Developing Recyclable Magnetic TiO2-Fe3O4 Loading on Carbon Microtube Photocatalyst for Efficient Photodegradation of Microcystin-LR Under Visible Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation of Photocatalysts
2.2.1. Preparation of CMT
2.2.2. Preparation of C-TiO2
2.2.3. Preparation of C-TiO2-Fe3O4
2.3. Photocatalytic Process
2.4. Characterization Methods
2.5. Ecological Safety Method
2.6. Statistical Analysis
3. Results
3.1. Characterization
3.1.1. Chemical Composition Analysis
3.1.2. Brunauer–Emmett–Teller Analysis
3.1.3. Analysis of Surface Functional Groups
3.1.4. DRS Analysis
3.1.5. Micromorphology Analysis
3.1.6. Determination of Surface Hydroxyl Content
3.2. Effect of Prepared Composites on MC-LR Degradation
3.3. Photodegradation Dynamics
3.4. Influence of Parameters on MC-LR Degradation
3.5. Study on Interaction Between Parameters
3.6. Effects of Natural Water Bodies
3.7. Quenching Experiment
3.8. Catalyst Stability and Reusability
3.9. MC-LR Intermediates and Potential Pathways
3.10. Mechanism
3.11. Ecological Safety
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Chen, C.; Hu, Y.; Wei, F.; Cui, J.; Zhao, Y.; Xu, X.; Chen, X.; Sun, D. Three—Dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet visible irradiation. J. Colloid Interface Sci. 2020, 562, 21–28. [Google Scholar] [PubMed]
- Sharma, V.K.; Triantis, T.M.; Antoniou, M.G.; He, X.X.; Pelaez, M.; Han, C.S.; Song, W.H.; O’Shea, K.E.; de la Cruz, A.A.; Kaloudis, T.; et al. Destruction of microcystins by conventional and advanced oxidation processes: A review. Sep. Purif. Technol. 2012, 91, 3–17. [Google Scholar]
- Sutar, S.; Patil, P.; Jadhav, J. Recent advances in biochar technology for textile dyes wastewater remediation: A review. Environ. Res. 2022, 209, 112841. [Google Scholar] [CrossRef]
- Nemr, A.; Shoaib, A.; Sikaily, A.; Mohamed, A.; Hassan, A. Evaluation of cationic methylene blue dye removal by high surface area mesoporous activated carbon derived from ulva lactuca. Environ. Process. 2021, 8, 311–332. [Google Scholar] [CrossRef]
- Belachew, N.; Hinsene, H. Preparation of zeolite 4A for adsorptive removal of methylene blue: Optimization, kinetics, isotherm, and mechanism study. Silicon 2021, 14, 1629–1641. [Google Scholar] [CrossRef]
- Mandal, P.; Saha, M. Photodegradation behaviour of nitrogen—Containing graphene derivatives towards pollutant dyes and real-timeassessment on aquatic weed. Biointerface Res. Appl. Chem. 2022, 12, 4357–4373. [Google Scholar]
- Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Preparation of composite hydrogels containing fly ash as low-cost adsorbent material and its use in dye adsorption. Int. J. Environ. Sci. Technol. 2021, 19, 7031–7048. [Google Scholar] [CrossRef]
- Zhang, H.; He, Q.D.; Zhao, W.T.; Guo, F.; Han, L.; Wang, W. Superior dyes removal by a recyclable magnetic silicate @ Fe3O4 adsorbent synthesized from abundant natural mixed clay. Chem. Eng. Res. Des. 2021, 175, 272–282. [Google Scholar]
- Woottikrai, C.; Arisa, S.; Pimluck, K.; Chimupala, Y. Direct dye wastewater photocatalysis using immobilized titanium dioxide on fixed substrate. Chemosphere 2022, 286, 131762. [Google Scholar]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar]
- Chen, J.; Xue, S.; Song, Y.; Shen, M.; Zhang, Z.; Yuan, T.; Tian, F.; Dionysiou, D. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution. J. Hazard. Mater. 2016, 310, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Zhu k Liu, C.C.; Xia, W.; Wang, Y.; He, H.; Lei, L.; Ai, Y.; Chen, W.; Liu, X. Non—Radical pathway dominated degradation of organic pollutants by nitrogen—Doped microtube porous graphitic carbon derived from biomass for activating peroxymonosulfate: Performance, mechanism and environmental application. J. Colloid Interface Sci. 2022, 625, 890–902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Song, L.L.; Tong, L.; Zeng, M.; Wang, Y. Surface bonding of CoP to biomass derived carbon microtube: Site—Specific growth and high—Efficiency catalysis. Chem. Eng. J. 2022, 440, 135884. [Google Scholar] [CrossRef]
- Luo, H.; Si, R.; Li, C.; Zhang, J.; Li, P.; Tao, Y.; Zhao, X.; Chen, H.; Jiang, J. Facile fabrication of carbon microtube arrays from waste wood for use as self-supporting supercapacitor electrodes. Mater. Chem. Front. 2022, 6, 379–389. [Google Scholar] [CrossRef]
- Wang, H.; Guo, W.; Liu, B.; Wu, Q.; Luo, H.; Zhao, Q.; Si, Q.; Sseguya, F.; Ren, N. Edge—Nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism. Water Res. 2019, 160, 405–414. [Google Scholar] [CrossRef]
- Li, Y.X.; Shang, H.R.; Cao, Y.N.; Yang, C.H.; Feng, Y.J.; Yu, Y.L. High performance removal of sulfamethoxazole using large specific area of biochar derived from corncob xylose residue. Biochar 2022, 4, 11. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, Y.; Sheng, K.J.; Xu, X.; Jing, W.; Bao, T.; Wang, S. Ferric iron loaded porphyrinic zirconium MOFs on corncob for the enhancement of diuretics extraction. Chemosphere 2022, 301, 134694. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Jafari, N.; Ebrahimpour, K.; Karimi, M.; Rostamnia, S.; Behnami, A.; Ghanbari, A.; Mohammadi, A.; Rahimi, B.; Abdolahneja, A. . A novel ternary heterogeneous TiO2/BiVO4/NaY—Zeolite nanocomposite for photocatalytic degradation of microcystin—Leucine arginine (MC—LR) under visible light. Ecotoxicol. Environ. Saf. 2021, 210, 111862. [Google Scholar] [CrossRef]
- Amali, H.; Chanaka, N.; Shannon, W.; Perez, F.; Pittman, C.; Mlsna, T. Iron/titanium oxide-biochar (Fe2TiO5/BC): A versatile adsorbent/photocatalyst for aqueous Cr(VI), Pb2+, F- and methylene blue. J. Colloid Interface Sci. 2022, 614, 603–616. [Google Scholar]
- Ridha, D.; Yang, B.; Hafiz, M.; Zhang, J.; Ali, J.; Zhao, X. Sustainable and easy recoverable magnetic TiO2-Lignocellulosic Biomass@Fe3O4 for solar photocatalytic water remediation. J. Clean. Prod. 2019, 233, 841–847. [Google Scholar]
- Jiao, Y.R.; Gong, Y.; Zhang, Y. Fe3O4@SiO2/TiO2 composite preparation and characterization of adsorption. Non—Met. Mines 2020, 43, 91–94. [Google Scholar]
- Liang, Y.; He, X.; Chen, L. Preparation and characterization of TiO2—Graphene@Fe3O4 magnetic composite and its application in the removal of trace amounts of microcystin—LR. J. Adv. Res. 2014, 4, 56883–56891. [Google Scholar] [CrossRef]
- Xia, T.; Ma, Z.; Ai, M.; Qian, K.; Zhu, S.; Rong, M.; Zhang, P.; Ye, Y.; Qin, W. Photocatalyst-coated carbon microtube electrodes: Preparation and characterization of their properties and photocatalytic degradation of methylene blue. Chemosphere 2021, 267, 128927. [Google Scholar] [CrossRef]
- Sears, G.W. Determination of specific surface area of colloidal silica by titration with sodium hydroxide. Anal. Chem. 1956, 28, 1981–1983. [Google Scholar] [CrossRef]
- Rahimi, J.N.; Abdolahnejad, A.; Farrokhzadeh, H.; Farrokhzadeh, H.; Ebrahimi, A. Application of efficient photocatalytic process using a novel BiVO/TiO2—NaY zeolite composite for removal of acid orange 10 dye in aqueous solutions: Modeling by response surface methodology (RSM). J. Environ. Chem. Eng. 2019, 7, 103253. [Google Scholar] [CrossRef]
- Zangeneh, H.; Farhadian, M.; Zinatizadeh, A.A. N (Urea) and CN (L—Asparagine) doped TiO2—CuO nanocomposites: Fabrication, characterization and photodegradation of direct red 16. J. Environ. Chem. Eng. 2020, 8, 103639. [Google Scholar] [CrossRef]
- Rahimi, E.A. Photocatalytic process for total arsenic removal using an innovative BiVO4/TiO2/LED system from aqueous solution: Optimization by response surface methodology (RSM). J. Taiwan Inst. Chem. Eng. 2019, 101, 64–79. [Google Scholar] [CrossRef]
- Echigo, T.; Hatta, T.; Nemoto, S.; Takizawa, S. X—Ray photoelectron spectroscopic study on the goethites with variations in crystallinity and morphology: Their effects on surface hydroxyl concentration. Phys. Chem. Miner. 2012, 39, 769–778. [Google Scholar] [CrossRef]
- Jing, Z.Q.; Wang, Y.; Qin, F.; Tang, Y.; Chen, Z.; Huang, Y. Adsorption characteristics of chromium (VI) by corncob. Appl. Chem. Ind. 2018, 47, 1114–1118. [Google Scholar]
- Wu, C.; Gao, Y.J.; Liu, N. Study on adsorption processing of industrial dye wastewater with corncob. Food Sci. 2007, 8, 188–191. [Google Scholar]
- Chen, H.Y.; Yan, S.D.; Jie, W.; Tang, D. Treatment of copper—Containing wastewater by modified concobs. Ind. Water Wastewater 2013, 44, 54–57. [Google Scholar]
- Chen, J.; Li, M.M.; Liu, Z.G.; Jiang, H.; Jin, H.; Lian, L. Removal of tetracycline by Fe3O4@TiO2 core—Shell microsphere combined with adsorption—Photocatalysis. Chem. Res. Appl. 2022, 34, 1803–1812. [Google Scholar]
- Chen, Y.C.; Hu, B.Q. Treatment of mercury containing wastewater by corncob powder. Chongqing Environ. Sci. 1997, 41–45. [Google Scholar]
- Tahir, F.; Abdul, R.; Fahed, J.; Hafeez, A.; Rashid, N.; Amjad, U.; Rehman, M.; Faisal, A.; Rehman, F. Integrating adsorption and photocatalysis: A cost effective strategy for textile wastewater treatment using hybrid biochar—TiO2 composite. J. Hazard. Mater. 2020, 390, 121623. [Google Scholar]
- Salamat, S.; Habibollah, Y.; Nader, B. Synthesis of magnetic coreeshell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater. RSC Adv. 2017, 7, 19391–19405. [Google Scholar] [CrossRef]
- WHO. Cyanobacterial Toxins: Microcystin-LR: Guidelines for Drinking Water Quality; WHO: Geneva, Switzerland, 1998; pp. 95–110. [Google Scholar]
- Yang, X.Y.; Zhang, J.P.; Guo, L.; Zhao, H.; Zhang, Y.; Chen, J. Solvent impregnated resin prepared using ionic liquid Cyphos IL 104 for Cr(VI) removal. Trans. Nonferrous Met. Soc. China 2012, 22, 3126–3130. [Google Scholar] [CrossRef]
- Gerischer, H. Hotocatalysis in aqueous solution with small TiO2 particles and the dependence the quantum yield on particle intensity. Electrochim. Acta 1995, 40, 1277–1281. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, B.; Shan, C.; Zhang, W.; Dionysiou, D.; Pan, B. . Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: Quantitative relationship and first-principles investigation. Appiled Catal. B-Environ. 2021, 292, 120155. [Google Scholar] [CrossRef]
- Lawton, L.A.; Robertson, P.K.; Cornish, B.J.; Marr, L.; Jaspars, M. Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. J. Catal. 2003, 213, 109–113. [Google Scholar] [CrossRef]
- Feng, X.G.; Rong, F. Photocatalytic degradation of trace—Level of microcystin—LR by nanofilm of titanium dioxide. Chin. Sci. Bull. 2006, 51, 1191–1198. [Google Scholar] [CrossRef]
- Triantis, T.M.; Fotiou, T.; Kaloudis, T.; Kontos, A.G.; Falaras, P.; Dionysiou, D.; Pelaez, M.; Hiskia, A. Photocatalytic degradation and mineralization of microcystin—LR under UV—A, solar and visible light using nanostructured nitrogen doped TiO2. J. Hazard. Mater. 2012, 211, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.C.; Yuan, R.; Qiu, J.; Qiu, J.; Liu, F.; Zhu, J. Enhanced removal of sulfamethoxazole by a novel composite of TiO2 nanocrystals in situ wrapped—Bi2O4 microrods under simulated solar irradiation. Chem. Eng. J. 2020, 384, 123278. [Google Scholar] [CrossRef]
- Omrani, N.; Nezamzadeh-Ejhieh, A. Photodegradation of sulfasalazine over Cu2O—BiVO4—WO3 nano—Composite: Characterization and experimental design. Int. J. Hydrogen Energy 2020, 45, 19144–19162. [Google Scholar] [CrossRef]
- Tian, J.; Wu, C.; Yu, H.; Gao, S.; Li, G.; Cui, F.; Qu, F. Applying ultraviolet/persulfate (UV/PS) pre—Oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Res. 2018, 132, 190–199. [Google Scholar] [CrossRef]
- Wenk, J.; Aeschbacher, M.; Sander, M.; von Gunten, U.; Canonica, S. Photosensitizing and inhibitory effects of ozonated dissolved organic matter on triplet—Induced contaminant transformation. Environ. Sci. Technol. 2015, 49, 8541–8549. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, S.; Song, W. Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter. Environ. Sci. Technol. 2014, 48, 12645–12653. [Google Scholar] [CrossRef]
- Deligiannakis, Y.; Konstantinou, K.I. Effect of Humic and Fulvic Acids on the Photocatalytic Degradation of N, N-diethyl-m-toluamide (DEET) Using TiO2 Suspensions and Simulated Solar Light. In Functions of Natural Organic Matter in Changing Environment; Springer: Dordrecht, The Netherlands, 2013; pp. 633–636. [Google Scholar]
- Du, Y.H.; Wang, X.Y.; Fan, Z.B.; Song, W.; Cui, Z.; Han, Z.; Xue, B.; Liu, X. Fabrication rGO/MoS2—CN for photocatalytic degradation of sulfonamides under visible light. Environ. Chem. 2022, 41, 3012–3021. [Google Scholar]
- Wang, L.L.; Kaeppler, A.; Fischer, D.; Simmchen, J. Photocatalytic TiO2 icromotors for removal of microplastics and suspended matter. Acs Appl. Mater. Interfaces 2019, 11, 32937–32944. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.J.; Zhao, J.F.; Song, J.; Zhou, L.; Wang, J.; Tong, X.; Chen, Y. . An alternative to in situ photocatalytic degradation of microcystin-LR by worm-like N, P co-doped TiO2/expanded graphite by carbon layer (NPT-EGC) floating composites. Appl. Catal. B Environ. 2017, 206, 479–489. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, T.; Fu, H.; Zhao, J.; Zhu, Y. . Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ. Sci. Technol. 2017, 41, 6234–6239. [Google Scholar] [CrossRef]
- Xu, Y.; Schoonen, M. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Yan, T.; Long, J.; Shi, X.; Wang, D.; Li, Z.; Wang, X. . Efficient photocatalytic degradation of volatile organic compounds by porous indium hydroxide nanocrystals. Environ. Sci. Technol. 2010, 44, 1380–1385. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Li, D.; Zheng, Y.; Zhang, W.; Shao, Y.; Chen, Y.; Li, W.; Fu, X. Microwave hydrothermal synthesis of calcium antimony oxide hydroxide with high photocatalytic activity toward benzene. Environ. Sci. Technol. 2009, 43, 7877–7882. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yan, L.; Cheng, J.; Jing, C. Mechanistic insights into TiO2 thickness in Fe3O4@TiO2-GO composites for enrofloxacin photodegradation. Chem. Eng. J. 2017, 325, 647–654. [Google Scholar] [CrossRef]
- Sun, C.; Yang, S.; Gao, Z.; Yang, S.; Yilihamu, A.; Ma, Q.; Zhao, R.; Xue, F. Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue. Mater. Chem. Phys. 2019, 223, 751–757. [Google Scholar] [CrossRef]
- Yang, N.; Liu, Y.; Zhu, J.; Wang, Z.; Li, J. Study on the efficacy and mechanism of Fe-TiO2 visible heterogeneous Fenton catalytic degradation of atrazine. Chemosphere 2020, 252, 126333. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xia, T.; Meng, Y.; Zhang, J.; Chen, G.; Ji, Z.; Qin, W. Developing Recyclable Magnetic TiO2-Fe3O4 Loading on Carbon Microtube Photocatalyst for Efficient Photodegradation of Microcystin-LR Under Visible Light. Water 2025, 17, 1342. https://doi.org/10.3390/w17091342
Zhang X, Xia T, Meng Y, Zhang J, Chen G, Ji Z, Qin W. Developing Recyclable Magnetic TiO2-Fe3O4 Loading on Carbon Microtube Photocatalyst for Efficient Photodegradation of Microcystin-LR Under Visible Light. Water. 2025; 17(9):1342. https://doi.org/10.3390/w17091342
Chicago/Turabian StyleZhang, Xinyi, Tian Xia, Ying Meng, Jiaxi Zhang, Gaofeng Chen, Zhaoting Ji, and Wenli Qin. 2025. "Developing Recyclable Magnetic TiO2-Fe3O4 Loading on Carbon Microtube Photocatalyst for Efficient Photodegradation of Microcystin-LR Under Visible Light" Water 17, no. 9: 1342. https://doi.org/10.3390/w17091342
APA StyleZhang, X., Xia, T., Meng, Y., Zhang, J., Chen, G., Ji, Z., & Qin, W. (2025). Developing Recyclable Magnetic TiO2-Fe3O4 Loading on Carbon Microtube Photocatalyst for Efficient Photodegradation of Microcystin-LR Under Visible Light. Water, 17(9), 1342. https://doi.org/10.3390/w17091342