The Impact of the Mechanism of Biocarriers on Bacterial–Microbial Symbiosis for Mariculture Wastewater Treatment: Performance and Microbial Community Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Synthetic Mariculture Wastewater
2.2. Experimental Setup and Operation
2.3. Analytical Methods
3. Results and Discussion
3.1. Mariculture Wastewater Treatment Performance
3.2. The Accumulation of Chlorophyll a and Biomass Production
3.3. The Production of SMP and EPS
3.4. Fluorescence Excitation–Emission Matrix Analysis of System
3.5. Microbial Community Composition
3.6. Mass Balance Flow of Carbon and Nitrogen
3.7. Impact of Mechanism of Biocarriers on Bacterial–Microbial Symbiosis for Pollutant Removal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, N.; Yu, X.; Jiang, Z.; Chen, H.; Feng, H.; Kang, Y.; Ma, H.; Zhu, H. Impacts of an intensive traditional mariculture model on offshore environments as evidenced by dissolved organic matter and bacterial communities. Water Res. 2024, 267, 122530. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, L.; Jin, C.; Zhao, Y.; Gao, M.; She, Z.; Wang, G. Metagenomics and network analysis elucidating the coordination between fermentative bacteria and microalgae in a novel bacterial-algal coupling reactor (BACR) for mariculture wastewater treatment. Water Res. 2022, 215, 118256. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, Q.; Gao, M.; Zhao, C.; She, Z.; Zhao, Y.; Jin, C.; Guo, L. Effect of aerobic/anoxic duration on the performance, microbial activity and microbial community of sequencing batch biofilm reactor treating synthetic mariculture wastewater. Bioresour. Technol. 2021, 333, 125198. [Google Scholar] [CrossRef] [PubMed]
- Kashem, A.H.M.; Das, P.; Hawari, A.H.; Mehariya, S.; Thaher, M.I.; Khan, S.; Abduquadir, M.; Al-Jabri, H. Aquaculture from inland fish cultivation to wastewater treatment: A review. Rev. Environ. Sci. Bio/Technol. 2023, 22, 969–1008. [Google Scholar] [CrossRef]
- Zhu, J.; You, H.; Li, Z.; Xie, B.; Chen, H.; Ding, Y.; Qi, S.; Li, W.; Ma, B.; Qu, X.; et al. Comparison on the photogranules formation and microbial community shift between the batch and continuous-flow mode for the high saline wastewater treatment. Chem. Eng. J. 2022, 446, 137284. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, Y.; Qiu, S.; Li, M.; Yuan, W.; Ge, S. Granular indigenous microalgal-bacterial consortium for wastewater treatment: Establishment strategy, functional microorganism, nutrient removal, and influencing factor. Bioresour. Technol. 2022, 353, 127130. [Google Scholar] [CrossRef]
- Huang, F.; Teng, J.; Zhao, Y.; Li, S.; Lin, H.; Cai, X.; Zhang, M. Biochar-driven fouling mitigation in sustainable microalgal-bacterial membrane bioreactors. J. Membr. Sci. 2024, 714, 123427. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, T.; Zhang, W.; Wang, D. Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res. 2021, 189, 116650. [Google Scholar] [CrossRef]
- Tecirli, E.S.; Akgun, K.; Caglak, A.; Sari Erkan, H.; Onkal Engin, G. Treatment of textile wastewater in a single-step moving bed-membrane bioreactor: Comparison with conventional membrane bioreactor in terms of performance and membrane fouling. Water Environ. J. 2024, 38, 465–480. [Google Scholar] [CrossRef]
- Banti, D.C.; Samaras, P.; Chioti, A.G.; Mitsopoulos, A.; Tsangas, M.; Zorpas, A.; Sfetsas, T. Improvement of MBBR Performance by the Addition of 3D-Printed Biocarriers Fabricated with 13X and Bentonite. Resources 2023, 12, 81. [Google Scholar] [CrossRef]
- Lu, M.; Zhao, F.; Qin, F.; Zhang, F.; Feng, Q.; Guo, R. Novel flocking materials as biocarriers in moving bed biofilm reactor for improving simultaneous nitrification and denitrification performance. Bioresour. Technol. 2024, 396, 130430. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; You, H.; Li, Z.; Ding, Y.; Liu, F.; Zhang, C.; Wang, S.; Gu, Y.; Chen, F.; Ma, B. Impacts of bio-carriers on the characteristics of soluble microbial products in a hybrid membrane bioreactor for treating mariculture wastewater. Sci. Total Environ. 2020, 737, 140287. [Google Scholar] [CrossRef]
- Radmehr, S.; Kallioinen-Mänttäri, M.; Mänttäri, M. Interplay role of microalgae and bio-carriers in hybrid membrane bioreactors on wastewater treatment, membrane fouling, and microbial communities. Environ. Pollut. 2023, 339, 122764. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Khoo, K.S.; Chew, K.W.; Devadas, V.V.; Phang, S.J.; Lim, H.R.; Rajendran, S.; Show, P.L. Advancement of renewable energy technologies via artificial and microalgae photosynthesis. Bioresour. Technol. 2022, 363, 127830. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, L.; Li, M.; Hu, C. Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. Bioresour. Technol. 2022, 344, 126371. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Kong, Z.; Guo, H.; Zhang, Y.; Han, X.; Gao, Y.; Daigger, G.T.; Zhang, G.; Li, R.; Liu, Y. Performance, mechanism regulation and resource recycling of bacteria-algae symbiosis system for wastewater treatment: A review. Environ. Pollut. 2024, 362, 125019. [Google Scholar] [CrossRef]
- Zhu, J.; You, H.; Ng, H.Y.; Li, Z.; Xie, B.; Chen, H.; Ding, Y.; Tan, H.; Liu, F.; Zhang, C. Impacts of bio-carriers on the characteristics of cake layer and membrane fouling in a novel hybrid membrane bioreactor for treating mariculture wastewater. Chemosphere 2022, 300, 134593. [Google Scholar] [CrossRef]
- Chen, H.; Liu, G.; Wang, K.; Piao, C.; Ma, X.; Li, X.-K. Characteristics of microbial community in EGSB system treating with oxytetracycline production wastewater. J. Environ. Manag. 2021, 295, 113055. [Google Scholar] [CrossRef]
- Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Cheetham, N.W.; Punruckvong, A. An HPLC method for the determination of acetyl and pyruvyl groups in polysaccharides. Carbohydr. Polym. 1985, 5, 399–406. [Google Scholar] [CrossRef]
- Bui, X.-T.; Nguyen, T.-T.; Ngo, H.H.; Lin, K.Y.A.; Lin, C.; Le, L.-T.; Dang, B.-T.; Bui, M.-H.; Varjani, S. Co-culture of microalgae-activated sludge in sequencing batch photobioreactor systems: Effects of natural and artificial lighting on wastewater treatment. Bioresour. Technol. 2022, 343, 126091. [Google Scholar]
- Wang, K.W.; Liu, W.Z.; Kang, D.; Zhang, Y.X.; Cui, D. Hybrid bioreactor built-in with fixed bio-carriers for denitrification with low C/N ratio: Hydrodynamic optimization and microbial divergence. Environ. Res. 2023, 224, 115510. [Google Scholar] [CrossRef]
- Sun, L.; Bai, Z.; Yang, Q.; Fu, R.; Li, H.; Li, X. In situ assessment of the initial phase of wastewater biofilm formation: Effect of the presence of algae in an aerobic bacterial biofilm system. Water Res. 2024, 253, 121283. [Google Scholar] [CrossRef] [PubMed]
- Battulga, B.; Nakayama, M.; Matsuoka, S.; Kondo, T.; Atarashi-Andoh, M.; Koarashi, J. Dynamics and functions of microbial communities in the plastisphere in temperate coastal environments. Water Res. 2024, 264, 122207. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhou, X.; Ma, Y.; Zhang, X.; Rong, X.; Xiao, X.; Wu, Z.; Wei, J. Calcium modified basalt fiber bio-carrier for wastewater treatment: Investigation on bacterial community and nitrogen removal enhancement of bio-nest. Bioresour. Technol. 2021, 335, 125259. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Jie, M.; Zhang, K.; Qian, Y.; Ma, J. Performance and microbial communities of different biofilm membrane bioreactors with pre-anoxic tanks treating mariculture wastewater. Bioresour. Technol. 2020, 295, 122302. [Google Scholar] [CrossRef]
- Han, F.; Zhou, W. Nitrogen recovery from wastewater by microbial assimilation—A review. Bioresour. Technol. 2022, 363, 127933. [Google Scholar] [CrossRef]
- Cao, J.; Chen, F.; Fang, Z.; Gu, Y.; Wang, H.; Lu, J.; Bi, Y.; Wang, S.; Huang, W.; Meng, F. Effect of filamentous algae in a microalgal-bacterial granular sludge system treating saline wastewater: Assessing stability, lipid production and nutrients removal. Bioresour. Technol. 2022, 354, 127182. [Google Scholar] [CrossRef]
- Feng, S.; Liu, F.; Zhu, S.; Feng, P.; Wang, Z.; Yuan, Z.; Shang, C.; Chen, H. Performance of a microalgal-bacterial consortium system for the treatment of dairy-derived liquid digestate and biomass production. Bioresour. Technol. 2020, 306, 123101. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Y.; Pei, H. Algal–bacterial consortia for bioproduct generation and wastewater treatment. Renew. Sustain. Energy Rev. 2021, 149, 111395. [Google Scholar] [CrossRef]
- Tang, C.-C.; Hu, Y.-R.; He, Z.-W.; Li, Z.-H.; Tian, Y.; Wang, X.C. Promoting symbiotic relationship between microalgae and bacteria in wastewater treatment processes: Technic comparison, microbial analysis, and future perspectives. Chem. Eng. J. 2024, 498, 155703. [Google Scholar] [CrossRef]
- Sheng, G.P.; Yu, H.Q.; Li, X.Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Li, Y.; Zhang, W.; Ma, X.; Niu, L.; Wang, L.; Zheng, J. Hysteretic and asynchronous regime shifts of bacterial and micro-eukaryotic communities driven by nutrient loading. Water Res. 2024, 261, 122045. [Google Scholar] [CrossRef] [PubMed]
- Qv, M.; Dai, D.; Liu, D.; Wu, Q.; Tang, C.; Li, S.; Zhu, L. Towards advanced nutrient removal by microalgae-bacteria symbiosis system for wastewater treatment. Bioresour. Technol. 2023, 370, 128574. [Google Scholar] [CrossRef]
- Su, Y.; Zhu, X.; Zou, R.; Zhang, Y. The interactions between microalgae and wastewater indigenous bacteria for treatment and valorization of brewery wastewater. Resour. Conserv. Recycl. 2022, 182, 106341. [Google Scholar] [CrossRef]
- Mahto, K.U.; Das, S. Bacterial biofilm and extracellular polymeric substances in the moving bed biofilm reactor for wastewater treatment: A review. Bioresour. Technol. 2022, 345, 126476. [Google Scholar] [CrossRef]
- Deena, S.R.; Kumar, G.; Vickram, A.; Singhania, R.R.; Dong, C.D.; Rohini, K.; Anbarasu, K.; Thanigaivel, S.; Ponnusamy, V.K. Efficiency of various biofilm carriers and microbial interactions with substrate in moving bed-biofilm reactor for environmental wastewater treatment. Bioresour. Technol. 2022, 359, 127421. [Google Scholar]
- Segredo-Morales, E.; González, E.; González-Martín, C.; Vera, L. Secondary wastewater effluent treatment by microalgal-bacterial membrane photobioreactor at long solid retention times. J. Water Process Eng. 2022, 49, 103200. [Google Scholar] [CrossRef]
- Qian, J.; Wan, T.; Ye, Y.; Li, J.; Toda, T.; Li, H.; Sekine, M.; Takayama, Y.; Koga, S.; Shao, S. Insight into the formation mechanism of algal biofilm in soy sauce wastewater. J. Clean. Prod. 2023, 394, 136179. [Google Scholar] [CrossRef]
- Sun, Y.; Ali, A.; Zheng, Z.; Su, J.; Zhang, S.; Min, Y.; Liu, Y. Denitrifying bacteria immobilized magnetic mycelium pellets bioreactor: A new technology for efficient removal of nitrate at a low carbon-to-nitrogen ratio. Bioresour. Technol. 2022, 347, 126369. [Google Scholar] [CrossRef]
- Xu, B.; Ng, T.C.A.; Huang, S.; Ng, H.Y. Effect of quorum quenching on EPS and size-fractioned particles and organics in anaerobic membrane bioreactor for domestic wastewater treatment. Water Res. 2020, 179, 115850. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Qiu, S.; Yu, Z.; Li, M.; Ge, S. Enhanced secretions of algal cell-adhesion molecules and metal ion-binding exoproteins promote self-flocculation of Chlorella sp. cultivated in municipal wastewater. Environ. Sci. Technol. 2021, 55, 11916–11924. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Liang, J.; Wang, L.; Markou, G.; Jia, Q. Operation optimization of a photo-sequencing batch reactor for wastewater treatment: Study on influencing factors and impact on symbiotic microbial ecology. Bioresour. Technol. 2018, 252, 7–13. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Fan, Y.; Liu, Y.; Yu, M.; He, C.; Wu, J. Bioaugmentation of low C/N ratio wastewater: Effect of acetate and propionate on nutrient removal, substrate transformation, and microbial community behavior. Bioresour. Technol. 2020, 306, 122465. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, Z.; Bee, M.; Gibson, V.; Wei, L.; Huang, X.; Liu, C. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor. J. Hazard. Mater. 2018, 349, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Hodaei, M.; Hartnett, E.; Gincley, B.; Khan, F.; Kim, G.-Y.; Pinto, A.J.; Bradley, I.M. Community structure and function during periods of high performance and system upset in a full-scale mixed microalgal wastewater resource recovery facility. Water Res. 2024, 259, 121819. [Google Scholar] [CrossRef]
- Unnithan, V.V.; Unc, A.; Smith, G.B. Mini-review: A priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters. Algal Res. 2014, 4, 35–40. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, B.; Meng, J.; Zhou, A.; Yue, X.; Niu, Y.; Cui, Y. Efficiency, granulation, and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating wastewater with low COD/TN ratio. Bioresour. Technol. 2018, 270, 147–155. [Google Scholar] [CrossRef]
- Blair, M.F.; Vaidya, R.; Salazar-Benites, G.; Bott, C.B.; Pruden, A. Relating microbial community composition to treatment performance in an ozone-biologically active carbon filtration potable reuse treatment train. Water Res. 2024, 262, 122091. [Google Scholar] [CrossRef]
- Galès, A.; Bonnafous, A.; Carré, C.; Jauzein, V.; Lanouguère, E.; Le Floc’h, E.; Pinoit, J.; Poullain, C.; Roques, C.; Sialve, B. Importance of ecological interactions during wastewater treatment using high rate algal ponds under different temperate climates. Algal Res. 2019, 40, 101508. [Google Scholar] [CrossRef]
- Quartaroli, L.; Silva, C.M.; Silva, L.C.F.; Lima, H.S.; de Paula, S.O.; Dias, R.S.; Carvalho, K.B.; Souza, R.S.; Bassin, J.P.; da Silva, C.C. Effect of the gradual increase of salt on stability and microbial diversity of granular sludge and ammonia removal. J. Environ. Manag. 2019, 248, 109273. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; Zhu, Y.; Yuan, C.; Zhao, T. Effect of bacteria-to-algae volume ratio on treatment performance and microbial community of a novel heterotrophic nitrification-aerobic denitrification bacteria-chlorella symbiotic system. Bioresour. Technol. 2021, 342, 126025. [Google Scholar] [CrossRef]
- Meng, F.; Huang, W.; Liu, D.; Zhao, Y.; Huang, W.; Lei, Z.; Zhang, Z. Application of aerobic granules-continuous flow reactor for saline wastewater treatment: Granular stability, lipid production and symbiotic relationship between bacteria and algae. Bioresour. Technol. 2020, 295, 122291. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Fu, G.; Zhang, Z. Simultaneous electricity generation and nitrogen and carbon removal in single-chamber microbial fuel cell for high-salinity wastewater treatment. J. Clean. Prod. 2020, 276, 123203. [Google Scholar] [CrossRef]
- Wang, G.; Yin, X.; Feng, Z.; Chen, C.; Chen, D.; Wu, B.; Liu, C.; Morel, J.L.; Jiang, Y.; Yu, H. Novel biological aqua crust enhances in situ metal (loid) bioremediation driven by phototrophic/diazotrophic biofilm. Microbiome 2023, 11, 110. [Google Scholar] [CrossRef]
- Izadi, P.; Izadi, P.; Eldyasti, A. Design, operation and technology configurations for enhanced biological phosphorus removal (EBPR) process: A review. Rev. Environ. Sci. Bio/Technol. 2020, 19, 561–593. [Google Scholar] [CrossRef]
- Boelee, N.; Temmink, H.; Janssen, M.; Buisman, C.; Wijffels, R. Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater. Ecol. Eng. 2014, 64, 213–221. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, M.; Gu, J.; Ma, Y.; Liu, Y. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. Water Res. 2020, 179, 115884. [Google Scholar] [CrossRef]
- Ji, J.; Peng, Y.; Wang, B.; Mai, W.; Li, X.; Zhang, Q.; Wang, S. Effects of salinity build-up on the performance and microbial community of partial-denitrification granular sludge with high nitrite accumulation. Chemosphere 2018, 209, 53–60. [Google Scholar] [CrossRef]
- Ji, B.; Liu, Y. Assessment of microalgal-bacterial granular sludge process for environmentally sustainable municipal wastewater treatment. Acs EsT Water 2021, 1, 2459–2469. [Google Scholar] [CrossRef]
- Petrini, S.; Foladori, P.; Donati, L.; Andreottola, G. Comprehensive respirometric approach to assess photosynthetic, heterotrophic and nitrifying activity in microalgal-bacterial consortia treating real municipal wastewater. Biochem. Eng. J. 2020, 161, 107697. [Google Scholar] [CrossRef]
- Meng, H.; Zhang, X.; Zhou, Z.; Luo, L.; Lan, W.; Lin, J.-G.; Li, X.-Y.; Gu, J.-D. Simultaneous occurrence and analysis of both anammox and n-damo bacteria in five full-scale wastewater treatment plants. Int. Biodeterior. Biodegrad. 2021, 156, 105112. [Google Scholar] [CrossRef]
- Wang, L.; Hong, Y.; Gu, J.-D.; Wu, J.; Yan, J.; Lin, J.-G. Influence of critical factors on nitrogen removal contribution by anammox and denitrification in an anammox-inoculated wastewater treatment system. J. Water Process Eng. 2021, 40, 101868. [Google Scholar] [CrossRef]
- Kang, D.; Kim, K.; Jang, Y.; Moon, H.; Ju, D.; Kwon, G.; Jahng, D. Enhancement of wastewater treatment efficiency through modulation of aeration and blue light on wastewater-borne algal-bacterial consortia. Int. Biodeterior. Biodegrad. 2018, 135, 9–18. [Google Scholar] [CrossRef]
- Rossi, S.; Díez-Montero, R.; Rueda, E.; Cascino, F.C.; Parati, K.; García, J.; Ficara, E. Free ammonia inhibition in microalgae and cyanobacteria grown in wastewaters: Photo-respirometric evaluation and modelling. Bioresour. Technol. 2020, 305, 123046. [Google Scholar] [CrossRef]
- Wang, H.; Deng, L.; Qi, Z.; Wang, W. Constructed microalgal-bacterial symbiotic (MBS) system: Classification, performance, partnerships and perspectives. Sci. Total Environ. 2022, 803, 150082. [Google Scholar] [CrossRef]
Organic Matter | BBM | BM |
---|---|---|
Influent Carbon | 100 | 100 |
Influent Nitrogen | 100 | 100 |
Effluent C | 11.38 | 13.34 |
Effluent N | 20.67 | 29.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Qu, X.; Gong, W.; Guo, L.; Xie, B.; Li, W.; Zhang, G.; Tan, H.; Jia, Y.; Liang, J.; et al. The Impact of the Mechanism of Biocarriers on Bacterial–Microbial Symbiosis for Mariculture Wastewater Treatment: Performance and Microbial Community Evolution. Water 2025, 17, 1127. https://doi.org/10.3390/w17081127
Li L, Qu X, Gong W, Guo L, Xie B, Li W, Zhang G, Tan H, Jia Y, Liang J, et al. The Impact of the Mechanism of Biocarriers on Bacterial–Microbial Symbiosis for Mariculture Wastewater Treatment: Performance and Microbial Community Evolution. Water. 2025; 17(8):1127. https://doi.org/10.3390/w17081127
Chicago/Turabian StyleLi, Lingjie, Xiankun Qu, Weijia Gong, Lin Guo, Binghan Xie, Weirun Li, Guoyu Zhang, Haili Tan, Yuhong Jia, Jiahao Liang, and et al. 2025. "The Impact of the Mechanism of Biocarriers on Bacterial–Microbial Symbiosis for Mariculture Wastewater Treatment: Performance and Microbial Community Evolution" Water 17, no. 8: 1127. https://doi.org/10.3390/w17081127
APA StyleLi, L., Qu, X., Gong, W., Guo, L., Xie, B., Li, W., Zhang, G., Tan, H., Jia, Y., Liang, J., & Zheng, M. (2025). The Impact of the Mechanism of Biocarriers on Bacterial–Microbial Symbiosis for Mariculture Wastewater Treatment: Performance and Microbial Community Evolution. Water, 17(8), 1127. https://doi.org/10.3390/w17081127