholar] [CrossRef]
Parameters | Mean Concentration (mg/L) | Mean Loading Rate (kg/d) |
---|---|---|
COD | 483 | 19.3 |
BOD | 230 | 9.2 |
TSS | 220 | 8.8 |
TN | 96 | 3.8 |
Parameter | Value |
---|---|
Oxygen required for BOD removal (kg O2/kg BOD removed) | 1.5 |
Oxygen required for nitrification (kg O2/kg N-NH4 removed) | 4.57 |
Sediment oxygen demand (g O2 m−2 d−1) | 4 |
Oxygenation capacity of perforated membrane air diffuser (g O2 Nm−3) | 30 |
Length (m) | Water Surface (m2) | Depth (m) | Volume (m3) | |
---|---|---|---|---|
Oxylag pond | 11 | 54.3 | 1.5 | 57.8 |
AirLift pit | 4.8 | 2.7 | 13 | |
HRAP | 12.7 | 86.7 | 0.5 | 44.2 |
AirLift pit | 3.2 | 2.8 | 9 |
ISA-CM (Tunisia) | Faculty of Science (Morocco) | Las Palmas de Gran Canaria (Spain) | |||
---|---|---|---|---|---|
Parameters | Unit | Range | Mean ± Std | Range | Range |
pH | - | 7.4–8.7 | 7.89 ± 0.4 | 7.18–8.18 | |
EC | μS cm−1 | 2480–3070 | 2834 ± 141 | 2470–3980 | |
COD | mg L−1 | 134–1773 | 886.5 ± 576 | 967.4–1151.0 | 315.1–365.6 |
BOD | mg L−1 | 21–594 | 284.7 ± 190 | 70.5–119.0 | 230.7–328.5 |
SS | mg L−1 | 54–330 | 178.1 ± 71 | 223.6–1659.7 | 201.3–264.8 |
VS | mg L−1 | 24–163 | 90.7 ± 51 | - | |
TN | mg L−1 | 66.9–132.4 | 91.2 ± 26 | - | |
NH4 | mg L−1 | 0.5–80.3 | 42 ± 25 | 3.5–17.5 | |
NO3 | mg L−1 | 0.1–2.2 | 1.0 ± 0.7 | 0.6–1.4 | |
PO4 | mg L−1 | 1–10.7 | 6.5 ± 2 | 0.7–2.7 |
Oxylag | HRAP | Limit Values | |||
---|---|---|---|---|---|
Parameters | Influent Loading Rate (g m−2 d−1) | Influent Loading Rate (g m−2 d−1) | Effluent Concentration (mg L−1) | Concentration mg L−1 | |
Range | Range | Range | Mean ± Std | ||
COD | 24.3–321.2 | 3.9–38.6 | 30.8–98 | 68.07 ± 23 | 90 |
BOD | 3.8–107.6 | 0.5–15.7 | 2.0–30.0 | 12.8 ± 11 | 30 |
SS | 9.8–119.5 | 4.5–33.8 | 47.0–1103 | 343.17 ± 308 | 30 |
VS | 4.3–29.5 | 3.7–27.0 | 36–880 | 241.5 ± 229 | |
TN | 12.1–32.9 | 0.6–16.0 | 3.3–42.2 | 16.6 ± 15 | |
NH4+ | 0.09–26.0 | 0.01–1.7 | 0.1–2.1 | 0.7 ± 0.4 | |
NO3− | 0.02–0.4 | 0.1–1.4 | 0.1–14.1 | 3.78 ± 4 | |
PO43− | 0.2–3.1 | 0.09–1.0 | 0.4–3.9 | 1.5 ± 1 |
Mean Concentration ± Std (μg/L) | |||
---|---|---|---|
Heavy Metal | Inlet Raw Wastewater | Outlet HRAP Stage | NT 106.03 |
Cr | 2.19 ± 1 | 1.01 ± 1 | 100 |
Fe | 2206.94 ± 1853 | 243.79 ± 124 | 5000 |
Ni | 4.39 ± 1.7 | 8.12 ± 7 | 200 |
Cu | 18.48 ± 21 | 7.75 ± 3 | 500 |
Zn | 55.89 ± 54 | 87.92 ± 56 | 5000 |
Cd | 0.15 ± 0.14 | 0.13 ± 0.1 | 10 |
Hg | 0.45 ± 0.8 | 0.95 ± 1 | 1 |
Pb | 2.09 ± 1.6 | 1.58 ± 1.4 | 1000 |
As | 6.90 ± 2.8 | 4.57 ± 3 | 100 |
B | 312.02 ± 167 | 268.67 ± 61 | 3000 |
Co | 1.06 ± 1 | 2.21 ± 2 | 100 |
Se | 4.26 ± 5 | 1.21 ± 1 | 50 |
Energy Consumption | Electricity Costs | ||||
kWh d−1 | kWh yr−1 | kWh PE−1 yr−1 | kWh m−3 | EURyr−1 | EURPE−1 yr−1 |
10.5 | 3832.5 | 38.32 | 1.05 | 601 | 6.01 |
Working Hours (h) | Personnel Costs | ||||
100 h yr−1 | 300 EUR/yr | ||||
Sewage Sludge Management | Sludge Management Costs | ||||
20 m 3 yr−1 | 320 EUR/yr | ||||
TOTAL COST: 1061 EUR yr−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keffala, C.; Jmii, G.; Mokhtar, A.; Zouhir, F.; Liady, N.D.; Tychon, B.; Jupsin, H. Diagnosis and Assessment of a Combined Oxylag and High Rate Algal Pond (COHRAP) for Sustainable Water Reuse: Case Study of the University Campus in Tunisia. Water 2025, 17, 1326. https://doi.org/10.3390/w17091326
Keffala C, Jmii G, Mokhtar A, Zouhir F, Liady ND, Tychon B, Jupsin H. Diagnosis and Assessment of a Combined Oxylag and High Rate Algal Pond (COHRAP) for Sustainable Water Reuse: Case Study of the University Campus in Tunisia. Water. 2025; 17(9):1326. https://doi.org/10.3390/w17091326
Chicago/Turabian StyleKeffala, Chéma, Ghofrane Jmii, Ameni Mokhtar, Fouad Zouhir, Nourou Dine Liady, Bernard Tychon, and Hugues Jupsin. 2025. "Diagnosis and Assessment of a Combined Oxylag and High Rate Algal Pond (COHRAP) for Sustainable Water Reuse: Case Study of the University Campus in Tunisia" Water 17, no. 9: 1326. https://doi.org/10.3390/w17091326
APA StyleKeffala, C., Jmii, G., Mokhtar, A., Zouhir, F., Liady, N. D., Tychon, B., & Jupsin, H. (2025). Diagnosis and Assessment of a Combined Oxylag and High Rate Algal Pond (COHRAP) for Sustainable Water Reuse: Case Study of the University Campus in Tunisia. Water, 17(9), 1326. https://doi.org/10.3390/w17091326