Bioremediation of Endocrine Disruptors (EDs): A Systematic Review of Fungal Application in ED Removal from Wastewater
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Overview of Key Findings
3.2. Fungal Applications for the Removal of Endocrine Disruptors
3.3. Laccase-Mediated Degradation of Endocrine Disruptors
3.4. Applications of Fungi and Their Enzymes in Real Wastewater Treatment
Fungus | EDs | Conditions | Main Results | Ref. |
---|---|---|---|---|
Trametes versicolor, Pleurotus ostreatus, Phanerochaete chrysosporium | PhOH, Parabens, Phthalates | Fed-batch and starvation strategies reduced fresh biomass input and external nutrients. The fungus operated in two bioreactors over one week with five consecutive degradation cycles of EDs. | Best results with T. versicolor It efficiently removed all EDs without additional nutrients, showing potential for repeated cycles in bioreactors. Biotransformation was the primary removal mechanism, with minimal biosorption. | [16] |
Trametes versicolor NRRL 66313 | E2, single A mixture of EDs: E1, E2, EE2, BPA, ATZ, CBZ, DEET, OBZ, TCS | Fungus was grown in glucose-amended, sterile wastewater (5 g/L). Removals performed in aerated Erlenmeyer incubated for 8 days at room temperature (25 ± 2 °C) and spiked with 5 mg/L of E2 or the mixture of EDCs (350 μg/L each). Abiotic and heat-killed fungus controls were also tested. | T. versicolor reduced E2 from 5 mg/L to below detection levels within 5 h, with E1 as a metabolite, which was subsequently removed. For the mixture of EDs, 62–100% removal was achieved within 3.5 h, and estrogenic activity reduced by 77% (compared to 4–8% in controls). After 12 h, estrogenic activity reduction exceeded 98% (vs. 24–42% for controls). | [28] |
Trametes versicolor | ATZ, BPA, CBZ, TCS | Commercial enzymes, biodegradation of estrogenic pollutants in wastewater. | Near-total reduction in estrogenic activity. >80% of atrazine in contaminated water within 72 h by laccase. High efficiency across 5 degradation cycles without external nutrients. Laccase. The process breaks down complex aromatic pesticide structures into simpler, less toxic byproducts, which were further degraded by microbial consortia. | [30] |
Pleurotus pulmonarius LBM 105 Trametes sanguinea LBM 023 | PCBs | Single culture vs. consortium in bioremediation of PCB-contaminated transformer oil. | Pleurotus pulmonarius LBM 105 showed the highest PCB degradation 95.4% PCB removal, outperforming Trametes sanguinea LBM 023 and fungal consortium. | [35] |
Anthracophyllum discolor | PAHs B[a]P | Biodegradation in liquid medium and autoclaved contaminated soil. | 75% PAH removal in soil. Manganese peroxidase production linked to degradation. Lower efficiency in non-autoclaved soils. | [36] |
Aspergillus niger AN 400 | ATZ | Batch reactors with dispersed fungal biomass, glucose as co-substrate. | 40% ATZ removal without co-substrate, doubled efficiency with glucose addition at 3 g/L. Higher glucose levels reduced degradation due to competition. | [37] |
Trametes hirsuta La-7 | BPA, E1, E2 | In vivo and in vitro degradation using extracellular laccase and mycelium. | >80% BPA removal within 6 h. Metabolized EDs through six mechanisms, unaffected by BPA presence in plant test. | [38] |
Phanerochaete chrysosporium | 6:2 FTOH | Transformation of PFAS in bioreactors with Kirk medium with and without glucose, supplemented with organic nutrients like lignocellulosic powder. | Phanerochaete chrysosporium biotransformed 6:2 FTOH into perfluorocarboxylic acids (PFCAs), polyfluorocarboxylic acids, and intermediates within 28 days. Main product was 5:3 FTCA, making up 32–43% of the initial 6:2 FTOH, with minor amounts of PFCAs (5.9%). Efficient EDs degradation, but with some residual estrogenic activity. | [39] |
Trametes versicolor,
Irpex lacteus, Bjerkandera adusta, Phanerochaete chrysosporium, Phanerochaete magnoliae, Pleurotus ostreatus, Pycnoporus cinnabarinus, Dichomitus squalens | NP, n-NP, BPA, EE2, TCS | Biodegradation in static conditions at 28 °C, malt extract–glucose medium. | I. lacteus and P. ostreatus were the most efficient degraders, >90% and >80% in 7 days, respectively. Both fungi degraded pollutants below detection limit within the first 3 days. Estrogenic activities decreased with advanced degradation, but residual activity was observed in cultures of I. lacteus, P. ostreatus, and P. chrysosporium (28–85% of initial). B. adusta showed an increase in estrogenic activity during NP degradation, suggesting endocrine-active intermediates. Ligninolytic enzyme activity was affected by the ED, indicating potential stimulation or suppression during biodegradation. | [40] |
Pleurotus ostreatus HK 35 | BPA, E2 | Trickle-bed reactor, lab and real wastewater treatment. | Degraded >90% of EDs in 12 days, >76% ED removal in pilot reactor. | [60] |
Trametes versicolor (pellets) | PhACs, EDs | Fluidized bed bioreactor treating hospital wastewater under sterile and non-sterile conditions. | Removed 46 out of 51 detected EDs and PhACs. 83.2% removal in sterile conditions; 53.3% in non-sterile environments. Complete removal of DIF. | [61] |
4. Methodologies for Assessing Estrogenic Activity
5. Critical Assessment of Research Gaps and Limitations
6. Conclusions and Future Perspectives
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L. Persistent organic chemicals of emerging environmental concern. In Environmental Deterioration and Human Health: Natural and Anthropogenic Determinants; Abdul, M., Elisabeth, G., Rais, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 163–213. ISBN 978-94-007-7889-4. [Google Scholar]
- Ismail, N.A.H.; Wee, S.Y.; Aris, A.Z. Multiclass of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota. Chemosphere 2017, 188, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. In Emerging Contaminants, Vol. 1. Environmental Chemistry for a Sustainable World; Morin-Crini, N., Lichtfouse, E., Crini, G., Eds.; Springer: Cham, Switzerland, 2021; Volume 65. [Google Scholar] [CrossRef]
- Werkneh, A.A.; Gebru, S.B.; Redae, G.H.; Tsige, A.G. Removal of endocrine disrupters from the contaminated environment: Public health concerns, treatment strategies and future perspectives—A review. Heliyon 2022, 8, e09206. [Google Scholar] [CrossRef]
- Jeon, H.-K.; Chung, Y.; Ryu, J.-C. Simultaneous determination of benzophenone-type UV filters in water and soil by gas chromatography–mass spectrometry. J. Chromatogr. A 2006, 1131, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Matike, D.M.E.; Ngole-Jeme, V.M. A Review of Phthalates and Phenols in Landfll Environments: Occurrence, Fate and Environmental Implications. Int. J. Environ. Res. 2024, 18, 79. [Google Scholar] [CrossRef]
- Lzaod, S.; Dutta, T. Biotransformation of 4,4′-dihydroxybiphenyl and dienestrol by laccase from Trametes versicolor. J. Hazard. Mater. Adv. 2022, 8, 100169. [Google Scholar] [CrossRef]
- Kasonga, T.K.; Coetzee, M.A.A.; van Zijl, C.; Momba, M.N.B. Removal of pharmaceutical estrogenic activity of sequencing batch reactor effluents assessed in the T47D-KBluc reporter gene assay. J. Environ. Manag. 2019, 240, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Alves, M. Chapter 4: Dyes—Environmental impact and remediation. In Environmental Protection Strategies for Sustainable Development, Strategies for Sustainability; Malik, A., Grohmann, E., Eds.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2012; pp. 111–154. [Google Scholar] [CrossRef]
- Lloret, L.; Eibes, G.; Ló-Chau, T.A.; Moreira, M.T.; Feijoo, G.; Lema, J.M. Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochem. Engin. J. 2010, 51, 124–131. [Google Scholar] [CrossRef]
- Asif, M.B.; Hai, F.I.; Hou, J.; Price, W.E.; Nghiem, L.D. Impact of Wastewater Derived Dissolved Interfering Compounds on Growth, Enzymatic Activity and Trace Organic Contaminant Removal of White Rot Fungi-A Critical Review. J. Environ. Manag. 2017, 201, 89–109. [Google Scholar] [CrossRef]
- Asif, M.B.; Hai, F.I.; Singh, L.; Price, W.E.; Nghiem, L.D. Degradation of Pharmaceuticals and Personal Care Products by White-Rot Fungi-Critical Review. Water Res. 2017, 123, 503–520. [Google Scholar] [CrossRef]
- Elayaperumal, S.; Sivamani, Y.; Bhattacharya, D.; Lahiri, D.; Nag, M. Eco-Friendly Biosurfactant Solutions for Petroleum Hydrocarbon Cleanup in Aquatic Ecosystems. Sustain. Chem. Environ. 2025, 100207. [Google Scholar] [CrossRef]
- Mishra, S.; Lin, Z.; Pang, S.; Zhang, W.; Bhatt, P.; Chen, S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front Bioeng Biotechnol. 2021, 9, 632059. [Google Scholar] [CrossRef]
- Pezzella, C.; Macellaro, G.; Sannia, G.; Raganati, F.; Olivieri, G.; Marzocchella, A.; Schlosser, D.; Piscitelli, A. Exploitation of Trametes Versicolor for Bioremediation of Endocrine Disrupting Chemicals in Bioreactors. PLoS ONE 2017, 12, e0178758. [Google Scholar] [CrossRef]
- Dell’ Anno, F.; Rastelli, E.; Sansone, C.; Brunet, C.; Ianora, A.; Dell’ Anno, A. Bacteria, Fungi and Microalgae for the Bioremediation of Marine Sediments Contaminated by Petroleum Hydrocarbons in the Omics Era. Microorganisms 2021, 9, 1695. [Google Scholar] [CrossRef] [PubMed]
- Razia, S.; Hadibarata, T.; Lau, S.Y. A review on biodegradation of Bisphenol A (BPA) with bacteria and fungi under laboratory conditions. Int. Biodet. Biod. 2024, 195, 105893. [Google Scholar] [CrossRef]
- Latif, W.; Ciniglia, C.; Iovinella, M.; Shafiq, M.; Papa, S. Role of white rot fungi in industrial wastewater treatment: A review. Appl. Sci. 2023, 13, 8318. [Google Scholar] [CrossRef]
- Zhuo, R.; Fan, F. A Comprehensive Insight into the Application of White Rot Fungi and Their Lignocellulolytic Enzymes in the Removal of Organic Pollutants. Sci. Total Environ. 2021, 778, 146132. [Google Scholar] [CrossRef]
- Harms, H.; Schlosser, D.; Wick, L. Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 2011, 9, 177–192. [Google Scholar] [CrossRef]
- Kumar, A.; Chandra, R. Ligninolytic enzymes and their mechanisms for degradation of lignocellulosic waste in the environment. Heliyon 2020, 6, e03170. [Google Scholar] [CrossRef] [PubMed]
- Dinakarkumar, Y.; Ramakrishnan, G.; Gujjula, K.R.; Vasu, V.; Balamurugan, P.; Murali, G. Fungal bioremediation: An overview of the mechanisms, applications and future perspectives. Environ. Chem. Ecotox. 2024, 6, 293–302. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Pagani, R.N.; Kovaleski, J.L.; Resende, L.M. Methodi Ordinatio: A proposed methodology to select and rank relevant scientific papers enc.ompassing the impact factor, number of citation, and year of publication. Scientometrics 2015, 105, 2109–2135. [Google Scholar] [CrossRef]
- Mesacasa, L.; Cabral, F.S.; Fochi, D.A.T.; Oliveira, W.S.; Oliveira, F.; Kersting, M.; Colares, G.S.; Rodriguez, A.L.; Lutterbeck, C.A.; Konrad, O.; et al. Constructed wetlands and the role of the fungal community for wastewater treatment: A review. Ecohydrol. Hydrobiol. 2024; in press. [Google Scholar] [CrossRef]
- Pundir, A.; Thakur, M.S.; Prakash, S.; Kumari, N.; Sharma, N.; Parameswari, E.; He, Z.; Nam, S.; Thakur, M.; Puri, S.; et al. Fungi as versatile biocatalytic tool for treatment of textile wastewater effluents. Environ. Sci. Eur. 2024, 36, 185. [Google Scholar] [CrossRef]
- Shreve, M.J.; Brockman, A.; Hartleb, M.; Prebihalo, S.; Dorman, F.L.; Brennan, R.A. The white-rot fungus Trametes versicolor reduces the estrogenic activity of a mixture of emerging contaminants in wastewater treatment plant effluent. Int. Biodet. Biodeg. 2016, 109, 132–140. [Google Scholar] [CrossRef]
- Lloret, L.; Eibes, G.; Moreira, M.T.; Feijoo, G.; Lema, J.M. Removal of Estrogenic Compounds from Filtered Secondary Wastewater Effluent in a Continuous Enzymatic Membrane Reactor. Identification of Biotransformation Products. Environ. Sci. Technol. 2013, 47, 4536–4543. [Google Scholar] [CrossRef] [PubMed]
- Karp, S.G.; Ávila, P.F.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. White-rot fungi for bioremediation processes in the environment: A review. Bioresour. Technol. 2021, 313, 123707. [Google Scholar]
- Zabel, R.A.; Morrell, J.J. Chapter Three—The characteristics and classification of fungi and bacteria. In Wood Microbiology, 2nd ed.; Zabel, R.A., Morrell, J.J., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 55–98. [Google Scholar] [CrossRef]
- Dhakar, K.; Pandey, A. Laccase Production from a Temperature and pH Tolerant Fungal Strain of Trametes hirsuta (MTCC 11397). Enzyme Res. 2013, 2013, 869062. [Google Scholar] [CrossRef]
- Sarma, H.; Bhattacharyya, P.N.; Jadhav, D.A.; Pawar, P.; Thakare, M.; Pandit, S.; Mathuriya, A.S.; Prasad, R. Fungal-mediated electrochemical system: Prospects, applications and challenges. Cur. Res. Microbial Sci. 2021, 2, 100041. [Google Scholar] [CrossRef]
- Kurniawati, S.; Nicell, J.A. Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresour. Technol. 2008, 99, 7825–7834. [Google Scholar] [CrossRef] [PubMed]
- Benitez, S.F.; Sadañoski, M.A.; Velázquez, J.E.; Zapata, P.D.; Fonseca, M.I. Comparative Study of Single Cultures and a Consortium of White Rot Fungi for Polychlorinated Biphenyls Treatment. J. Appl. Microbiol. 2021, 131, 1775–1786. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, F.; Pizzul, L.; Castillo, M.D.P.; Cuevas, R.; Diez, M.C. Degradation of Polycyclic Aromatic Hydrocarbons by the Chilean White-Rot Fungus Anthracophyllum Discolor. J. Hazard. Mater. 2011, 185, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Marinho, G.; Barbosa, B.C.A.; Rodrigues, K.; Aquino, M.; Pereira, L. Potential of the filamentous fungus Aspergillus niger AN 400 to degrade atrazine in wastewaters. Biocatal. Agric. Biotechnol. 2017, 9, 162–167. [Google Scholar] [CrossRef]
- Liu, J.; Sun, K.; Zhu, R.; Wang, X.; Waigi, M.G.; Li, S. Biotransformation of bisphenol A in vivo and in vitro by laccase-producing Trametes hirsuta La-7: Kinetics, products, and mechanisms. Environ. Pollut. 2023, 321, 121155. [Google Scholar] [CrossRef] [PubMed]
- Tseng, N.; Wang, N.; Szostek, B.; Mahendra, S. Biotransformation of 6:2 Fluorotelomer Alcohol (6:2 FTOH) by a Wood-Rotting Fungus. Environ. Sci. Technol. 2014, 48, 4012–4020. [Google Scholar] [CrossRef] [PubMed]
- Cajthaml, T.; Křesinová, Z.; Svobodová, K.; Möder, M. Biodegradation of Endocrine-Disrupting Compounds and Suppression of Estrogenic Activity by Ligninolytic Fungi. Chemosphere 2009, 75, 745–750. [Google Scholar] [CrossRef]
- Rajendran, R.K.; Huang, S.-L.; Lin, C.-C.; Kirschner, R. Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways. Biores. Technol. 2017, 226, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Merino, N.; Wang, N.; Gao, Y.; Wang, M.; Mahendra, S. Roles of various enzymes in the biotransformation of 6:2 fluorotelomer alcohol (6:2 FTOH) by a white-rot fungus. J. Hazard. Mater. 2023, 450, 131007. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, K.; Salgado, R.; Galhanas, D.; Bermudez, V.M.S.; Silva, G.M.M.; da Mata, A.M.Á.T.; Pereira, L. Thriving in salty environments: Aspergillus niger’s halotolerance and BTEX biodegradation potential. World J. Microbiol. Biotechnol. 2025, 41, 6. [Google Scholar] [CrossRef]
- Rodrigues, K.; de Sousa, A.M.X.; dos Santos, A.D.O.; Barbosa, B.C.A.; Silva, A.R.; Pereira, L.; Silva, G.M.M. Decolorization and Detoxification of Industrial Wastewater Containing Indigo Carmine by Aspergillus niger AN400 in Sequential Reactors. Colorants 2024, 3, 73–85. [Google Scholar] [CrossRef]
- Arregui, L.; Ayala, M.; Gómez-Gil, X.; Gutiérrez-Soto, G.; Hernández-Luna, C.E.; Herrera de Los Santos, M.; Levin, L.; Rojo-Domínguez, A.; Romero-Martínez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, Function, and Potential Application in Water Bioremediation. Microb. Cell Fact. 2019, 18, 200. [Google Scholar] [CrossRef]
- Sun, K.; Hong, D.; Liu, J.; Latif, A.; Li, S.; Chu, G.; Qin, W.; Si, Y. Trametes versicolor Laccase-Assisted Oxidative Coupling of Estrogens: Conversion Kinetics, Linking Mechanisms, and Practical Applications in Water Purification. Sci. Total Environ. 2021, 782, 146917. [Google Scholar] [CrossRef]
- Cabana, H.; Alexandre, C.; Agathos, S.N.; Jones, J.P. Immobilization of Laccase from the White Rot Fungus Coriolopsis polyzona and Use of the Immobilized Biocatalyst for the Continuous Elimination of Endocrine Disrupting Chemicals. Biores. Technol. 2009, 100, 3447–3458. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.-D.; Tiwari, A.; Anisha, G.S.; Chen, C.-W.; Singh, A.; Haldar, D.; Patel, A.K.; Singhania, R.R. Laccase: A potential biocatalyst for pollutant degradation. Environm. Poll. 2023, 319, 120999. [Google Scholar] [CrossRef]
- Loi, M.; Glazunova, O.; Fedorova, T.; Logrieco, A.F.; Mulè, G. Fungal Laccases: The Forefront of Enzymes for Sustainability. J. Fungi 2021, 7, 1048. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, K.; Verma, P. Multicopper oxidase laccases with distinguished spectral properties: A new outlook. Heliyon 2020, 6, e03972. [Google Scholar] [CrossRef]
- Lloret, L.; Eibes, G.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. J. Hazard. Mater. 2012, 213, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Chappell, H.A.; Milliken, A.; Farmer, C.; Hampton, A.; Wendland, N.; Coward, L.; Gregory, D.J.; Johnson, C.M. Efficient Remediation of 17α-Ethinylestradiol by Lentinula edodes (Shiitake) Laccase. Biocat. Agric. Biotechnol. 2017, 10, 64–68. [Google Scholar] [CrossRef]
- Zofair, S.F.; Hashmi, M.A.; Faridi, I.H.; Rasool, F.; Magani, S.K.J.; Khan, M.A.; Younus, H. Immobilization of Laccase on Poly-L-lysine Modified Silver Nanoparticles Formed by Green Synthesis for Enhanced Stability, Suppressed Estrogenic Activity of 17β-Estradiol, Biocompatibility and Anti-Cancer Action: An In Vitro and In Silico Study. J. Mol. Liq. 2023, 392, 123502. [Google Scholar] [CrossRef]
- Becker, B.D.; Rodriguez-Mozaz, S.; Insa, S.; Schoevaart, R.; Barceló, D.; de Cazes, M.; Belleville, M.-P.; Sanchez-Marcano, J.; Misovic, A.; Oehlmann, J.; et al. Removal of Endocrine Disrupting Chemicals in Wastewater by Enzymatic Treatment with Fungal Laccases. Org. Process Res. Dev. 2017, 21, 480–491. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Mohamad, M.; Rashid, M.U.; Norizan, M.N.; Hamzah, F.; Mat, H.B. Recent Advances in Enzyme Immobilisation Strategies: An Overview of Techniques and Composite Carriers. J. Composites Sci. 2023, 7, 488. [Google Scholar] [CrossRef]
- Akpasi, S.O.; Anekwe, I.M.S.; Tetteh, E.K.; Amune, U.O.; Shoyiga, H.O.; Mahlangu, T.P.; Kiambi, S.L. Mycoremediation as a Potentially Promising Technology: Current Status and Prospects-A Review. Appl. Sci. 2023, 13, 4978. [Google Scholar] [CrossRef]
- Beck, S.; Berry, E.; Duke, S.; Milliken, A.; Patterson, H.; Prewett, D.L.; Rae, T.C.; Sridhar, V.; Wendland, N.; Gregory, B.W. Characterization of Trametes versicolor Laccase-Catalyzed Degradation of Estrogenic Pollutants: Substrate Limitation and Product Identification. Intern. Biodeterior. Biodegrad. 2018, 127, 146–159. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Hong, D.; Sun, K.; Li, S.; Latif, A.; Si, X.; Si, Y. Fungal laccase-triggered 17β-estradiol humification kinetics and mechanisms in the presence of humic precursors. J. Hazard. Mater. 2021, 412, 125197. [Google Scholar] [CrossRef]
- Antón-Herrero, R.; Chicca, I.; García-Delgado, C.; Crognale, S.; Lelli, D.; Gargarello, R.M.; Herrero, J.; Fischer, A.; Thannberger, L.; Eymar, E.; et al. Main Factors Determining the Scale-Up Effectiveness of Mycoremediation for the Decontamination of Aliphatic Hydrocarbons in Soil. J. Fungi 2023, 9, 1205. [Google Scholar] [CrossRef] [PubMed]
- Křesinová, Z.; Linhartová, L.; Filipová, A.; Ezechiáš, M.; Mašín, P.; Cajthaml, T. Biodegradation of Endocrine Disruptors in Urban Wastewater Using Pleurotus Ostreatus Bioreactor. N Biotechnol. 2018, 43, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Morató, C.; Lucas, D.; Llorca, M.; Rodriguez-Mozaz, S.; Gorga, M.; Petrovic, M.; Barceló, D.; Vicent, T.; Sarrà, M.; MarcoUrrea, E. Hospital Wastewater Treatment by Fungal Bioreactor: Removal Efficiency for Pharmaceuticals and Endocrine Disruptor Compounds. Sci. Total Environ. 2014, 493, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Spina, F.; Romagnolo, A.; Prigione, V.; Tigini, V.; Varese, G. A Scaling-up Issue: The Optimal Bioreactor Configuration for Effective Fungal Treatment of Textile Wastewaters. Chem. Eng. Trans. 2014, 38, 37–42. [Google Scholar] [CrossRef]
- Pilafidis, S.; Diamantopoulou, P.; Gkatzionis, K.; Sarris, D. Valorization of agro-industrial wastes and residues through the production of bioactive compounds by macrofungi in liquid state cultures: Growing circular economy. Appl. Sci. 2022, 12, 11426. [Google Scholar] [CrossRef]
- Salazar-Cerezo, S.; de Vries, R.P.; Garrigues, S. Strategies for the development of industrial fungal producing strains. J. Fungi 2023, 8, 834. [Google Scholar] [CrossRef]
- Singh, H.; Janiyani, K.; Gangawane, A.; Pandya, S.; Jasani, S. Engineering cellulolytic fungi for efficient lignocellulosic biomass hydrolysis: Advances in mutagenesis, gene editing, and nanotechnology with CRISPR-Cas innovations. Discov. Appl. Sci. 2024, 6, 665. [Google Scholar] [CrossRef]
- Khan, N.A.; Singh, S.; López-Maldonado, E.A.; Pavithra, N.; Méndez-Herrera, P.M.; López-López, F.J.R.; Baig, U.; Ramamurthy, P.C.; Mubarak, N.M.; Karri, R.R.; et al. Emerging membrane technology and hybrid treatment systems for the removal of micropollutants from wastewater. Desalination 2023, 565, 116873. [Google Scholar] [CrossRef]
- Slaby, S.; Duflot, A.; Zapater, C.; Gómez, A.; Couteau, J.; Maillet, G.; Knigge, T.; Pinto, P.I.S.; Monsinjon, T. The Dicentrarchus labrax estrogen screen test: A relevant tool to screen estrogen-like endocrine disrupting chemicals in the aquatic environment. Chemosphere 2024, 362, 142601. [Google Scholar] [CrossRef]
- Rajendran, R.K.; Lee, Y.-W.; Chou, P.-H.; Huang, S.-L.; Kirschner, R.; Lin, C.-C. Biodegradation of the endocrine disrupter 4-t-octylphenol by the non-ligninolytic fungus Fusarium falciforme RRK20: Process optimization, estrogenicity assessment, metabolite identification and proposed pathways. Chemosphere 2020, 240, 124876. [Google Scholar] [CrossRef] [PubMed]
- Badia-Fabregat, M.; Rodríguez-Rodríguez, C.E.; Gago-Ferrero, P.; Olivares, A.; Piña, B.; Díaz-Cruz, M.S.; Vicent, T.; Barceló, D.; Caminal, G. Degradation of UV Filters in Sewage Sludge and 4-MBC in Liquid Medium by the Ligninolytic Fungus Trametes versicolor. J. Environ. Manag. 2012, 104, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Llorca, M.; Badia-Fabregat, M.; Rodríguez-Mozaz, S.; Caminal, G.; Vicent, T.; Barceló, D. Fungal treatment for the removal of endocrine disrupting compounds from reverse osmosis concentrate: Identification and monitoring of transformation products of benzotriazoles. Chemosphere 2017, 184, 1054–1070. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, C.E.M.; Lima, V.d.S.; Rodrigues, K.; Pereira, L.; Silva, G.M.M. Bioremediation of Endocrine Disruptors (EDs): A Systematic Review of Fungal Application in ED Removal from Wastewater. Water 2025, 17, 640. https://doi.org/10.3390/w17050640
Viana CEM, Lima VdS, Rodrigues K, Pereira L, Silva GMM. Bioremediation of Endocrine Disruptors (EDs): A Systematic Review of Fungal Application in ED Removal from Wastewater. Water. 2025; 17(5):640. https://doi.org/10.3390/w17050640
Chicago/Turabian StyleViana, Camila Emanuelle Mendonça, Valquíria dos Santos Lima, Kelly Rodrigues, Luciana Pereira, and Glória Maria Marinho Silva. 2025. "Bioremediation of Endocrine Disruptors (EDs): A Systematic Review of Fungal Application in ED Removal from Wastewater" Water 17, no. 5: 640. https://doi.org/10.3390/w17050640
APA StyleViana, C. E. M., Lima, V. d. S., Rodrigues, K., Pereira, L., & Silva, G. M. M. (2025). Bioremediation of Endocrine Disruptors (EDs): A Systematic Review of Fungal Application in ED Removal from Wastewater. Water, 17(5), 640. https://doi.org/10.3390/w17050640