The Impact of Short-Term Treated Wastewater Irrigation on Olive Development and Microbial and Chemical Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Irrigation Waters Analysis
2.2. Olive Planting
2.3. Soil Analysis
2.4. Growth Evaluation
2.5. Leaves’ Microbial and Metals Contamination
2.6. Roots’ Metals Contamination
2.7. Statistical Analysis
3. Results
3.1. Water Characteristics
3.2. Soil Characteristics
3.3. Evaluation of Plant Growth Parameters
3.4. Microbes in Leaves
3.5. Metals in the Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TWW | Treated wastewater |
SW | Surface water |
BW | Blended water |
TW | Tap water |
FW | Freshwater |
TOC | Total organic carbon |
TN | Total nitrogen |
EC | Electrical conductivity |
TSS | Total suspended solids |
COD | Chemical oxygen demand |
BOD5 | Five-days biochemical oxygen demand |
CFU | Colony-forming units |
RCBD | Randomized complete block design |
ICP-OES | Inductively coupled plasma optical emission spectrometer |
References
- Zhang, D.; Sial, M.S.; Ahmad, N.; Filipe, A.J.; Thu, P.A.; Zia-Ud-Din, M.; Caleiro, A.B. Water scarcity and sustainability in an emerging economy: A management perspective for future. Sustainability 2021, 13, 144. [Google Scholar] [CrossRef]
- EP. European Parliament. P9_TA(2024)0222 Urban Wastewater Treatment. European Parliament Legislative Resolution of 10 April 2024 on the Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment (Recast) (COM(2022)0541–C9-0363/2022–2022/0345(COD)). 2024. Available online: https://polit-x.de/en/documents/18840772/ (accessed on 10 December 2024).
- MWI. National Water Strategy, 2023–2040; Minisry of Water and Irrigation: Amman, Jordan, 2023. [Google Scholar]
- Al-Hazmi, H.E.; Mohammadi, A.; Hejna, A.; Majtacz, J.; Esmaeili, A.; Habibzadeh, S.; Saeb, M.R.; Badawi, M.; Lima, E.C.; Mąkinia, J. Wastewater reuse in agriculture: Prospects and challenges. Environ. Res. 2023, 236, 116711. [Google Scholar] [CrossRef] [PubMed]
- Renai, L.; Tozzi, F.; Checchini, L.; Del Bubba, M. Chapter Four—Impact of the use of treated wastewater for agricultural need: Behavior of organic micropollutants in soil, transfer to crops, and related risks. In Advances in Chemical Pollution, Environmental Management and Protection; Verlicchi, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 6, pp. 103–135. [Google Scholar]
- Hamdan, M.; Abu-Awwad, A.; Abu-Madi, M. Willingness of farmers to use treated wastewater for irrigation in the West Bank, Palestine. Int. J. Water Resour. Dev. 2022, 38, 497–517. [Google Scholar] [CrossRef]
- Urbano, V.R.; Mendonça, T.G.; Bastos, R.G.; Souza, C.F. Effects of treated wastewater irrigation on soil properties and lettuce yield. Agric. Water Manag. 2017, 181, 108–115. [Google Scholar] [CrossRef]
- Grover, V.I.; Darwish, A.R.; Deutsch, E. Integrated Water Resources Management in Jordan; Economic Research Forum Working Paper No 577; Dokki: Cairo, Egypt, 2010. [Google Scholar]
- Carr, G.; Potter, R.B.; Nortcliff, S. Water reuse for irrigation in Jordan: Perceptions of water quality among farmers. Agric. Water Manag. 2011, 98, 847–854. [Google Scholar] [CrossRef]
- Deh-Haghi, Z.; Bagheri, A.; Fotourehchi, Z.; Damalas, C.A. Farmers’ acceptance and willingness to pay for using treated wastewater in crop irrigation: A survey in western Iran. Agric. Water Manag. 2020, 239, 106262. [Google Scholar] [CrossRef]
- Pedrero, F.; Grattan, S.R.; Ben-Gal, A.; Vivaldi, G.A. Opportunities for expanding the use of wastewaters for irrigation of olives. Agric. Water Manag. 2020, 241, 106333. [Google Scholar] [CrossRef]
- Petousi, I.; Fountoulakis, M.S.; Saru, M.L.; Nikolaidis, N.; Fletcher, L.; Stentiford, E.I.; Manios, T. Effects of reclaimed wastewater irrigation on olive (Olea europaea L. cv. ‘Koroneiki’) trees. Agric. Water Manag. 2015, 160, 33–40. [Google Scholar] [CrossRef]
- Boujelben, N.; Bakari, Z.; Turki, N.; Del Bubba, M.; Elleuch, B. Effects of short-term irrigation of olive (Olea europaea L. cv. ‘Koroneiki’) trees using treated wastewater contaminated with heavy metals. Irrig. Sci. 2024, 42, 863–875. [Google Scholar] [CrossRef]
- Batarseh, M.I.; Rawajfeh, A.; Ioannis, K.K.; Prodromos, K.H. Treated municipal wastewater irrigation impact on olive trees (Olea Europaea L.) at Al-Tafilah, Jordan. Water Air Soil Pollut. 2011, 217, 185–196. [Google Scholar] [CrossRef]
- Ayoub, S.; Al-Shdiefat, S.; Rawashdeh, H.; Bashabsheh, I. Utilization of reclaimed wastewater for olive irrigation: Effect on soil properties, tree growth, yield and oil content. Agric. Water Manag. 2016, 176, 163–169. [Google Scholar] [CrossRef]
- Al-Habahbeh, K.A.; Al-Nawaiseh, M.B.; Al-Sayaydeh, R.S.; Al-Hawadi, J.S.; Albdaiwi, R.N.; Al-Debei, H.S.; Ayad, J.Y. Long-term irrigation with treated municipal wastewater from the Wadi-Musa region: Soil heavy metal accumulation, uptake and partitioning in olive trees. Horticulturae 2021, 7, 152. [Google Scholar] [CrossRef]
- Egbuikwem, P.N.; Mierzwa, J.C.; Saroj, D.P. Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions. Agric. Water Manag. 2020, 231, 106034. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Mehyar, G.F.; Othman, G.A. Nutritional, functional and microbiological characteristics of Jordanian fermented green Nabali Baladi olives. Grasas Aceites 2021, 72, e396. [Google Scholar] [CrossRef]
- Al-Karablieh, N.; Al-Shomali, I.; Al-Elaumi, L.; Tabieh, M.; Al-Karablieh, E.; Al-Jaghbir, M.; Bubba, M.D. The impact of treated wastewater irrigation on strawberry development, fruit quality parameters, and microbial and chemical contaminant transfer: A health risk assessment. Sci. Hortic. 2024, 329, 113014. [Google Scholar] [CrossRef]
- Holmes, R.M.; Aminot, A.; Kérouel, R.; Hooker, B.A.; Peterson, B.J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 1999, 56, 1801–1808. [Google Scholar] [CrossRef]
- Nagul, E.A.; McKelvie, I.D.; Worsfold, P.; Kolev, S.D. The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box. Anal. Chim. Acta 2015, 890, 60–82. [Google Scholar] [CrossRef] [PubMed]
- Oster, J.; Sposito, G.; Smith, C.J. Accounting for potassium and magnesium in irrigation water quality assessment. Calif. Agric. 2016, 70, 71–76. [Google Scholar] [CrossRef]
- Jordanian Standards 893/2021; Water—Reclaimed Domestic Wastewater: Technical Regulation. Jordan Standards and Metrology Organization: Amman, Jordan, 2021.
- Al-Karablieh, N.; Al-Shomali, I.; Al-Elaumi, L.; Hasan, K. Pseudomonas fluorescens NK4 siderophore promotes plant growth and biocontrol in cucumber. J. Appl. Microbiol. 2022, 133, 1414–1421. [Google Scholar] [CrossRef]
- Sathish, K.; Vairavan, C.; Kokila, A.; KB, C.K.; CJ, T.K.; Shankar, M.; Moorthy, A.; Kousalya, V. Evaluating the efficacy of sand filtration for greywater treatment: Impact of column length on water quality and irrigation suitability. Int. J. Environ. Clim. 2024, 14, 172–179. [Google Scholar] [CrossRef]
- Rout, P.R.; Shahid, M.K.; Dash, R.R.; Bhunia, P.; Liu, D.; Varjani, S.; Zhang, T.C.; Surampalli, R.Y. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. J. Environ. Manag. 2021, 296, 113246. [Google Scholar] [CrossRef] [PubMed]
- Bedbabis, S.; Palese, A.M.; Rouina, B.B.; Rhouma, A.L.I.; Gargouri, K.; Boukhris, M. The effect of irrigation with treated wastewater on “chemlali” olive oil quality. J. Food Qual. 2009, 32, 141–157. [Google Scholar] [CrossRef]
- Bakari, Z.; El Ghadraoui, A.; Boujelben, N.; Del Bubba, M.; Elleuch, B. Assessment of the impact of irrigation with treated wastewater at different dilutions on growth, quality parameters and contamination transfer in strawberry fruits and soil: Health risk assessment. Sci. Hortic. 2022, 297, 110942. [Google Scholar] [CrossRef]
- Chartzoulakis, K. The use of saline water for irrigation of olives: Effects on growth, physiology, yield and oil quality. Acta Hortic. 2011, 888, 97–108. [Google Scholar] [CrossRef]
- Bedbabis, S.; Ferrara, G.; Ben Rouina, B.; Boukhris, M. Effects of irrigation with treated wastewater on olive tree growth, yield and leaf mineral elements at short term. Sci. Hortic. 2010, 126, 345–350. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, K.; Chen, B. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environ. Pollut. 2019, 253, 779–789. [Google Scholar] [CrossRef]
- Dubey, A.; Malla, M.A.; Khan, F.; Chowdhary, K.; Yadav, S.; Kumar, A.; Sharma, S.; Khare, P.K.; Khan, M.L. Soil microbiome: A key player for conservation of soil health under changing climate. Biodivers. Conserv. 2019, 28, 2405–2429. [Google Scholar] [CrossRef]
- Sdiri, W.; AlSalem, H.S.; Al-Goul, S.T.; Binkadem, M.S.; Ben Mansour, H. Assessing the effects of treated wastewater irrigation on soil physico-chemical properties. Sustainability 2023, 15, 5793. [Google Scholar] [CrossRef]
- Kronzucker, H.J.; Coskun, D.; Schulze, L.M.; Wong, J.R.; Britto, D.T. Sodium as nutrient and toxicant. Plant Soil 2013, 369, 1–23. [Google Scholar] [CrossRef]
- Colmenero-Flores, J.M.; Franco-Navarro, J.D.; Cubero-Font, P.; Peinado-Torrubia, P.; Rosales, M.A. Chloride as a beneficial macronutrient in higher plants: New roles and regulation. Int. J. Mol. Sci. 2019, 20, 4686. [Google Scholar] [CrossRef] [PubMed]
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Djillali, Y.; Chabaca, M.N.; Benziada, S.; Bouanani, H.; Mandi, L.; Bruzzoniti, M.; Boujelben, N.; Kettab, A. Effect of treated wastewater on strawberry. Desalin. Water Treat 2020, 181, 338–345. [Google Scholar] [CrossRef]
- Albdaiwi, R.N.; Al-Hawadi, J.S.; Al-Rawashdeh, Z.B.; Al-Habahbeh, K.A.; Ayad, J.Y.; Al-Sayaydeh, R.S. Effect of treated wastewater irrigation on the accumulation and transfer of heavy metals in lemon trees cultivated in arid environment. Horticulturae 2022, 8, 514. [Google Scholar] [CrossRef]
- Othman, Y.A.; Al-Assaf, A.; Tadros, M.J.; Albalawneh, A. Heavy metals and microbes accumulation in soil and food crops irrigated with wastewater and the potential human health risk: A metadata analysis. Water 2021, 13, 3405. [Google Scholar] [CrossRef]
- Jiries, A.G.; Hussein, H.H.; Halaseh, Z. The quality of water and sediments of street runoff in Amman, Jordan. Hydrol. Process. 2001, 15, 815–824. [Google Scholar] [CrossRef]
- Hernandez-Soriano, M.C.; Jimenez-Lopez, J.C. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals. Sci. Total Environ. 2012, 423, 55–61. [Google Scholar] [CrossRef]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and environmental effects of heavy metals. J. King Saud Univ. Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Alkhaza’leh, H.; Abu-Awwad, A.; Alqinna, M. Effect of irrigation with treated wastewater on potatoes’ yields, soil chemical, physical and microbial properties. Jordan J. Earth Environ. Sci. 2023, 14, 135–145. [Google Scholar]
- Al-Lahham, O.; El Assi, N.; Fayyad, M. Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit. Agric. Water Manag. 2003, 61, 51–62. [Google Scholar] [CrossRef]
- Al-Quraan, N.A.; Abu-Rub, L.I.; Sallal, A.K. Evaluation of bacterial contamination and mutagenic potential of treated wastewater from Al-Samra wastewater treatment plant in Jordan. J. Water Health 2020, 18, 1124–1138. [Google Scholar] [CrossRef]
- Burjaq, S.Z.; Abu-Romman, S.M. Prevalence and antimicrobial resistance of Salmonella spp. from irrigation water in two major sources in Jordan. Curr. Microbiol. 2020, 77, 3760–3766. [Google Scholar] [CrossRef]
- Tarazi, Y.H.; Dwekat, A.F.A.; Ismail, Z.B. Molecular characterization of Salmonella spp. isolates from river and dam water, irrigated vegetables, livestock, and poultry manures in Jordan. Vet. World 2021, 14, 813–819. [Google Scholar] [CrossRef]
- Xiong, D.; Chen, J.; Yu, T.; Gao, W.; Ling, X.; Li, Y.; Peng, S.; Huang, J. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep. 2015, 5, 13389. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Alves, M.; Malheiro, C.; Silva, A.R.R.; Loureiro, S.; Henriques, I.; González-Alcaraz, M.N. Short-term responses of soil microbial communities to changes in air temperature, soil moisture and UV radiation. Genes 2022, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef]
- Qi, X.; Tam, N.F.-y.; Li, W.C.; Ye, Z. The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics. Environ. Pollut. 2020, 264, 114736. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Pyatt, F.B. Heavy metal bioaccumulation by the important food plant, Olea europaea L., in an ancient metalliferous polluted area of Cyprus. Bull. Environ. Contam. Toxicol. 2007, 78, 390–394. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Terenzi, V. Rhizosphere microbial communities and heavy metals. Microorganisms 2021, 9, 1462. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Silva, S.; Galhano, C.; Lorenzo, P. Olive tree belowground microbiota: Plant growth-promoting bacteria and fungi. Plants 2024, 13, 1848. [Google Scholar] [CrossRef] [PubMed]
- Melgar, J.C.; Benlloch, M.; Fernández-Escobar, R. Calcium increases sodium exclusion in olive plants. Sci. Hortic. 2006, 109, 303–305. [Google Scholar] [CrossRef]
Parameter | TWW | BW | SW | TW | Jordanian Standards ** |
---|---|---|---|---|---|
pH | 7.8 ± 0.3 a | 7.6 ± 0.2 a | 8.4 ± 0.4 a | 8.0 ± 0.1 a | 6–9 |
EC (mS cm−1) | 6 ± 0.3 a | 4 ± 0.8 b | 4 ± 0.2 b | 3 ± 0.2 c | 1–3 |
TSS (mg L−1) | 35 ± 1 a | 32 ± 4 a | 25 ± 1 b | 1 ± 0.2 c | 50 |
COD (mg L−1) | 55 ± 2 a | 59 ± 2 a | 60 ± 1 a | ND | 100 |
BOD (mg L−1) | 15 ± 2 b | 20 ± 4 a | 27 ± 2 a | ND | 30 |
HCO3− (mg L−1) | 368 ± 8 a | 336 ± 17 a | 315 ± 6 b | 89 ± 2 c | 400 |
NO3− (mg L−1) | 12 ± 1 b | 15 ± 1 a | 16 ± 2 a | 1 ± 0.1 c | 30 |
NH4+ (mg L−1) | 14 ± 1 a | 13 ± 0.4 a | 13 ± 1 a | 1 ± 0.1 b | 45 |
PO4−3 (mg L−1) | 13 ± 2 c | 31 ± 3 b | 45 ± 2 a | 2 ± 0.1 d | 30 |
K (mg L−1) | 31 ± 3 a | 24 ± 6 a | 16 ± 2 b | 6 ± 1 c | NL |
Cl− (mg L−1) | 350 ± 15 a | 320 ± 40 a | 250 ± 21 b | 265 ± 18 b | 400 |
Cd (mg L−1) | 0.02 ± 0.01 c | 6 ± 3 b | 12 ± 2 a | ND | 0.01 |
Cr (mg L−1) | 0.04 ± 0.01 b | 0.06 ± 0.01 b | 0.2 ± 0.03 a | 0.02 ± 0.002 c | 0.1 |
Cu (mg L−1) | 0.3 ± 0.02 a | 0.3 ± 0.01 a | 0.3 ± 0.05 a | 0.03 ± 0.01 b | 0.2 |
Mn (mg L−1) | 0.2 ± 0.02 a | 0.2 ± 0.02 a | 0.2 ± 0.04 a | 0.1 ± 0.01 b | 0.2 |
Pb (mg L−1) | 0.4 ± 0.03 b | 3 ± 0.1 a | 4 ± 0.1 a | 0.03 ± 0.01 c | 0.2 |
Zn (mg L−1) | 4 ± 2 b | 8 ± 2 a | 9 ± 1 a | 0.7 ± 0.1 c | 5 |
E. coli (CFU mL−1) | 934 ± 45 c | 1235 ± 127 b | 1737 ± 114 a | ND | <100 |
Enterococci spp. (CFU mL−1) | 123 ± 15 c | 237 ± 35 b | 332 ± 38 a | ND | NL |
P. aeruginosa (CFU mL−1) | 103 ± 10 c | 226 ± 26 b | 330 ± 35 a | ND | NL |
Salmonella spp. (CFU mL−1) | 79 ± 10 a | 88 ± 18 a | 99 ± 15 a | ND | NL |
Staphylococcus spp. (CFU mL−1) | 152 ± 12 b | 211 ± 14 a | 251 ± 15 a | ND | NL |
Parameter | Year | Soil Before Irrigation | Soil After Irrigation * | |||
---|---|---|---|---|---|---|
TWW | BW | SW | TW | |||
pH | 2017 | 7.4 ± 0.1 a | 7.4 ± 0.6 a | 7.4 ± 0.5 a | 7.3 ± 0.3 a | 7.4 ± 0.4 a |
2018 | 7.3 ± 0.4 a | 7.3 ± 0.5 a | 7.3 ± 0.2 a | 7.3 ± 0.2 a | ||
2019 | 7.2 ± 0.2 a | 7.2 ± 0.5 a | 7.3 ± 0.1 a | 7.4 ± 0.4 a | ||
EC (mS cm−1) | 2017 | 1.3 ± 0.2 c | 3.3 ± 0.2 a | 2.5 ± 0.3 b | 2.2 ± 0.3 b | 1.7 ± 0.1 c |
2018 | 3.2 ± 0.3 a | 2.9 ± 0.3 b | 2.4 ± 0.3 c | 1.6 ± 0.2 c | ||
2019 | 3.5 ± 0.1 a | 3.1 ± 0.1 b | 2.5 ± 0.3 c | 1.8 ± 0.1 c | ||
TOC (%) | 2017 | 24 ± 1 d | 47 ± 2 a | 39 ± 2 b | 33 ± 5 c | 19 ± 3 d |
2018 | 48 ± 1 a | 42 ± 1 b | 36 ± 3 c | 20 ± 4 d | ||
2019 | 53 ± 1 a | 44 ± 3 b | 38 ± 4 c | 22 ± 3 d | ||
TN (%) | 2017 | 3.3 ± 0.5 c | 10 ± 2 a | 8.2 ± 2 ab | 7.2 ± 1 b | 3.4 ± 2 c |
2018 | 13 ± 2 a | 10 ± 3 ab | 9.2 ± 2 b | 5.2 ± 1 c | ||
2019 | 18 ± 3 a | 13 ± 4 b | 12 ± 2 b | 6.3 ± 3 c | ||
P (mg kg−1) | 2017 | 23 ± 4 c | 37 ± 6 a | 31 ± 4 a | 29 ± 3 b | 18 ± 2 c |
2018 | 39 ± 4 a | 36 ± 6 a | 33 ± 2 b | 19 ± 3 c | ||
2019 | 45 ± 7 a | 40 ± 1 b | 36 ± 3 ab | 23 ± 4 c | ||
K (mg kg−1) | 2017 | 317 ± 19 c | 620 ± 21 a | 609 ± 31 a | 515 ± 23 b | 328 ± 16 c |
2018 | 672 ± 29 a | 628 ± 36 a | 520 ± 23 b | 328 ± 16 c | ||
2019 | 719 ± 42 a | 640 ± 25 b | 535 ± 24 c | 356 ± 16 d | ||
Na (mg kg−1) | 2017 | 95 ± 6 b | 120 ± 7 a | 118 ± 4 a | 97 ± 3 b | 92 ± 2 b |
2018 | 173 ± 4 a | 165 ± 6 a | 102 ± 2 b | 93 ± 3 c | ||
2019 | 225 ± 8 a | 178 ± 1 b | 120 ± 3 c | 99 ± 4 d | ||
Cl- (mg kg−1) | 2017 | 25 ± 1 d | 67 ± 7 a | 49 ± 3 b | 37 ± 3 c | 27 ± 4 d |
2018 | 98 ± 9 a | 64 ± 5 b | 42 ± 6 c | 30 ± 6 d | ||
2019 | 176 ± 15 a | 96 ± 7 b | 60 ± 5 c | 35 ± 3 d | ||
Cd (mg kg−1) | 2017 | 0.24 ± 0.6 b | 0.41 ± 0.06 a | 0.32 ± 0.05 a | 0.23 ± 0.02 b | 0.22 ± 0.03 b |
2018 | 0.52 ± 0.07 a | 0.37 ± 0.06 a | 0.26 ± 0.01 b | 0.24 ± 0.04 b | ||
2019 | 0.63 ± 0.07 a | 0.45 ± 0.03 b | 0.31 ± 0.02 b | 0.24 ± 0.05 b | ||
Cr (mg kg−1) | 2017 | 1.9 ± 3 b | 2.0 ± 0.3 a | 1.8 ± 0.3 b | 1.8 ± 0.2 b | 1.9 ± 0.2 c |
2018 | 3.3 ± 0.3 a | 2.2 ± 0.4 b | 2.1 ± 0.3 b | 1.8 ± 0.3 c | ||
2019 | 3.5 ± 0.3 a | 2.9 ± 0.5 b | 2.4 ± 0.2 b | 1.7 ± 0.2 c | ||
Cu (mg kg−1) | 2017 | 13 ± 2 a | 13 ± 1 a | 13 ± 2 a | 13 ± 2 a | 12 ± 1 a |
2018 | 14 ± 2 a | 13 ± 3 a | 13 ± 1 a | 12 ± 2 a | ||
2019 | 15 ± 1 a | 14 ± 1 a | 13 ± 1 a | 13 ± 2 a | ||
Mn (mg kg−1) | 2017 | 43 ± 4 a | 50 ± 4 a | 47 ± 2 a | 43 ± 2 a | 38 ± 2 b |
2018 | 52 ± 3 a | 48 ± 4 a | 44 ± 2 a | 39 ± 1 b | ||
2019 | 53 ± 5 a | 48 ± 3 a | 43 ± 3 b | 39 ± 2 b | ||
Pb (mg kg−1) | 2017 | 35 ± 7 a | 42 ± 3 a | 40 ± 4 a | 39 ± 1 b | 20 ± 3 c |
2018 | 44 ± 4 a | 41 ± 4 a | 40 ± 3 a | 21 ± 4 b | ||
2019 | 45 ± 5 a | 42 ± 4 a | 41 ± 2 a | 21 ± 6 b | ||
Zn (mg kg−1) | 2017 | 45 ± 3 a | 45 ± 2 a | 43 ± 2 a | 42 ± 1 a | 33 ± 2 b |
2018 | 46 ± 1 a | 44 ± 1 a | 42 ± 1 a | 32 ± 1 b | ||
2019 | 47 ± 2 a | 45 ± 1 a | 43 ± 2 a | 32 ± 2 b |
Parameter | Year | Soil Before Irrigation | Soil After Irrigation * | |||
---|---|---|---|---|---|---|
TWW | BW | SW | TW | |||
E. coli (CFU g−1) | 2017 | 3186 ± 786 c | 8533 ± 825 a | 5998 ± 656 b | 4569 ± 862 b | 3624 ± 127 c |
2018 | 9543 ± 726 a | 6897 ± 766 b | 4989 ± 763 b | 3625 ± 113 c | ||
2019 | 9623 ± 837 a | 7328 ± 666 b | 5469 ± 744 b | 3725 ± 124 c | ||
Enterococci spp. (CFU g−1) | 2017 | 200 ± 15 c | 652 ± 36 a | 597 ± 89 a | 441 ± 17 b | 215 ± 32 c |
2018 | 726 ± 34 a | 677 ± 78 a | 481 ± 32 b | 207 ± 42 c | ||
2019 | 846 ± 42 a | 754 ± 65 a | 584 ± 24 b | 220 ± 35 c | ||
P. aeruginosa (CFU g−1) | 2017 | 60 ± 17 d | 625 ± 98 a | 367 ± 64 b | 352 ± 94 b | 63 ± 26 d |
2018 | 700 ± 88 a | 465 ± 53 b | 412 ± 84 b | 74 ± 34 d | ||
2019 | 736 ± 73 a | 668 ± 34 b | 532 ± 73 c | 73 ± 44 d | ||
Salmonella spp. (CFU g−1) | 2017 | 19 ± 6 c | 474 ± 38 a | 256 ± 38 b | 216 ± 43 b | 37 ± 34 c |
2018 | 573 ± 48 a | 307 ± 52 b | 297 ± 22 b | 39 ± 33 c | ||
2019 | 644 ± 84 a | 389 ± 41 b | 316 ± 34 b | 40 ± 17 c | ||
Staphylococcus spp. (CFU g−1) | 2017 | 26 ± 8 c | 488 ± 123 a | 260 ± 102 b | 258 ± 67 b | 32 ± 23 c |
2018 | 579 ± 137 a | 300 ± 115 b | 262 ± 42 b | 34 ± 13 c | ||
2019 | 689 ± 135 a | 343 ± 124 b | 332 ± 35 b | 41 ± 27 c |
Parameter | Year | Before Irrigation | After Irrigation * | |||
---|---|---|---|---|---|---|
TWW | BW | SW | TW | |||
Plant height (m) | 2017 | 0.4 ± 0.2 c | 0.8 ± 0.2 a | 0.7 ± 0.2 a | 0.7 ± 0.1 a | 0.7 ± 0.1 a |
2018 | 1.3 ± 0.3 a | 0.9 ± 0.3 a | 0.9 ± 0.1 a | 1.1 ± 0.2 a | ||
2019 | 1.6 ± 0.2 a | 1.2 ± 0.2 b | 1.2 ± 0.1 b | 1.2 ± 0.3 b | ||
Trunk diameter (cm) | 2017 | 0.5 ± 0.2 b | 0.9 ± 0.1 a | 0.8 ± 0.2 b | 0.8 ± 0.2 b | 0.8 ± 0.2 b |
2018 | 1.3 ± 0.2 a | 1.0 ± 0.1 a | 1.1 ± 0.2 a | 1.0 ± 0.1 b | ||
2019 | 1.6 ± 0.4 a | 1.3 ± 0.5 a | 1.3 ± 0.3 a | 1.2 ± 0.1 a | ||
Chlorophyll (µmol m−2) | 2017 | 41 ± 1 b | 55 ± 1 a | 52 ± 1 a | 43 ± 1 b | 41 ± 1 b |
2018 | 58 ± 1 a | 54 ± 2 a | 46 ± 1 b | 44 ± 1 b | ||
2019 | 62 ± 2 a | 55 ± 1 b | 53 ± 1 b | 44 ± 2 c |
Metal | Year | TWW | BW | SW | TW |
---|---|---|---|---|---|
Cd | 2017 | 0.9 ± 0.3 a | 0.8 ± 0.2 a | 0.7 ± 0.2 a | 0.40 ± 0.04 b |
2018 | 1.1 ± 0.3 a | 0.8 ± 0.2 a | 0.8 ± 0.3 b | 0.50 ± 0.04 b | |
2019 | 1.4 ± 0.3 a | 0.9 ± 0.2 b | 0.8 ± 0.5 c | 0.60 ± 0.07 d | |
Cr | 2017 | 1.3 ± 0.1 a | 0.9 ± 0.1 b | 0.6 ± 0.2 c | 0.6 ± 0.2 c |
2018 | 1.6 ± 0.3 a | 1.0 ± 0.3 b | 0.7 ± 0.2 bc | 0.7 ± 0.2 c | |
2019 | 1.7 ± 0.2 a | 1.2 ± 0.2 b | 0.9 ± 0.2 c | 0.7 ± 0.2 c | |
Cu | 2017 | 5 ± 1.2 a | 4 ± 0.9 ab | 3 ± 0.8 b | 2 ± 0.5 b |
2018 | 6 ± 1.1 a | 5 ± 0.4 ab | 4 ± 0.2 b | 3 ± 0.3 b | |
2019 | 8 ± 1 a | 8 ± 0.4 ab | 6 ± 0.2 b | 3 ± 0.3 b | |
Mn | 2017 | 23 ± 1 a | 19 ± 1 b | 10 ± 1 c | 9 ± 2 c |
2018 | 27 ± 2 a | 21 ± 3 b | 12 ± 2 c | 9 ± 3 c | |
2019 | 30 ± 1 a | 23 ± 1 b | 14 ± 1 c | 10 ± 1 d | |
Pb | 2017 | 8 ± 3 a | 7 ± 2 b | 4 ± 2 b | 3 ± 0.3 b |
2018 | 10 ± 2 a | 8 ± 3 b | 4 ± 4 b | 2 ± 0.2 c | |
2019 | 10 ± 1 a | 8 ± 1 b | 6 ± 3 b | 3 ± 0.3 c | |
Zn | 2017 | 8 ± 1 a | 8 ± 1 a | 6 ± 2 a | 6 ± 1 a |
2018 | 8 ± 2 a | 7 ± 1 a | 7 ± 3 a | 7 ± 1 a | |
2019 | 10 ± 3 a | 9 ± 3 a | 8 ± 1 a | 7 ± 1 a |
Metal | Year | TWW | BW | SW | TW |
---|---|---|---|---|---|
Cd | 2017 | 0.2 ± 0.02 a | 0.2 ± 0.02 a | 0.2 ± 0.05 a | 0.04 ± 0.04 b |
2018 | 0.2 ± 0.01 a | 0.3 ± 0.01 a | 0.3 ± 0.04 a | 0.04 ± 0.03 b | |
2019 | 0.4 ± 0.02 a | 0.3 ± 0.02 a | 3.3 ± 0.03 a | 0.05 ± 0.02 b | |
Cr | 2017 | 1.8 ± 0.1 a | 1.3 ± 0.3 b | 0.8 ± 0.2 c | 0.2 ± 0.02 c |
2018 | 1.8 ± 0.2 a | 1.4 ± 0.2 b | 0.9 ± 0.2 c | 0.3 ± 0.02 c | |
2019 | 2.2 ± 0.1 a | 1.6 ± 0.3 b | 1.2 ± 0.2 c | 0.2 ± 0.02 c | |
Cu | 2017 | 3 ± 1 a | 2 ± 1 ab | 2 ± 1 b | 0.1 ± 0.05 c |
2018 | 6 ± 1 a | 3 ± 0.4 b | 3 ± 0.2 c | 0.3 ± 0.03 d | |
2019 | 6 ± 1 a | 5 ± 0.4 ab | 3 ± 0.2 b | 0.3 ± 0.04 c | |
Mn | 2017 | 6 ± 0.3 a | 5 ± 0.2 b | 3 ± 0.1 c | 1 ± 0.2 d |
2018 | 7 ± 0.2 a | 5 ± 0.3 b | 3 ± 0.2 c | 1 ± 0.3 d | |
2019 | 7 ± 0.4 a | 5 ± 0.1 b | 3 ± 0.3 c | 1 ± 0.2 d | |
Pb | 2017 | 4 ± 1 a | 4 ± 2 a | 4 ± 1 a | 1 ± 0.3 b |
2018 | 6 ± 2 a | 5 ± 2 a | 5 ± 2 a | 1 ± 0.2 b | |
2019 | 9 ± 3 a | 6 ± 1 a | 6 ± 1 a | 2 ± 0.3 b | |
Zn | 2017 | 2 ± 1 a | 2 ± 1 a | 2 ± 1 a | 2 ± 1 a |
2018 | 2 ± 2 a | 3 ± 2 a | 3 ± 2 a | 2 ± 2 a | |
2019 | 4 ± 1 a | 3 ± 2 a | 3 ± 1 a | 3 ± 2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Karablieh, N.; Al-Elaumi, L.; Al-Karablieh, E.; Tabieh, M.; Al-Jaghbir, M.; Jamrah, A.; Bubba, M.D. The Impact of Short-Term Treated Wastewater Irrigation on Olive Development and Microbial and Chemical Contamination. Water 2025, 17, 463. https://doi.org/10.3390/w17040463
Al-Karablieh N, Al-Elaumi L, Al-Karablieh E, Tabieh M, Al-Jaghbir M, Jamrah A, Bubba MD. The Impact of Short-Term Treated Wastewater Irrigation on Olive Development and Microbial and Chemical Contamination. Water. 2025; 17(4):463. https://doi.org/10.3390/w17040463
Chicago/Turabian StyleAl-Karablieh, Nehaya, Lina Al-Elaumi, Emad Al-Karablieh, Mohammad Tabieh, Madi Al-Jaghbir, Ahmad Jamrah, and Massimo Del Bubba. 2025. "The Impact of Short-Term Treated Wastewater Irrigation on Olive Development and Microbial and Chemical Contamination" Water 17, no. 4: 463. https://doi.org/10.3390/w17040463
APA StyleAl-Karablieh, N., Al-Elaumi, L., Al-Karablieh, E., Tabieh, M., Al-Jaghbir, M., Jamrah, A., & Bubba, M. D. (2025). The Impact of Short-Term Treated Wastewater Irrigation on Olive Development and Microbial and Chemical Contamination. Water, 17(4), 463. https://doi.org/10.3390/w17040463