The Simulation of the Wetland Biodiversity Pattern Under Different Land Use Policies on the Sanjiang Plain
Abstract
:1. Introduction
2. Overview of the Study Area
3. Research Methods
3.1. Data Sources and Processing
3.2. Policy Stage Division Based on the CA-Markov Model
3.3. The Characteristics of Wetland Pattern and Connectivity at Different Policy Stages
3.4. Prediction of Future Biodiversity Pattern Scenarios Based on CA-Markov and EBHPC
4. Results
4.1. Policy Stage Division and Their Characteristics
4.2. Change Characteristics of Wetland Pattern and Connectivity in Different Policy Stages
4.3. Prediction of Wetland Biodiversity in Different Scenarios
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahdian, M.; Noori, R.; Salamattalab, M.M.; Heggy, E.; Bateni, S.M.; Nohegar, A.; Hosseinzadeh, M.; Siadatmousavi, S.M.; Fadaei, M.R.; Abolfathi, S. Anzali Wetland Crisis: Unraveling the Decline of Iran’s Ecological Gem. J. Geophys. Res.-Atmos. J. 2024, 129, 4. [Google Scholar] [CrossRef]
- Hidalgo-Corrotea, C.; Alaniz, A.J.; Vergara, P.M.; Moreira-Arce, D.; Carvajal, M.A.; Pacheco-Cancino, P.; Espinosa, A. High vulnerability of coastal wetlands in Chile at multiple scales derived from climate change, urbanization, and exotic forest plantations. Sci. Total Environ. 2023, 903, 166130. [Google Scholar] [CrossRef] [PubMed]
- Asongwe, G.A.; Bame, I.B.; Ndam, L.M.; Orock, A.E.; Tellen, V.A.; Bumtu, K.P.; Tening, A.S. Influence of urbanisation on phytodiversity and some soil properties in riverine wetlands of Bamenda municipality. Cameroon Sci. Rep. 2022, 12, 19766. [Google Scholar] [CrossRef]
- Huggins, X.; Gleeson, T.; Kummu, M.; Zipper, S.C.; Wada, Y.; Troy, T.J.; Famiglietti, J.S. Hotspots for social and ecological impacts from freshwater stress and storage loss. Nat. Commun. 2022, 13, 439. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.; Icely, J.; Cristina, S.; Perillo, G.M.; Turner, R.E.; Ashan, D.; Cragg, S.; Luo, Y.; Tu, C.; Li, Y.; et al. Anthropogenic, direct pressures on coastal wetlands. Front. Ecol. Evol. 2020, 8, 144. [Google Scholar] [CrossRef]
- Moi, D.A.; Lansac-Tôha, F.M.; Romero, G.Q.; Sobral-Souza, T.; Cardinale, B.J.; Kratina, P.; Perkins, D.M.; de Mello, F.T.; Jeppesen, E.; Heino, J.; et al. Human pressure drives biodiversity-multifunctionality relationships in large Neotropical wetlands. Nat. Ecol. Evol. 2022, 6, 1279–1289. [Google Scholar] [CrossRef]
- Zhong, Y.H.; Xue, Z.S.; Davis, C.C.; Moreno-Mateos, D.; Jiang, M.; Liu, B.; Wang, G. Shrinking habitats and native species loss under climate change: A multifactorial risk assessment of China’s inland wetlands. Earth’s Future 2022, 10, e2021EF002630. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef]
- Deane, D.C.; Fordham, D.A.; He, F.L.; Bradshaw, C.J. Future extinction risk of wetland plants is higher from individual patch loss than total area reduction. Biol. Conserv. 2017, 209, 27–33. [Google Scholar] [CrossRef]
- Ray, A.M.; Gould, W.R.; Hossack, B.R.; Sepulveda, A.J.; Thoma, D.P.; Patla, D.A.; Daley, R.; Al-Chokhachy, R. Influence of climate drivers on colonization and extinction dynamics of wetland-dependent species. Biol. (Gen.) Ecol. 2016, 7, 2150–8925. [Google Scholar] [CrossRef]
- Qu, Y.; Gong, H.X.; Zheng, Y.M.; Shi, J.; Zeng, X.; Yang, H.; Wang, J.; Niu, Z.; Li, L.; Wang, S.; et al. Global conservation priorities for wetlands and setting post-2025 targets. Commun. Earth Environ. 2024, 5, 4. [Google Scholar]
- Qu, Y.; Luo, C.Y.; Zhang, H.Q.; Zeng, X.Y.; Li, H.; Ni, H. Prioritization of wetland restoration in Sanjiang Plain, based on historical biodiversity and landscape structure. Acta Ecol. Sin. 2018, 38, 5709–5716. [Google Scholar]
- Jantke, K.; Schneider, U.A. Multiple-species conservation planning for European wetlands with different degrees of coordination. Biol. Conserv. 2010, 143, 1812–1821. [Google Scholar] [CrossRef]
- Schleupner, C.; Schneider, U.A. GIS-based estimation of wetland conservation potentials in Europe. Appl. Ecol. Environ. Res. 2012, 10, 385–403. [Google Scholar] [CrossRef]
- Kingsford, R.T.; Brandis, K.; Thomas, R.F.; Crighton, P.; Knowles, E.; Gale, E. Classifying landform at broad spatial scales: The distribution and conservation of wetlands in New South Wales, Australia. Mar. Freshw. Res. 2004, 55, 17–31. [Google Scholar] [CrossRef]
- Bellio, M.; Kingsford, R.T. Alteration of wetland hydrology in coastal lagoons: Implications for shorebird conservation and wetland restoration at a Ramsar site in Sri Lanka. Biol. Conserv. 2013, 167, 57–68. [Google Scholar] [CrossRef]
- Kingsford, R.T.; Biggs, H.C.; Pollard, S.R. Strategic adaptive management in freshwater protected areas and their rivers. Biol. Conserv. 2011, 144, 1194–1203. [Google Scholar] [CrossRef]
- Beroho, M.; Briak, H.; Cherif, E.K.; Boulahfa, I.; Ouallali, A.; Mrabet, R.; Kebede, F.; Bernardino, A.; Aboumaria, K. Future scenarios of land-use/land cover (LULC) based on a CA-Markov simulation model: Case of a mediterranean watershed in morocco. Remote Sens. 2023, 15, 1162. [Google Scholar] [CrossRef]
- Qu, Y.; Zheng, Y.M.; Gong, P.; Shi, J.; Li, L.; Wang, S.; Luo, C.; Zhang, H.; Xu, L. Estimation of wetland biodiversity based on the hydrological patterns and connectivity and its potential application in change detection and monitoring: A case study of the Sanjiang Plain, China. Sci. Total Environ. 2022, 805, 150291. [Google Scholar] [CrossRef]
- Sangermano, F.; Pontius, R.G.; Chaitman, J.; Meneghini, A. Linking land change model evaluation to model objective for the assessment of land cover change impacts on biodiversity. Landsc. Ecol. 2021, 36, 2707–2723. [Google Scholar] [CrossRef]
- Kundu, S.; Khare, D.; Mondal, A. Landuse change impact on sub-watersheds prioritization by analytical hierarchy process (AHP). Ecol. Inform. 2017, 42, 100–113. [Google Scholar] [CrossRef]
- Eppink, F.V.; Van den Bergh, J.C.J.M.; Rietveld, P. Modelling biodiversity and land-use: Urban growth, agriculture and nature in a wetland area. Ecol. Econ. 2004, 51, 201–216. [Google Scholar] [CrossRef]
- El-Alfy, M.A.; Elfanagily, B.A.; Zyadah, M.A.; El-Emam, D.A. CA-Markov chain for simulation and prediction of LULC and assessing the status of water pollution in Manzala Lake after recent development. J. Coast. Conserv. 2024, 28, 4. [Google Scholar] [CrossRef]
- Abijith, D.; Saravanan, S. Assessment of land-use and land cover change detection and prediction using remote sensing and CA Markov in the northern coastal districts of Tamil Nadu, India. Environ. Sci. Pollut. Res. 2022, 29, 86055–86067. [Google Scholar] [CrossRef]
- Rahnama, M.R. Forecasting land-use changes in Mashhad Metropolitan area using Cellular Automata and Markov chain model for 2016-2030. Sustain. Cities Soc. 2021, 64, 102548. [Google Scholar] [CrossRef]
- Tariq, A.; Shu, H. CA-Markov chain analysis of seasonal land surface temperature and land-use land cover change using optical multi-temporal satellite data of Faisalabad, Pakistan. Remote Sens. 2020, 12, 3402. [Google Scholar] [CrossRef]
- Yirsaw, E.; Nigussie, W. Land-use/land cover change modeling and evaluating the spatiotemporal dynamics of highland bamboo species in the Southern Highland of Ethiopia. J. Indian Soc. Remote Sens. 2024, 52, 63–77. [Google Scholar] [CrossRef]
- Janizadeh, S.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Ahmadi, K.; Mirzaei, S.; Mosavi, A.H.; Tiefenbacher, J.P. Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. J. Environ. Manag. 2021, 298, 113551. [Google Scholar] [CrossRef]
- Faichia, C.; Tong, Z.J.; Zhang, J.Q.; Liu, X.P.; Kazuva, E.; Ullah, K.; Al-Shaibah, B. Using RS data-based CA-Markov model for dynamic simulation of historical and future LUCC in Vientiane, Laos. Sustainability 2020, 12, 8410. [Google Scholar] [CrossRef]
- Mumtaz, F.; Tao, Y.; de Leeuw, G.; Zhao, L.; Fan, C.; Elnashar, A.; Bashir, B.; Wang, G.; Li, L.; Naeem, S.; et al. Modeling spatio-temporal land transformation and its associated impacts on land surface temperature (LST). Remote Sens. 2020, 12, 2987. [Google Scholar] [CrossRef]
- Rahimi, L.; Malekmohammadi, B.; Yavari, A.R. Assessing and modeling the impacts of wetland land cover changes on water provision and habitat quality ecosystem services. Nat. Resour. Res. 2020, 29, 3701–3718. [Google Scholar]
- Lu, L.L.; Salman, Q.S.; Li, Q.T.; Chen, F.; Shu, L. Monitoring and projecting sustainable transitions in urban land-use using remote sensing and scenario-based modelling in a coastal megacity. Ocean Coast. Manag. 2022, 224, 106201. [Google Scholar]
- Qu, Y.; Zeng, X.Y.; Luo, C.Y.; Zhang, H.; Ni, H. Prediction of wetland biodiversity pattern under the current land-use mode and wetland sustainable management in Sanjiang Plain, China. Ecol. Indic. 2023, 147, 109990. [Google Scholar]
- Xu, N.; Cui, L.; Zeng, X.Y.; Zhang, H.; Li, H.; Zhou, B.; Luo, C.; Wu, R. Wetland Distribution Prediction Based on CA-Markov Model under Current Land-use and Protection Policy in Sanjiang Plain. Sustainability 2024, 16, 5750. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ma, K.M.; Fu, B.J. Wetland loss under the impact of agricultural development in the Sanjiang Plain. NE China. Environ. Monit. Assess. 2010, 166, 139–148. [Google Scholar] [PubMed]
- Pinto-Cruz, M.C. A modified transfer matrix method for static and dynamic analysis of beams that eliminates the need to compute the inverse of the zero matrix. Iran. J. Sci. Technol.-Trans. Civ. Eng. 2024, 48, 2875–2890. [Google Scholar] [CrossRef]
- Behera, M.D.; Chitale, V.S.; Shaw, A.; Roy, P.S.; Murthy, M.S.R. Wetland monitoring, serving as an index of land-use change—A study in samaspur wetlands, Uttar Pradesh, India. J. Indian Soc. Remote Sens. 2012, 40, 287–297. [Google Scholar]
- Zhu, C.J.; Tian, B.; Zhou, Y.X.; Fan, Z.Q. Wetland change analysis and forecasting in Pudong new area using Markov and CLUE-S mode. J. Fudan Univ. Nat. Sci. 2015, 54, 431–438+448. [Google Scholar]
- Margules, C.R.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, G.Q.; Luo, C.Y.; Zeng, X.; Zhang, H.; Murray, N.J.; Xu, N. Identifying restoration priorities for wetlands based on historical distributions of biodiversity features and restoration suitability. J. Environ. Manag. 2019, 231, 1222–1231. [Google Scholar]
- Amir, S.M.; Wang, Y.; Xu, N.; Ullah, N.; Zeng, P. The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA-Markov modeling (2004–2050). Remote Sens. 2021, 13, 4697. [Google Scholar] [CrossRef]
- Koko, A.F.; Yue, W.; Abubakar, G.A.; Hamed, R.; Alabsi, A.A.N. Monitoring and predicting spatio-temporal land-use/land cover changes in Zaria city, Nigeria, through an integrated cellular automata and Markov chain model (CA-Markov). Sustainability 2020, 12, 10452. [Google Scholar] [CrossRef]
- Hu, X.; Li, X.; Lu, L. Modeling the land-use change in an arid oasis constrained by water resources and environmental policy change using cellular automata models. Sustainability 2018, 10, 2878. [Google Scholar] [CrossRef]
- Liu, Y. Study on Climatic and Hydrological Effects and Scenarios Simulation of Spatio-Temporal Change of Wetlands in Western Jilin Province. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2015. (In Chinese). [Google Scholar]
- Liu, J.P.; Zhao, D.D.; Tian, X.Z. Dynamic change and driving force of land-use landscape pattern in Sanjiang Plain from 1954 to 2010. Acta Ecol. Sin. 2014, 34, 3234–3244. [Google Scholar]
- He, X.Y.; Jia, M.M.; Wang, Z.M.; Ren, C.; Zheng, H.; Guo, Y.; Zhang, X.; Xin, X. Remote Sensing based evaluation of effectiveness of wetland protection project in Sanjiang Plain, China. Assess. Eff. Natl. Ecol. Conserv. Restor. Proj. 2017, 32, 3–10. (In Chinese) [Google Scholar]
- He, G.Y. Analysis of Local Wetland Protection Legislation and Norms in China—Based on the Perspective of the Development and Improvement of Environmental and Law; Chinese Society of Environment and Resources Law (CSERL): Beijing, China, 2016; pp. 25–33. [Google Scholar]
- NFGA (National Forestry and Grassland Administration). <<National Wetland Conservation Project Implementation Plan >>(2005–2010); National Forestry and Grassland Administration: Beijing, China, 2005. [Google Scholar]
- Qiu, Z.Q.; Luo, L.; Mao, D.H.; Du, B.; Feng, K.; Jia, M.; Wang, Z. Using multisource geospatial data to identify potential wetland rehabilitation areas: A pilot study in China’s Sanjiang Plain. Water 2020, 12, 2496. [Google Scholar] [CrossRef]
- Du, B.J.; Zheng, Y.Y.; Liu, J.P.; Mao, D. Threatened plants in China’s Sanjiang Plain: Hotspot distributions and gap analysis. Sustainability 2018, 10, 194. [Google Scholar] [CrossRef]
- Liu, J.P.; Lü, X.G. Study on the spatial pattern of wetland bird richness and hotspots in Sanjiang Plain. Acta Ecol. Sin. 2011, 31, 5894–5902. [Google Scholar]
- Zheng, Y.Y. GAP Analysis of Wetland Plants in the Sanjiang Plain. Master’s Thesis, Jilin Normal University, Changchun, China, 2011. [Google Scholar]
- Jiang, W.G.; Zhang, Z.; Ling, Z.Y.; Deng, Y. Experience and future research trends of wetland protection and restoration in China. Acta Geogr. Sin. 2023, 78, 2223–2240. [Google Scholar]
- Li, H.X.; Sun, X.X.; Man, X.L.; Wang, Q.B.; Li, D.; Hu, Y.L. Changes of soil heavy metal contents and pollution evaluation during the restoration of wetlands. J. Beijing For. Univ. 2020, 42, 134–142. (In Chinese) [Google Scholar]
- Ma, G.R. Technical Guidelines for Wetland Restoration in National Wetland Parks; China Environmental Press: Beijing, China, 2017; pp. 156–158. (In Chinese) [Google Scholar]
- Liu, Z.G.; Wang, Q.; Peng, A.J.; Yang, F. Conservation effect analysis of wetland Nature reserve based on PSM and DID method: A case study of Sanjiang and Naolihe National Nature Reserve in Heilongjiang Province. J. Northwest. Univ. (Nat. Sci. Ed.) 2019, 49, 54–61. (In Chinese) [Google Scholar]
- Cui, X.B.; Liu, M.H.; Ma, Y. Benefit analysis of the project of returning farmland to moisture in Naolihe National Nature Reserve of Heilongjiang Province. Heilongjiang Sci. 2016, 7, 153–155. (In Chinese) [Google Scholar]
- Ma, Z.W.; Zhang, M.X. Implementation of Wetlands Protection Law and Implementation of International Environmental Conventions in China. Nat. Prot. Areas 2022, 2, 9–16. (In Chinese) [Google Scholar]
- Liu, L. Research on Controversial Issues of Wetland Protection Legislation. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2021. (In Chinese). [Google Scholar]
- PGHP (People’s Government of Heilongjiang Province). People’s Government of Heilongjiang Province office Forwarded<<Urgent Notice of State Council Office About Fast Restore Abandonment of Cultivated Land Production >>; Gazette of the People’s Government of Heilongjiang Province: Harbin, China, 2004; Volume 8, pp. 31–32. (In Chinese) [Google Scholar]
- Chen, B.W. Food security: Focusing on protecting cultivated land and farmers’ enthusiasm for growing grain. Rural Econ. 2004, 12, 28–30. (In Chinese) [Google Scholar]
- Wang, Q.; Liu, Z.G.; Zhou, J.Y. Influencing factors and spatial effects of marsh wetland changes in the Sanjiang Plain. China Popul. Resour. Environ. 2023, 33, 44–54. (In Chinese) [Google Scholar]
- Li, L.; Zhang, Z.Q. Spatiotemporal variation characteristics of precipitation in the Sanjiang Plain. China Resour. Compr. Util. 2023, 41, 40–42. (In Chinese) [Google Scholar]
- Guo, J.H.; Zhang, Y.Q. On the enlightenment of wetland protection systems in some foreign countries to China. Ocean. Dev. Manag. 2023, 9, 55–65. [Google Scholar]
- Hu, P. Wetland conservation to be incorporated the normative dilemma and way out of in the nature reserve system. J. Nanjing Tech Univ. (Soc. Sci. Ed.) 2022, 21, 55–67. [Google Scholar]
- Keith, D.A.; Ghoraba, S.M.M.; Kaly, E.; Jones, K.R.; Oosthuizen, A.; Obura, D.; Costa, H.M.; Daniels, F.; Duarte, E.; Grantham, H.; et al. Contributions of the IUCN Red List of Ecosystems to risk-based design and management of protected and conserved areas in Africa. Conserv. Biol. 2024, 38, e14169. [Google Scholar]
- Urbano, F.; Viterbi, R.; Pedrotti, L.; Vettorazzo, E.; Movalli, C.; Corlatti, L. Enhancing biodiversity conservation and monitoring in protected areas through efficient data management. Environ. Monit. Assess. 2024, 196, 12. [Google Scholar]
- Xing, L.; Niu, Z.; Jiao, C.; Zhang, J.; Han, S.; Cheng, G.; Wu, J. A novel workflow for seasonal wetland identification using bi-weekly multiple remote sensing data. Remote Sens. 2022, 14, 1037. [Google Scholar] [CrossRef]
- Sangeeta, B.; Deeksha, K.; Garg, J.K. A novel strategy for wetland area extraction using multispectral MODIS data. Remote Sens. Environ. 2017, 200, 183–205. [Google Scholar]
Beginning Time Node | End Time Node | Prediction Time Node | Kappa Coefficient |
---|---|---|---|
1995 | 2000 | 2005 | 0.97 |
2000 | 2005 | 2010 | 0.85 |
2005 | 2010 | 2015 | 0.90 |
2010 | 2015 | 2020 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Zeng, X.; Zhou, B.; Zhang, H.; Li, H.; Luo, C.; Wei, Y.; Guo, W.; Wu, R.; Xu, N.; et al. The Simulation of the Wetland Biodiversity Pattern Under Different Land Use Policies on the Sanjiang Plain. Water 2025, 17, 859. https://doi.org/10.3390/w17060859
Cui L, Zeng X, Zhou B, Zhang H, Li H, Luo C, Wei Y, Guo W, Wu R, Xu N, et al. The Simulation of the Wetland Biodiversity Pattern Under Different Land Use Policies on the Sanjiang Plain. Water. 2025; 17(6):859. https://doi.org/10.3390/w17060859
Chicago/Turabian StyleCui, Ling, Xingyu Zeng, Boqi Zhou, Hongqiang Zhang, Haiyan Li, Chunyu Luo, Yanjun Wei, Wendong Guo, Ruoyuan Wu, Nan Xu, and et al. 2025. "The Simulation of the Wetland Biodiversity Pattern Under Different Land Use Policies on the Sanjiang Plain" Water 17, no. 6: 859. https://doi.org/10.3390/w17060859
APA StyleCui, L., Zeng, X., Zhou, B., Zhang, H., Li, H., Luo, C., Wei, Y., Guo, W., Wu, R., Xu, N., & Qu, Y. (2025). The Simulation of the Wetland Biodiversity Pattern Under Different Land Use Policies on the Sanjiang Plain. Water, 17(6), 859. https://doi.org/10.3390/w17060859