Willingness to Pay for Renewably Sourced Irrigation with Solar Water Pumping (SWP) Systems in Drought-Prone Areas of Thailand
Abstract
:1. Introduction
1.1. Background
1.2. Willingness to Pay (WTP)
1.3. Problem Identification and Research Objective
2. Materials and Methods
2.1. Study Area
2.2. Survey Design
2.3. Survey Content
2.4. Sample and Sampling Design
2.5. Data Processing
2.6. Estimation of Willingness to Pay (WTP)
3. Results
3.1. General Characteristics of the Respondents
3.2. Analysis of the Rate of Farmers’ Willingness-to-Pay (WTP) Amount
3.3. Reasons for Consumers’ Willingness to Pay
3.4. Analysis of the Factors Influencing Consumers’ Willingness to Pay
3.5. Determinants of WTP Amounts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NC | NEC | |||||
---|---|---|---|---|---|---|
N | Mean | Std. Deviation | N | Mean | Std. Deviation | |
Want to increase family income | 96 | 3.45 | 0.806 | 64 | 3.52 | 0.519 |
Can sustain a livelihood consistently, even during drought periods | 96 | 3.39 | 0.944 | 64 | 3.72 | 1.039 |
Help mitigate the impacts of drought, such as reducing agricultural production losses | 96 | 3.32 | 1.081 | 64 | 3.42 | 1.124 |
Having access to low-interest loan sources | 96 | 2.11 | 1.840 | 64 | 3.11 | 1.460 |
The government offering guarantees | 96 | 1.73 | 1.750 | 64 | 1.98 | 1.517 |
Having experts assist in preparing loan documents | 96 | 1.54 | 1.788 | 64 | 1.97 | 1.671 |
Having ownership of cultivated land | 96 | 1.53 | 1.806 | 64 | 2.28 | 1.768 |
Increasing and prolonged occurrences of droughts | 96 | 1.50 | 1.704 | 64 | 2.98 | 1.634 |
Community environmental restoration | 96 | 1.07 | 1.578 | 64 | 2.06 | 1.607 |
The presence of experts or relevant organizations recommending investment and utilization of energy technology equipment | 96 | 1.00 | 1.629 | 64 | 2.45 | 1.798 |
Self-knowledge/experience in the field of renewable energy technology equipment | 96 | 0.97 | 1.572 | 64 | 2.08 | 1.821 |
The size of the agricultural land is manageable | 96 | 0.90 | 1.566 | 64 | 1.95 | 1.709 |
Having a successful community network for mentoring and consultation | 96 | 0.83 | 1.567 | 64 | 2.11 | 1.750 |
Valid N (listwise) | 96 | 64 |
NC | NEC | |||||
---|---|---|---|---|---|---|
N | Mean | Std. Deviation | N | Mean | Std. Deviation | |
Waiting for government promotion (to be provided) | 31 | 2.29 | 1.553 | 19 | 3.37 | 1.499 |
Does not have money | 31 | 1.65 | 1.473 | 19 | 3.16 | 1.675 |
Uncertain about savings or return on investment | 31 | 1.42 | 1.409 | 19 | 1.37 | 1.892 |
No information or knowledge about what to change | 31 | 1.42 | 1.455 | 19 | 1.05 | 1.810 |
No knowledge/experience in the field of renewable energy technology equipment | 31 | 1.10 | 1.274 | 19 | 0 | 0 |
Does not have ownership of land | 31 | 0.94 | 1.237 | 19 | 0 | 0 |
Valid N (listwise) | 31 | 19 |
Constant | Gen | Edu | SI | DebA | LO | RETk | CulA | |
---|---|---|---|---|---|---|---|---|
Constant | 1.000 | −0.017 | −0.427 | −0.210 | −0.343 | −0.170 | −0.804 | −0.198 |
Gender (Gen) | −0.017 | 1.000 | 0.164 | 0.059 | 0.249 | 0.128 | −0.206 | −0.159 |
Education (Edu) | −0.427 | 0.164 | 1.000 | −0.054 | 0.433 | 0.238 | 0.061 | −0.109 |
Source of income (SI) | −0.210 | 0.059 | −0.054 | 1.000 | 0.037 | 0.254 | −0.117 | 0.172 |
Debt amount (DebA) | −0.343 | 0.249 | 0.433 | 0.037 | 1.000 | 0.191 | −0.036 | −0.233 |
Land ownership (LO) | −0.170 | 0.128 | 0.238 | 0.254 | 0.191 | 1.000 | −0.258 | −0.121 |
RET knowledge (RETk) | −0.804 | −0.206 | 0.061 | −0.117 | −0.036 | −0.258 | 1.000 | 0.210 |
Cultivated area (CulA) | −0.198 | −0.159 | −0.109 | 0.172 | −0.233 | −0.121 | 0.210 | 1.000 |
Constant | Gen | Edu | SI | DebA | LO | RETk | CulA | |
---|---|---|---|---|---|---|---|---|
Constant | 1.000 | −0.148 | −0.287 | −0.416 | −0.019 | −0.496 | −0.494 | −0.254 |
Gender (Gen) | −0.148 | 1.000 | 0.030 | −0.051 | 0.063 | 0.132 | −0.101 | 0.043 |
Education (Edu) | −0.287 | 0.030 | 1.000 | −0.128 | −0.400 | −0.013 | 0.004 | 0.356 |
Source of income (SI) | −0.416 | −0.051 | −0.128 | 1.000 | −0.163 | 0.066 | 0.085 | 0.062 |
Debt amount (DebA) | −0.019 | 0.063 | −0.400 | −0.163 | 1.000 | 0.035 | −0.291 | −0.448 |
Land ownership (LO) | −0.496 | 0.132 | −0.013 | 0.066 | 0.035 | 1.000 | −0.062 | −0.185 |
RET knowledge (RETk) | −0.494 | −0.101 | 0.004 | 0.085 | −0.291 | −0.062 | 1.000 | 0.227 |
Cultivated area (CulA) | −0.254 | 0.043 | 0.356 | 0.062 | −0.448 | −0.185 | 0.227 | 1.000 |
References
- Prabnakorn, S.; Maskey, S.; Suryadi, F.X.; de Fraiture, C. Assessment of drought hazard, exposure, vulnerability, and risk for rice cultivation in the Mun River Basin in Thailand. Nat. Hazards 2019, 97, 891–911. [Google Scholar] [CrossRef]
- Forotaghe, Z.A.; Souri, M.K.; Jahromi, M.G.; Torkashvand, A.M. Physiological and Biochemical Responses of Onion Plants to Deficit Irrigation and Humic Acid Application. Open Agric. 2021, 6, 728–737. [Google Scholar] [CrossRef]
- Department of Water Resources of Thailand. สรุปผลการป้องกันและบรรเทาสถานการณ์ภัยแล้ง ปี 2015–2016 (Summary of Drought Prevention and Mitigation Efforts in 2015–2016). Bangkok. 2016. Available online: http://mekhala.dwr.go.th/imgbackend/doc_file/document_125313.pdf (accessed on 19 December 2023). (In Thai).
- Royal Irrigation Department. ข้อมูลสารสนเทศ: โครงการชลประทาน 2565 (Information: Irrigation Project 2022). 2022. Available online: https://www.rid.go.th/_data/documents/rid_annual_conclusion/02_conclusion/2565/Book.pdf (accessed on 23 November 2023). (In Thai).
- Department of Land Development. คาดการณ์พื้นที่ที่มีโอกาศเกิดภัยแล้ง (Forecast of Areas at Risk of Drought). Available online: http://irw101.ldd.go.th/index.php/2017-05-26-02-51-44 (accessed on 18 November 2023). (In Thai).
- Office of the National Economic and Social Development Council. ผลิตภัณฑ์ภาคและจังหวัดแบบปริมาณลูกโซ่ ปี 2564 (Gross Regional and Provincial Product, Chain Volume Measures 2021). Available online: https://www.nesdc.go.th/nesdb_en/main.php?filename=index (accessed on 23 November 2023). (In Thai).
- Wikipedia List of Thai Provinces by GPP. 19 March 2023. Available online: https://en.wikipedia.org/wiki/List_of_Thai_provinces_by_GPP (accessed on 23 November 2023).
- Terang, B.; Baruah, D.C. Techno-economic and environmental assessment of solar photovoltaic, diesel, and electric water pumps for irrigation in Assam, India. Energy Policy 2023, 183, 113807. [Google Scholar] [CrossRef]
- Niajalili, M.; Mayeli, P.; Naghashzadegan, M.; Poshtiri, A.H. Techno-economic feasibility of off-grid solar irrigation for a rice paddy in Guilan province in Iran: A case study. Sol. Energy 2017, 150, 546–557. [Google Scholar] [CrossRef]
- Breidert, C.; Hahsler, M.; Reutterer, T. A review of methods for measuring willingness-to-pay. Innov. Mark. 2006, 2, 8–32. [Google Scholar]
- Voelckner, F. An empirical comparison of methods for measuring consumers’ willingness to pay. Mark. Lett. 2006, 17, 137–149. [Google Scholar] [CrossRef]
- Kaonga, O.; Masiye, F.; Kirigia, J.M. How viable is social health insurance for financing health in Zambia? Results from a national willingness to pay survey. Soc. Sci. Med. 2022, 305, 115063. [Google Scholar] [CrossRef]
- Ogbeide, O.A.; Stringer, R.; Ford, C. Consumer Willingness to Pay a Premium for the Health Benefits of Organic Wine. Mayfair J. Agribus. Manag. 2015, 1, 1–23. Available online: https://www.researchgate.net/publication/272510176 (accessed on 2 December 2024).
- Tian, N.; Rubino, E.C.; Gan, J.; Gutierrez-Castillo, A.; Pelkki, M. Private landowners’ willingness-to-pay for certifying forestland and influencing factors: Evidence from Arkansas, United States. Environ. Chall. 2022, 9, 100600. [Google Scholar] [CrossRef]
- Ren, X.; Pan, N.; Jiang, H. Differentiated pricing for airline ancillary services considering passenger choice behavior heterogeneity and willingness to pay. Transp. Policy 2022, 126, 292–305. [Google Scholar] [CrossRef]
- Alhassan, I.B.; Matthews, B.; Toner, J.P.; Susilo, Y.O. Public transport users’ willingness-to-pay for a multi-county and multi-operator integrated ticket: Valuation and policy implications. Res. Transp. Bus. Manag. 2022, 45, 100836. [Google Scholar] [CrossRef]
- Bai, R.; Lin, B. Are residents willing to pay for garbage recycling: Evidence from a survey in Chinese first-tier cities. Environ. Impact. Assess. Rev. 2022, 95, 106789. [Google Scholar] [CrossRef]
- Groh, E.D. Exposure to wind turbines, regional identity and the willingness to pay for regionally produced electricity. Resour. Energy Econ. 2022, 70, 101332. [Google Scholar] [CrossRef]
- Lehmann, N.; Sloot, D.; Ardone, A.; Fichtner, W. Willingness to pay for regional electricity generation—A question of green values and regional product beliefs? Energy Econ. 2022, 110, 106003. [Google Scholar] [CrossRef]
- Brown, M.A.; Kale, S.; Kyeong-Cha, M.; Chapman, O. Exploring the willingness of consumers to electrify their homes. Appl. Energy 2023, 338, 120791. [Google Scholar] [CrossRef]
- Morrissey, K.; Plater, A.; Dean, M. The cost of electric power outages in the residential sector: A willingness to pay approach. Appl. Energy 2018, 212, 141–150. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Ali, A.; Rahut, D.B.; Behera, B. Factors influencing farmers׳ adoption of energy-based water pumps and impacts on crop productivity and household income in Pakistan. Renew. Sustain. Energy Rev. 2016, 54, 48–57. [Google Scholar] [CrossRef]
- Osuafor, O.O.; Ude, K.D. Valuation of Rice Farmers’ Preferences and Willingness to Pay for Climate-Smart Agricultural Technologies in Southeast, Nigeria. Asian J. Econ. Model. 2021, 9, 48–57. [Google Scholar] [CrossRef]
- Meunier, S.; Manning, D.T.; Quéval, L.; Cherni, J.A.; Dessante, P.; Zimmerle, D. Determinants of the marginal willingness to pay for improved domestic water and irrigation in partially electrified Rwandan villages. Int. J. Sustain. Dev. World Ecol. 2019, 26, 547–559. [Google Scholar] [CrossRef]
- Sillano, M.; de Dios Ortúzar, J. Willingness-to-pay estimation with mixed logit models: Some new evidence. Environ. Plan A 2005, 37, 525–550. [Google Scholar] [CrossRef]
- Hole, A.R.; Kolstad, J.R. Mixed logit estimation of willingness to pay distributions: A comparison of models in preference and WTP space using data from a health-related choice experiment. Empir. Econ. 2012, 42, 445–469. [Google Scholar] [CrossRef]
- Amador, F.J.; González, R.M.; Ramos-Real, F.J. Supplier choice and WTP for electricity attributes in an emerging market: The role of perceived past experience, environmental concern and energy saving behavior. Energy Econ. 2013, 40, 953–966. [Google Scholar] [CrossRef]
- Zhou, D.; Abdullah. The acceptance of solar water pump technology among rural farmers of northern Pakistan: A structural equation model. Cogent. Food Agric. 2017, 3, 1280882. [Google Scholar] [CrossRef]
- Poungchompu, S.; Tsuneo, K. Aspects of the Aging Farming Population and Food Security in Agriculture for Thailand and Japan. Int. J. Environ. Rural. Dev. 2012, 3, 102–107. [Google Scholar]
- Jansuwan, P.; Zander, K.K. What to do with the farmland? Coping with ageing in rural Thailand. J. Rural. Stud. 2021, 81, 37–46. [Google Scholar] [CrossRef]
- OCHA Regional Office for Asia and the Pacific (ROAP). Thailand—Subnational Administrative Boundaries. Available online: https://data.humdata.org/dataset/cod-ab-tha (accessed on 14 March 2025).
- Benedict, B.E.O.; Edward, D.; Benedict, E.O.; Edward, D. A Research Study to Determine If Solar Dryer Technology for Preservation of Agro-Produce Is Needed in Botswana. Glob. J. Res. Eng. A Mech. Mech. Eng. 2020, 20, 23–34. Available online: https://engineeringresearch.org/index.php/GJRE/article/view/2059 (accessed on 24 November 2023).
- Togridou, A.; Hovardas, T.; Pantis, J.D. Determinants of visitors’ willingness to pay for the National Marine Park of Zakynthos, Greece. Ecol. Econ. 2006, 60, 308–319. [Google Scholar] [CrossRef]
- Surendran, A.; Sekar, C. An economic analysis of willingness to pay (WTP) for conserving the biodiversity. Int. J. Soc. Econ. 2010, 37, 637–648. [Google Scholar] [CrossRef]
- Office of Agricultural Economics. ตัวชี้วัด ภาวะเศรษฐกิจ สังคม ครัวเรือนเกษตร (Indicators of Economic and Social Conditions of Agricultural Households). Available online: https://www.oae.go.th/assets/portals/1/files/econ/Socio-econ2018-22.pdf (accessed on 19 November 2023). (In Thai).
- Andriamanohiarisoamanana, F.J.; Randrianantoandro, T.N.; Ranaivoarisoa, H.F.; Kono, H.; Yoshida, G.; Ihara, I.; Umetsu, K. Integration of biogas technology into livestock farming: Study on farmers’ willingness to pay for biodigesters in Madagascar. Biomass Bioenergy 2022, 164, 106557. [Google Scholar] [CrossRef]
- Ponchio, M.C. The Influence of Materialism on Consumption Indebtedness in the Context of Low Income Consumers from the City of Sao Paulo; the Getulio Vargas Foundation—FGV-EAESP: Sao Paulo, Brazil, 2006. [Google Scholar]
- Sobieszczyk, T.; Knodel, J.; Chayovan, N. Gender and wellbeing among older people: Evidence from Thailand. Ageing Soc. 2003, 23, 701–735. [Google Scholar] [CrossRef]
- Flores, S.A.M.; Vieira, K.M. Propensity toward indebtedness: An analysis using behavioral factors. J. Behav. Exp. Financ. 2014, 3, 1–10. [Google Scholar] [CrossRef]
- Luangchosiri, N.; Dumlao, S.M.G.; Ogawa, T.; Okumura, H.; Ishihara, K.N. Optimum scheduling of shared greenhouse solar dryer in Thai community. Solar Energy 2023, 264, 112031. [Google Scholar] [CrossRef]
- Kwanmuang, K.; Pongputhinan, T.; Jabri, A.; Chitchumnung, P. Small-Scale Farmers Under Thailand’s Smart Farming System; FFTC Agricultural Policy Platform: Taipei, Taiwan, 2020; Available online: https://www.researchgate.net/publication/353680690 (accessed on 5 January 2024).
- Winrock International. Empowering Agriculture: Energy Options for Horticulture. 2009. Available online: https://ucdavis.app.box.com/s/y2zx9txzi8m3xbbz6zglnifc0igcqn26 (accessed on 1 December 2024).
Variables | Category | NC | NEC | ||
---|---|---|---|---|---|
N | % | N | % | ||
Gender | Female | 64 | 50.4 | 52 | 62.7 |
(Gen) | Male | 63 | 49.6 | 31 | 37.3 |
Total | 127 | 100.0 | 83 | 100.0 | |
Age | <31 years | 6 | 4.7 | 0 | 0 |
(Age) | 31–40 years | 23 | 18.1 | 0 | 0 |
41–50 years | 24 | 18.9 | 14 | 16.9 | |
51–60 years | 28 | 22.0 | 26 | 31.3 | |
>60 years | 46 | 36.2 | 43 | 51.8 | |
Education | Elementary level or lower | 83 | 65.4 | 50 | 60.2 |
(Edu) | Secondary level or higher | 44 | 34.6 | 33 | 39.8 |
Source of income | Agriculture | 51 | 40.2 | 39 | 47.0 |
(SI) | Agriculture and non-agriculture | 76 | 59.8 | 44 | 53.0 |
Annual income | <USD 914 | 10 | 7.9 | 28 | 33.7 |
(AI) | USD 914–USD 2571 | 21 | 16.5 | 36 | 43.4 |
USD 2571–USD 4286 | 21 | 16.5 | 13 | 15.7 | |
>USD 4286 | 75 | 59.1 | 6 | 7.2 | |
Mean | USD 7327 | USD 2158 | |||
SD | USD 6784 | USD 2890 | |||
Debt amount | 0 | 17 | 13.4 | 11 | 13.3 |
(DebA) | <USD 2857 | 8 | 6.3 | 32 | 38.5 |
USD 2857–USD 14,286 | 57 | 44.9 | 26 | 31.3 | |
>USD 14,286 | 45 | 35.4 | 13 | 15.7 | |
Land ownership | No land ownership | 22 | 17.3 | 10 | 12.0 |
(LO) | Land ownership < 0.8 ha | 5 | 3.9 | 17 | 20.5 |
Land ownership > 0.8 ha | 100 | 78.7 | 56 | 67.5 | |
Cultivation area | <3.20 ha | 39 | 30.7 | 71 | 85.5 |
(CulA) | 3.20–7.04 ha | 64 | 50.4 | 10 | 12.1 |
7.20–11.04 ha | 16 | 12.6 | 1 | 1.2 | |
>11.04 ha | 8 | 6.3 | 1 | 1.2 | |
Mean | 4.83 ha | 2.03 ha | |||
SD | 4.57 ha | 2.43 ha | |||
RET knowledge | Unawareness | 3 | 3.9 | 16 | 19.3 |
(RETk) | Awareness | 124 | 96.1 | 67 | 80.7 |
Options | NC | NEC | Total | ||||
---|---|---|---|---|---|---|---|
N | % | N | % | N | % | ||
WTP | No | 31 | 24.4 | 19 | 22.9 | 50 | 23.8 |
Yes | 96 | 75.6 | 64 | 77.1 | 160 | 76.2 | |
Total | 127 | 100.0 | 83 | 100.0 | 210 | 100.0 | |
WTP amount | ≤USD 857 | 12 | 12.5 | 21 | 32.8 | 33 | 20.6 |
USD 857–USD 1714 | 62 | 64.6 | 17 | 26.6 | 79 | 49.4 | |
USD 1714–USD 2857 | 17 | 17.7 | 14 | 21.9 | 31 | 19.4 | |
≥USD 2857 | 5 | 5.2 | 12 | 18.8 | 17 | 10.6 | |
Total | 96 | 100.0 | 64 | 100.0 | 160 | 100.0 | |
Mean | USD 1438 | USD 1518 | USD 1470 | ||||
SD | USD 615 | USD 940 | USD 760 | ||||
Investment form | Individual | 85 | 88.5 | 37 | 57.8 | 122 | 76.3 |
(IF) | Sharing | 11 | 11.5 | 27 | 42.2 | 38 | 23.8 |
Total | 96 | 100.0 | 64 | 100.0 | 160 | 100.0 |
Explanatory Variables | Logistic: WTP (1 = Yes; 0 = No) | Multiple Regression: WTP Amount | ||
---|---|---|---|---|
NC (a) | NEC (b) | NC (c) | NEC (d) | |
Gender (Gen) | 1.472 | 1.128 | 0.973 | 0.940 |
(0.533) | (0.619) | (0.177) | (0.326) | |
Education (Edu) | 3.374 * | 5.615 ** | 1.368 * | 1.492 |
(0.635) | (0.754) | (0.185) | (0.337) | |
Source of income (SI) | 1.981 | 0.817 | 1.173 | 1.457 |
(0.542) | (0.600) | (0.183) | (0.314) | |
Debt amount (DebA) | 3.660 *** | 0.389 ** | 1.616 *** | 0.975 |
(0.303) | (0.410) | (0.092) | (0.177) | |
Land ownership (LO) | 1.918 * | 0.867 | 1.273 ** | 0.815 |
(0.341) | (0.411) | (0.119) | (0.231) | |
RET knowledge (RETk) | 3.848 | 2.807 | 1.849 | 1.115 |
(1.604) | (0.688) | (0.593) | (0.305) | |
Cultivation area (CulA) | 1.012 | 1.082 | 1.006 * | 1.027 ** |
(0.013) | (0.050) | (0.003) | (0.010) | |
Constant | 4.648 × 10−5 *** | 0.526 | 0.081 ** | 2.001 |
(3.572) | (1.992) | (1.194) | (1.098) | |
Number of observations | 127 | 83 | 127 | 83 |
Items | <1 ha | 1 ha | 2 ha | 4 ha |
---|---|---|---|---|
Solar pumping system (1 kW) and submersible (1.2 kW) | 1036 | |||
Solar pumping system (2 kW) and submersible (1.5 kW) | 1846 | 1845 | 2769 | |
Storage tank and foundation | 1564 | 3128 | 6256 | |
Water distribution system | 390 | 780 | 1560 | |
Pump for distribution (1.12 kW) | 589 | 1178 | 2356 | |
Total | 1036 | 4389 | 6932 | 12,941 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luangchosiri, N.; Chaichana, C.; Yalangkan, P.; Dumlao, S.M.G.; Okumura, H.; Ishihara, K.N. Willingness to Pay for Renewably Sourced Irrigation with Solar Water Pumping (SWP) Systems in Drought-Prone Areas of Thailand. Water 2025, 17, 858. https://doi.org/10.3390/w17060858
Luangchosiri N, Chaichana C, Yalangkan P, Dumlao SMG, Okumura H, Ishihara KN. Willingness to Pay for Renewably Sourced Irrigation with Solar Water Pumping (SWP) Systems in Drought-Prone Areas of Thailand. Water. 2025; 17(6):858. https://doi.org/10.3390/w17060858
Chicago/Turabian StyleLuangchosiri, Nilubon, Chatchawan Chaichana, Parichat Yalangkan, Samuel Matthew G. Dumlao, Hideyuki Okumura, and Keiichi N. Ishihara. 2025. "Willingness to Pay for Renewably Sourced Irrigation with Solar Water Pumping (SWP) Systems in Drought-Prone Areas of Thailand" Water 17, no. 6: 858. https://doi.org/10.3390/w17060858
APA StyleLuangchosiri, N., Chaichana, C., Yalangkan, P., Dumlao, S. M. G., Okumura, H., & Ishihara, K. N. (2025). Willingness to Pay for Renewably Sourced Irrigation with Solar Water Pumping (SWP) Systems in Drought-Prone Areas of Thailand. Water, 17(6), 858. https://doi.org/10.3390/w17060858