Mining-Influenced Water from the Abandoned Hausham Colliery in Southern Germany—A Case of Unmonitored Natural Attenuation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Geological Setting
2.2. Sampling and Analysis
3. Results and Discussion
3.1. Geological and Hydrogeological Setting
3.2. Hydrochemical Characterization
3.3. Water Isotope Signature
3.4. Geochemical Composition of Solids and Eluates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groiss, R. Geologie und Kohlebergbau im Hausruck (Oberösterreichische Molasse). Arch. Für Lagerstättenforschung 1989, 11, 167–178. [Google Scholar]
- Weber, L.; Weiß, A. Bergbaugeschichte und Geologie der österreichischen Braunkohlenvorkommen; Geologische Bundesanst: Wien, Austria, 1983; ISBN 3900312265. [Google Scholar]
- Müller, M. Die Oberbayerische Pechkohle: Die Fortsetzung oligozäner und miozäner Kohlevorkommen aus der Faltenmolasse in die oberbayerische Vorlandmolasse. Geol. Bavarica 1975, 73, 113–121. [Google Scholar]
- Sachsenhofer, R.F.; Aghayeva, V.; Ajuaba, S.; Kojić, I.; Misch, D.; Stojanović, K. Horgen-Käpfnach, the largest Swiss coal deposit: Geology, petrology and geochemistry. Int. J. Coal Geol. 2025, 299, 104684. [Google Scholar] [CrossRef]
- Balthasar, K. Die Oberbayerische Pechkohle: Geschichte und Bergtechnik der Kohlebergwerke Penzberg und Hausham. Geol. Bavarica 1975, 73, 7–24. [Google Scholar]
- Burke, S.P.; Younger, P.L. Groundwater rebound in the South Yorkshire coalfield: A first approximation using the GRAM model. Q. J. Eng. Geol. Hydrogeol. 2000, 33, 149–160. [Google Scholar] [CrossRef]
- Burrows, J.E.; Peters, S.C.; Cravotta, C.A. Temporal geochemical variations in above- and below-drainage coal mine discharge. Appl. Geochem. 2015, 62, 84–95. [Google Scholar] [CrossRef]
- Gombert, P.; Sracek, O.; Koukouzas, N.; Gzyl, G.; Valladares, S.T.; Frączek, R.; Klinger, C.; Bauerek, A.; Areces, J.E.Á.; Chamberlain, S.; et al. An Overview of Priority Pollutants in Selected Coal Mine Discharges in Europe. Mine Water Environ. 2019, 38, 16–23. [Google Scholar] [CrossRef]
- Kessler, T.; Mugova, E.; Jasnowski-Peters, H.; Rinder, T.; Stemke, M.; Wolkersdorfer, C.; Hilberg, S.; Melchers, C.; Struckmeier, W.; Wieber, G.; et al. Grundwasser in ehemaligen deutschen Steinkohlenrevieren—Ein wissenschaftlicher Blickwinkel auf Grubenflutungen. Grundwasser 2020, 25, 259–272. [Google Scholar] [CrossRef]
- Sengupta, M. Environmental Impacts of Mining: Monitoring, Restoration, and Control, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9781003164012. [Google Scholar]
- Wolkersdorfer, C. Water Management at Abandoned Flooded Underdground Mines—Fundamentals, Tracer Tests, Modelling, Water Treatment; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Banks, D.; Younger, P.L.; Arnesen, R.-T.; Iversen, E.R.; Banks, S.B. Mine-water chemistry: The good, the bad and the ugly. Env. Geol 1997, 32, 157–174. [Google Scholar] [CrossRef]
- Cravotta, C.A. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations. Appl. Geochem. 2008, 23, 166–202. [Google Scholar] [CrossRef]
- Rinder, T.; Dietzel, M.; Stammeier, J.A.; Leis, A.; Bedoya-González, D.; Hilberg, S. Geochemistry of coal mine drainage, groundwater, and brines from the Ibbenbüren mine, Germany: A coupled elemental-isotopic approach. Appl. Geochem. 2020, 121, 104693. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Mine Waters: Acidic to Circmneutral. Elements 2011, 7, 393–398. [Google Scholar] [CrossRef]
- Younger, P.L.; Robins, N.S. Challenges in the characterization and prediction of the hydrogeology and geochemistry of mined ground. Geol. Soc. Lond. Spéc. Publ. 2002, 198, 1–16. [Google Scholar] [CrossRef]
- Acharya, B.S.; Kharel, G. Acid mine drainage from coal mining in the United States—An overview. J. Hydrol. 2020, 588, 125061. [Google Scholar] [CrossRef]
- Balci, N.; Shanks, W.C.; Mayer, B.; Mandernack, K.W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 2007, 71, 3796–3811. [Google Scholar] [CrossRef]
- Gao, M.; Tang, J.; Tu, Y.; Zhu, M.; Nie, Z.; Liu, X.; Liu, G. The response and ecological implications between various sulfur forms and environmental factors in acid mine drainage. Environ. Res. 2025, 275, 121425. [Google Scholar] [CrossRef]
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Alvarez, E.; Fernández Marcos, M.L.; Vaamonde, C.; Fernández-Sanjurjo, M.J. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. Sci. Total Environ. 2003, 313, 185–197. [Google Scholar] [CrossRef]
- Dang, Z.; Liu, C.; Haigh, M.J. Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ. Pollut. 2002, 118, 419–426. [Google Scholar] [CrossRef]
- Qureshi, A.; Maurice, C.; Öhlander, B. Potential of coal mine waste rock for generating acid mine drainage. J. Geochem. Explor. 2016, 160, 44–54. [Google Scholar] [CrossRef]
- Moodley, I.; Sheridan, C.M.; Kappelmeyer, U.; Akcil, A. Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Miner. Eng. 2018, 126, 207–220. [Google Scholar] [CrossRef]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Wolkersdorfer, C.; Bantele, M. Die Oberbayerische Pechkohlenmulde—Hydrogeochemische Untersuchungen der Grubenwässer. Grundwasser 2013, 18, 185–196. [Google Scholar] [CrossRef]
- Berge, T.B.; Veal, S.L. Structure of the Alpine foreland. Tectonics 2005, 24, TC5011. [Google Scholar] [CrossRef]
- Barthelt, D. Faziesanalyse und Untersuchungen der Sedimentationsmechanismen in der Unteren Brackwasser-Molasse Oberbayerns. In Münchner Geowissenschaftliche Abhandlungen; ConchBooks: Harxheim, Germany, 1989; pp. 1–118. [Google Scholar]
- Geissler, P. Die Oberbayerische Pechkohle: Zur Geologie im Ostfeld des Kohlebergwerks Peißenberg. Geol. Bavarica 1975, 73, 55–106. [Google Scholar]
- Teichmüller, M.; Teichmüller, R. Die Oberbayerische Pechkohle: Inkohlungsuntersuchungen in der Molasse des Alpenvorlandes. Geol. Bavarica 1975, 73, 123–142. [Google Scholar]
- Lensch, G.; Wolf, M.; Brunnacker, K. Stratigraphie, Fazies und Kleintektonik der kohleführenden Schichten in der bayerischen Faltenmolasse: (Peissenberg, Peiting, Penzberg, Hausham, Marienstein). Sporenstratigraphische Untersuchungen in der gefalteten Molasse der Murnauer Mulde; Bayerisches Geologisches Landesamt: Oberbayern, Germany, 1961. [Google Scholar]
- Pinsl, L. Die Oberbayerische Pechkohle: Chemische Kennzeichen der Oberbayerischen Glanzbraunkohle in den Bergwerken Peißenberg und Peiting. Geol. Bavarica 1975, 73, 107–111. [Google Scholar]
- BVF Miesbach-Tegernsee. Bezirksfischereiverein Miesbach-Tegernsee: Gewässer. Available online: https://bfv-mbteg.de/gewasser/loidlsee/ (accessed on 19 February 2025).
- Bayerisches Landesamt für Umwelt. Umweltatlas: Geologische Karte 1:25.000, Blatt 8236 Tegernsee. Available online: https://www.umweltatlas.bayern.de/mapapps/resources/apps/umweltatlas/index.html?lang=de&dn=lfu_domain-geologie (accessed on 28 February 2025).
- Waterloo Hydrogeologic. AquaChem; Waterloo Hydrogeologic: Waterloo, ON, Canada, 2022. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2013. [Google Scholar]
- Debye, P.; Hückel, E. Zur Theorie der Elektrolyte. Phys. Z. 1923, 24, 185–206. [Google Scholar]
- Brand, W.A.; Geilmann, H.; Crosson, E.R.; Rella, C.W. Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on delta(2)H and delta(18)O of pure water samples and alcohol/water mixtures. Rapid Commun. Mass Spectrom. 2009, 23, 1879–1884. [Google Scholar] [CrossRef]
- Gupta, S.; Jena, V.; Matic, N.; Kapralova, V.; Solanki, J. Assessment of Geo-Accumulation Index of heavy metal and source of contamination by multivariate factor analysis. Int. J. Hazard. Mater. 2014, 2014, 18–22. [Google Scholar]
- Müller, G. Index of geo-accumulation in sediments of the Rhine River. Geo. J. 1969, 2, 108–118. [Google Scholar]
- Turekian, K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geol. Soc. Am. Bull. 1961, 72, 175. [Google Scholar] [CrossRef]
- Bayerische Vermessungsverwaltung. Open Data: Digtales Gelöndemodell 1 m (DGM1). Available online: https://geodaten.bayern.de/opengeodata/OpenDataDetail.html?pn=dgm1 (accessed on 28 February 2025).
- Wagner, B.; Töpfner, C.; Lischeid, G.; Scholz, M.; Klinger, R.; Klaas, P. Hydrogeochemische Hintergrundwerte der Grundwässer Bayerns. GLA Fachber. 2003, 21, 252. [Google Scholar]
- Furtak, H.; Langguth, H.R. Zur hydrochemischen Kennzeichnung von Grundwässern und Grundwassertypen mittels Kennzahlen [Towards hydrochemical identification of groundwater and types of groundwater by means of indices]. Mem IAH Cong. 1967, 7, 86–96. [Google Scholar]
- Meng, R.; Han, Z.; Gao, X.; Zhao, Y.; Han, C.; Han, Y.; Yang, R.; Li, S.; Liu, F.; Tucker, M.E.; et al. Dissolved ammonia catalyzes proto-dolomite precipitation at Earth surface temperature. Earth Planet. Sci. Lett. 2024, 646, 119012. [Google Scholar] [CrossRef]
- Stumpp, C.; Klaus, J.; Stichler, W. Analysis of long-term stable isotopic composition in German precipitation. J. Hydrol. 2014, 517, 351–361. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Global Network of Isotopes in Precipitation (GNIP). Available online: https://www.gtn-h.info/gtnh_networks/gnip-gnir/ (accessed on 22 February 2025).
- Bottrell, S.; Tellam, J.; Bartlett, R.; Hughes, A. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK. Appl. Geochem. 2008, 23, 2382–2394. [Google Scholar] [CrossRef]
- Burke, A.; Present, T.M.; Paris, G.; Rae, E.C.; Sandilands, B.H.; Gaillardet, J.; Peucker-Ehrenbrink, B.; Fischer, W.W.; McClelland, J.W.; Spencer, R.G.; et al. Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth Planet. Sci. Lett. 2018, 496, 168–177. [Google Scholar] [CrossRef]
- Otero, N.; Soler, A. Sulphur isotopes as tracers of the influence of potash mining in groundwater salinisation in the Llobregat Basin (NE Spain). Water Res. 2002, 36, 3989–4000. [Google Scholar] [CrossRef]
- Relph, K.E.; Stevenson, E.I.; Turchyn, A.V.; Antler, G.; Bickle, M.J.; Baronas, J.J.; Darby, S.E.; Parsons, D.R.; Tipper, E.T. Partitioning riverine sulfate sources using oxygen and sulfur isotopes: Implications for carbon budgets of large rivers. Earth Planet. Sci. Lett. 2021, 567, 116957. [Google Scholar] [CrossRef]
- Gammons, C.H.; Brown, A.; Poulson, S.R.; Henderson, T.H. Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage. Appl. Geochem. 2013, 31, 228–238. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, L.; Li, C.; Zheng, L. A hydrochemical and multi-isotopic study of groundwater sulfate origin and contribution in the coal mining area. Ecotoxicol. Environ. Saf. 2022, 248, 114286. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Q. Research Advances in Identifying Sulfate Contamination Sources of Water Environment by Using Stable Isotopes. Int. J. Environ. Res. Public Health 2019, 16, 1914. [Google Scholar] [CrossRef] [PubMed]
I Geo | Index Class | Contamination Intensity |
---|---|---|
>5 | 6 | very strong |
>4–5 | 5 | strong to very strong |
>3–4 | 4 | strong |
>2–3 | 3 | moderate to strong |
>1–2 | 2 | moderate |
>0–1 | 1 | uncontaminated to moderate |
<0 | 0 | uncontaminated |
Sample | pH | Cond. | Na | K | Mg | Ca | Cl | SO4 | HCO3 | Sr | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
µS/cm | mmol/L | mmol/L | mmol/L | mmol/L | mmol/L | mmol/L | mmol/L | µmol/L | µmol/L | µmol/L | ||
S 1 | 8.31 | 458 | 0.150 | 0.043 | 1.001 | 1.681 | 0.045 | 0.088 | 4.823 | 1.785 | 0.096 | 0.024 |
S 2 | 8.35 | 532 | 0.285 | 0.036 | 1.206 | 2.046 | 0.024 | 0.122 | 6.130 | 2.904 | 0.099 | 0.036 |
Li 1 | 7.78 | 1017 | 0.574 | 0.201 | 2.130 | 3.756 | 0.017 | 2.824 | 6.185 | 20.775 | <0.085 | 0.026 |
MW 1 | 8.40 | 1490 | 2.704 | 0.436 | 2.831 | 4.865 | 0.201 | 5.856 | 5.675 | 36.899 | <0.085 | 0.027 |
MW 2 | 8.27 | 1497 | 2.714 | 0.440 | 2.837 | 4.912 | 0.198 | 5.865 | 5.695 | 37.060 | 0.090 | 0.016 |
MW 3 | 8.12 | 1568 | 2.977 | 0.487 | 2.923 | 5.155 | 0.234 | 6.282 | 5.712 | 39.584 | <0.085 | 0.027 |
MW 4 | 8.13 | 1458 | 2.553 | 0.422 | 2.799 | 4.801 | 0.186 | 5.615 | 5.747 | 35.177 | <0.085 | 0.029 |
MW 5 | 8.34 | 1500 | 2.653 | 0.439 | 2.873 | 5.028 | 0.193 | 5.792 | 6.063 | 37.611 | 0.090 | 0.020 |
MW 6 | 8.15 | 1513 | 2.669 | 0.442 | 2.890 | 5.102 | 0.195 | 5.825 | 6.154 | 34.790 | <0.085 | 0.022 |
MW 7 | 7.96 | 1524 | 2.678 | 0.442 | 2.891 | 5.105 | 0.197 | 5.829 | 6.181 | 36.986 | <0.085 | 0.034 |
MW 8 | 8.15 | 1972 | 4.748 | 0.690 | 3.715 | 6.645 | 0.385 | 8.804 | 6.509 | 53.565 | 0.112 | 0.035 |
MW 9 | 7.99 | 2040 | 4.789 | 0.707 | 3.799 | 6.896 | 0.404 | 8.910 | 6.985 | 54.859 | 0.102 | 0.029 |
MW 10 | 7.38 | 2830 | 8.482 | 1.149 | 4.913 | 8.920 | 0.889 | 11.752 | 10.833 | 79.361 | 0.192 | 0.039 |
MW 11 | 6.90 | 2710 | 7.862 | 1.083 | 4.463 | 8.639 | 0.786 | 10.798 | 11.371 | 76.773 | 0.179 | 0.038 |
Sample | Sediment | Sinter MW 6 | Sinter MW 2 | Sinter Li 1 | Fe Ochre MW 11 | Standard Sand | Standard Carbonate |
---|---|---|---|---|---|---|---|
As (mg/kg) | 31 | bdl | 5 | bdl | 76 | 1 | 1 |
Ba (mg/kg) | 612 | bdl | bdl | bdl | 268 | 0 | 10 |
Cr (mg/kg) | 188 | 66 | 78 | 49 | 58 | 35 | 11 |
Ni (mg/kg) | 120 | 49 | 43 | 38 | 76 | 2 | 20 |
Sr (mg/kg) | 899 | 3970 | 3359 | 2984 | 2495 | 20 | 610 |
U (mg/kg) | 54 | 22 | 22 | 16 | 41 | 0 | 2 |
Zn (mg/kg) | 161 | 73 | 56 | 25 | 125 | 16 | 20 |
Igeo As | 3.0 | 1.3 | 3.9 | ||||
Igeo Ba | |||||||
Igeo Cr | 1.3 | 1.4 | 1.5 | 1.1 | 0.1 | ||
Igeo Ni | 3.7 | 0.5 | 0.4 | 0.2 | 3.2 | ||
Igeo Sr | 3.4 | 1.5 | 1.3 | 1.2 | 4.4 | ||
Igeo U | 4.4 | 1.9 | 1.9 | 1.6 | 4.1 | ||
Igeo Zn | 1.9 | 0.9 | 0.6 | −0.2 | 1.6 | ||
Igeo mean | 3.2 | 1.4 | 1.3 | 1.1 | 3.6 | ||
Index class | 4 | 2 | 2 | 2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hilberg, S.; Yousefi, N.; Rinder, T. Mining-Influenced Water from the Abandoned Hausham Colliery in Southern Germany—A Case of Unmonitored Natural Attenuation. Water 2025, 17, 1253. https://doi.org/10.3390/w17091253
Hilberg S, Yousefi N, Rinder T. Mining-Influenced Water from the Abandoned Hausham Colliery in Southern Germany—A Case of Unmonitored Natural Attenuation. Water. 2025; 17(9):1253. https://doi.org/10.3390/w17091253
Chicago/Turabian StyleHilberg, Sylke, Nicola Yousefi, and Thomas Rinder. 2025. "Mining-Influenced Water from the Abandoned Hausham Colliery in Southern Germany—A Case of Unmonitored Natural Attenuation" Water 17, no. 9: 1253. https://doi.org/10.3390/w17091253
APA StyleHilberg, S., Yousefi, N., & Rinder, T. (2025). Mining-Influenced Water from the Abandoned Hausham Colliery in Southern Germany—A Case of Unmonitored Natural Attenuation. Water, 17(9), 1253. https://doi.org/10.3390/w17091253