Significance of Standardizing Carbon Dioxide Measurement Time Within Lake Systems to Constrain CO2 Outgassing Estimation Uncertainties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Significant Diel Cycle of pCO2
3.2. Seasonal Modification of Diel pCO2 Cycle and Ambient Conditions
3.3. Diel and Seasonal Lake CO2 Emissions
3.4. Difference in CO2 Emission Based on Field Measurement Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high–resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Guth, P. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [PubMed]
- Holgerson, M.A.; Raymond, P.A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 2016, 9, 222–226. [Google Scholar]
- DelSontro, T.; Beaulieu, J.J.; Downing, J.A. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnol. Oceanogr. Lett. 2018, 3, 64–75. [Google Scholar]
- Duan, H.; Xiao, Q.; Qi, T. Measuring lake carbon dioxide from space: Opportunities and challenges. Innov. Geosci. 2023, 1, 100025. [Google Scholar]
- Lauerwald, R.; Allen, G.H.; Deemer, B.R.; Liu, S.; Maavara, T.; Raymond, P.; Alcott, L.; Bastviken, D.; Hastie, A.; Holgerson, M.A.; et al. Inland water greenhouse gas budgets for RECCAP2: 2. Regionalization and homogenization of estimates. Glob. Biogeochem. Cycles 2023, 37, e2022GB007658. [Google Scholar]
- Rudberg, D.; Duc, N.T.; Schenk, J.; Sieczko, A.K.; Pajala, G.; Sawakuchi, H.O.; Verheijen, H.A.; Melack, J.M.; MacIntyre, S.; Karlsson, J.; et al. Diel variability of CO2 emissions from northern lakes. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006246. [Google Scholar]
- Borges, A.V.; Deirmendjian, L.; Bouillon, S.; Okello, W.; Lambert, T.; Roland, F.A.; Razanamahandry, V.F.; Voarintsoa, N.R.G.; Darchambeau, F.; Kimirei, I.A.; et al. Greenhouse gas emissions from African lakes are no longer a blind spot. Sci. Adv. 2022, 8, eabi8716. [Google Scholar]
- Xu, Y.J.; Xu, Z.; Yang, R. Rapid daily change in surface water pCO2 and CO2 evasion: A case study in a subtropical eutrophic lake in Southern USA. J. Hydrol. 2019, 570, 486–494. [Google Scholar]
- Yang, R.; Xu, Z.; Liu, S.; Xu, Y.J. Daily pCO2 and CO2 flux variations in a subtropical mesotrophic shallow lake. Water Res. 2019, 153, 29–38. [Google Scholar]
- Marotta, H.; Duarte, C.M.; Sobek, S.; Enrich-Prast, A. Large CO2 disequilibria in tropical lakes. Glob. Biogeochem. Cycles 2009, 23, GB4022. [Google Scholar]
- Cole, J.J.; Caraco, N.F.; Kling, G.W.; Kratz, T.K. Carbon dioxide supersaturation in the surface waters of lakes. Science 1994, 265, 1568–1570. [Google Scholar] [PubMed]
- Potter, L.; Xu, Y.J. Can a eutrophic lake function as a carbon sink? Case study of a subtropical eutrophic lake in southern USA. J. Hydrol. 2023, 625, 130071. [Google Scholar]
- Maberly, S.C. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw. Biol. 1996, 35, 579–598. [Google Scholar]
- Golub, M.; Koupaei-Abyazani, N.; Vesala, T.; Mammarella, I.; Ojala, A.; Bohrer, G.; Weyhenmeyer, G.A.; Blanken, P.D.; Eugster, W.; Koebsch, F.; et al. Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs. Environ. Res. Lett. 2023, 18, 034046. [Google Scholar]
- Klaus, M.; Seekell, D.A.; Lidberg, W.; Karlsson, J. Evaluations of climate and land management effects on lake carbon cycling need to account for temporal variability in CO2 concentrations. Glob. Biogeochem. Cycles 2019, 33, 243–265. [Google Scholar]
- Golub, M.; Desai, A.R.; McKinley, G.A.; Remucal, C.K.; Stanley, E.H. Large uncertainty in estimating pCO2 from carbonate equilibria in lakes. J. Geophys. Res. Biogeosci. 2017, 122, 2909–2924. [Google Scholar]
- Whitfield, C.; Aherne, J.; Watmough, S. Predicting the partial pressure of carbon dioxide in boreal lakes. Can. Water Resour. J. 2009, 34, 415–426. [Google Scholar]
- Abril, G.; Bouillon, S.; Darchambeau, F.; Teodoru, C.R.; Marwick, T.R.; Tamooh, F.; Geeraert, N.; Deirmendjian, L.; Polsenaere, P.; Borges, A.V. Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 2015, 12, 67–78. [Google Scholar]
- Hunt, C.W.; Salisbury, J.E.; Vandemark, D. Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers. Biogeosciences 2011, 8, 3069–3076. [Google Scholar]
- Miah, O.; Roy, A.; Sakib, A.A.; Niloy, N.M.; Haque, M.M.; Shammi, M.; Tareq, S.M. Diel and seasonal variations of pCO2 and fluorescent dissolved organic matter (FDOM) in different polluted lakes. Environ. Sci. Pollut. Res. 2023, 30, 92720–92735. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, B.; Shen, S.; Zhang, Y.; Ye, C.; Jiang, H.; Li, S. Diel variability of carbon dioxide concentrations and emissions in a largest urban lake, Central China: Insights from continuous measurements. Sci. Total Environ. 2024, 912, 168987. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Chen, Y.; Li, D.; Qiu, Y.; Lu, K.; Liu, S.; Song, H. Significant Daily CO2 Source–Sink Interchange in an Urbanizing Lake in Southwest China. Water 2023, 15, 3365. [Google Scholar] [CrossRef]
- Oliver, S.; Corburn, J.; Ribeiro, H. Challenges regarding water quality of eutrophic reservoirs in urban landscapes: A mapping literature review. Int. J. Environ. Res. Public Health 2019, 16, 40. [Google Scholar] [CrossRef]
- Yuan, D.; Xu, Y.J.; Ma, S.; Zhang, K.; Miao, R.; Li, S. Nitrogen addition effect overrides warming effect on dissolved CO2 and phytoplankton structure in shallow lakes. Water Res. 2023, 244, 120437. [Google Scholar] [CrossRef]
- Tonetta, D.; Staehr, P.A.; Petrucio, M.M. Changes in CO2 dynamics related to rainfall and water level variations in a subtropical lake. Hydrobiologia 2017, 794, 109–123. [Google Scholar]
- Marotta, H.; Duarte, C.M.; Pinho, L.; Enrich-Prast, A. Rainfall leads to increased pCO2 in Brazilian coastal lakes. Biogeosciences 2010, 7, 1607–1614. [Google Scholar]
- Xu, Y.J.; Mesmer, R.Y.A.N. The dynamics of dissolved oxygen and metabolic rates in a shallow subtropical urban lake, Louisiana, USA. In Understanding Freshwater Quality Problems in a Changing World; IAHS Publication: Wallingford, UK, 2013; Volume 361, pp. 212–219. [Google Scholar]
- Xu, Z.; Xu, Y.J. Determination of trophic state changes with diel dissolved oxygen: A case study in a shallow lake. Water Environ. Res. 2015, 87, 1970–1979. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, Y.J. Rapid field estimation of biochemical oxygen demand in a subtropical eutrophic urban lake with chlorophyll a fluorescence. Environ. Monit. Assess. 2015, 187, 4171. [Google Scholar] [CrossRef]
- Cai, W.J.; Wang, Y. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr. 1998, 43, 657–668. [Google Scholar] [CrossRef]
- Katul, G.; Liu, H. Multiple mechanisms generate a universal scaling with dissipation for the air-water gas transfer velocity. Geophys. Res. Lett. 2017, 44, 1892–1898. [Google Scholar]
- Weiss, R. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 1974, 2, 203–215. [Google Scholar]
- Jähne, B.; Heinz, G.; Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. Oceans 1987, 92, 10767–10776. [Google Scholar]
- Guérin, F.; Abril, G.; Serça, D.; Delon, C.; Richard, S.; Delmas, R.; Tremblay, A.; Varfalvy, L. Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J. Mar. Syst. 2007, 66, 161–172. [Google Scholar]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar]
- Cole, J.J.; Caraco, N.F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 1998, 43, 647–656. [Google Scholar]
- Drake, T.W.; Raymond, P.A.; Spencer, R.G.M. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 2018, 3, 132–142. [Google Scholar]
- Qi, T.C.; Shen, M.; Luo, J.H.; Xiao, Q.T.; Liu, D.; Duan, H.T. Spatiotemporal heterogeneity of lake carbon dioxide flux leads to substantial uncertainties in regional upscaling estimates. Sci. Total Environ. 2024, 948, 174920. [Google Scholar]
- Wen, Z.D.; Shang, Y.X.; Lyu, L.; Tao, H.; Liu, G.; Fang, C.; Li, S.J.; Song, K.S. Re-estimating China’s lake CO2 flux considering spatiotemporal variability. Environ. Sci. Ecotechnol. 2024, 19, 100337. [Google Scholar]
- Sobek, S.; Tranvik, L.J.; Cole, J.J. Temperature independence of carbon dioxide supersaturation in global lakes. Glob. Biogeochem. Cycles 2005, 19, GB2003. [Google Scholar]
- Kosten, S.; Roland, F.; Da Motta Marques, D.M.; Van Nes, E.H.; Mazzeo, N.; Sternberg, L.D.S.; Cole, J.J. Climate-dependent CO2 emissions from lakes. Glob. Biogeochem. Cycles 2010, 24, GB2007. [Google Scholar] [CrossRef]
- Jonsson, A.; Aberg, J.; Jansson, M. Variations in pCO2 during summer in the surface water of an unproductive lake in northern Sweden. Tellus B Chem. Phys. Meteorol. 2007, 59, 797–803. [Google Scholar]
- Xu, Z.; Xu, Y.J. A deterministic model for predicting hourly dissolved oxygen change: Development and application to a shallow eutrophic lake. Water 2016, 8, 41. [Google Scholar] [CrossRef]
- Morales-Pineda, M.; Cózar, A.; Laiz, I.; Úbeda, B.; Gálvez, J.Á. Daily, biweekly, and seasonal temporal scales of pCO2 variability in two stratified Mediterranean reservoirs. J. Geophys. Rese. Biogeosci. 2014, 119, 509–520. [Google Scholar] [CrossRef]
- Pace, M.L.; Prairie, Y.T. Respiration in lakes. Respir. Aquat. Ecosyst. 2005, 1, 103–122. [Google Scholar]
- Hanson, P.C.; Bade, D.L.; Carpenter, S.R.; Kratz, T.K. Lake metabolism: Relationships with dissolved organic carbon and phosphorus. Limnol. Oceanogr. 2003, 48, 1112–1119. [Google Scholar] [CrossRef]
- Katkov, E.; Fussmann, G.F. The effect of increasing temperature and pCO2 on experimental pelagic freshwater communities. Limnol. Oceanogr. 2023, 68, S202–S216. [Google Scholar] [CrossRef]
- Reis, P.C.J.; Barbosa, F.A.R. Diel sampling reveals significant variation in CO2 emission from a tropical productive lake. Braz. J. Biol. 2014, 74 (Suppl. S1), S113–S119. [Google Scholar] [CrossRef]
- Lapierre, J.F.; Seekell, D.A.; Filstrup, C.T.; Collins, S.M.; Emi Fergus, C.; Soranno, P.A.; Cheruvelil, K.S. Continental-scale variation in controls of summer CO2 in United States lakes. J. Geophys. Res. Biogeosci. 2017, 122, 875–885. [Google Scholar] [CrossRef]
- Seekell, D.A.; Gudasz, C. Long-term pCO2 trends in Adirondack Lakes. Geophys. Res. Lett. 2016, 43, 5109–5115. [Google Scholar]
- Nydahl, A.C.; Wallin, M.B.; Weyhenmeyer, G.A. No long-term trends in pCO2 despite increasing organic carbon concentrations in boreal lakes, streams, and rivers. Glob. Biogeochem. Cycles 2017, 31, 985–995. [Google Scholar]
- Couturier, M.; Prairie, Y.T.; Paterson, A.M.; Emilson, E.J.S.; del Giorgio, P.A. Long-term trends in pCO2 in lake surface water following rebrowning. Geophys. Res. Lett. 2022, 49, e2022GL097973. [Google Scholar]
Phyco | Chl-a | CDOM | Amnia | Turbidity | T | SpCond. | DOsat | DO | pH | pCO2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Phyco | 1.00 | ||||||||||
Chl-a | 0.71 | 1.00 | |||||||||
CDOM | 0.94 | 0.76 | 1.00 | ||||||||
Amnia | 0.95 | 0.74 | 1.00 | 1.00 | |||||||
Turbidity | 0.86 | 0.63 | 0.83 | 0.83 | 1.00 | ||||||
T | 0.68 | 0.37 | 0.65 | 0.66 | 0.57 | 1.00 | |||||
SpCond. | 0.79 | 0.59 | 0.80 | 0.81 | 0.75 | 0.66 | 1.00 | ||||
DOsat | −0.26 | −0.25 | −0.25 | 1.00 | |||||||
DO | −0.50 | −0.25 | −0.49 | −0.50 | −0.42 | −0.60 | −0.32 | 0.88 | 1.00 | ||
pH | 0.40 | 0.31 | 0.39 | 0.38 | 0.35 | 0.43 | 0.53 | 0.48 | 0.21 | 1.00 | |
pCO2 | 0.37 | 0.27 | 0.38 | 0.39 | 0.35 | 0.29 | 0.32 | −0.45 | −0.50 | −0.25 | 1.00 |
Sample Time | Sample Count | Average FCO2 | Average pCO2 | pCO2 daily average:pCO2 hourly average | pCO 2(hourly):pCO2(10am) | FCO2 (hourly):FCO2(10am) |
---|---|---|---|---|---|---|
N | mmol m−2 h−1 | µatm | ||||
1:00 | 4 | 87.03 | 1249.18 | 1.94 | 1.71 | 2.71 |
4:00 | 4 | 50.06 | 902.00 | 1.40 | 1.24 | 1.56 |
7:00 | 16 | 62.46 | 1072.58 | 1.67 | 1.47 | 1.95 |
10:00 | 33 | 32.09 | 730.34 | 1.11 | 1 | 1 |
13:00 | 16 | −1.33 | 390.71 | 0.61 | 0.53 | −0.04 |
16:00 | 16 | −20.17 | 214.71 | 0.33 | 0.29 | −0.63 |
19:00 | 4 | −14.57 | 257.55 | 0.40 | 0.35 | −0.45 |
22:00 | 4 | 6.75 | 460.43 | 0.72 | 0.63 | 0.21 |
Total mean | 97 | 25.29 | 642.61 | - | - | - |
Sample Time | Fall | Mean | Winter | Mean | Spring | Mean | Summer | Mean |
---|---|---|---|---|---|---|---|---|
1:00:00 | - | 528 | 267 | 467 | - | 726 | 2231 | 903 |
4:00:00 | - | 359 | - | 1446 | ||||
7:00:00 | 1292 | 844 | 1431 | 1044 | ||||
10:00:00 | 350 | 568 | 1203 | 968 | ||||
13:00:00 | 386 | 410 | 150 | 513 | ||||
16:00:00 | 83 | 274 | 119 | 206 | ||||
19:00:00 | - | 138 | - | 69 | ||||
22:00:00 | - | 173 | - | 748 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potter, L.; Xu, Y.; Simak, J. Significance of Standardizing Carbon Dioxide Measurement Time Within Lake Systems to Constrain CO2 Outgassing Estimation Uncertainties. Water 2025, 17, 1046. https://doi.org/10.3390/w17071046
Potter L, Xu Y, Simak J. Significance of Standardizing Carbon Dioxide Measurement Time Within Lake Systems to Constrain CO2 Outgassing Estimation Uncertainties. Water. 2025; 17(7):1046. https://doi.org/10.3390/w17071046
Chicago/Turabian StylePotter, Lee, Yijun Xu, and Jonathan Simak. 2025. "Significance of Standardizing Carbon Dioxide Measurement Time Within Lake Systems to Constrain CO2 Outgassing Estimation Uncertainties" Water 17, no. 7: 1046. https://doi.org/10.3390/w17071046
APA StylePotter, L., Xu, Y., & Simak, J. (2025). Significance of Standardizing Carbon Dioxide Measurement Time Within Lake Systems to Constrain CO2 Outgassing Estimation Uncertainties. Water, 17(7), 1046. https://doi.org/10.3390/w17071046