Assessment of Drinking Water Quality from the Dobromierz Reservoir During the Treatment Process: Collection, Distribution and Future Challenges
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Water Intake
2.3. Measuring Points on the Water Supply Network
2.4. Water Treatment Technological Process
- Pre-filtration—pre-filtration is performed on ARKAL membrane filters, type Star Battery System 12 × 10. This system is activated sporadically, at very high turbidity values.
- Filtration on rapid filters (gravel)—takes place on a three-layer bed in pressure filters. In 2020–2021, modernization was carried out, including the replacement of the bed with a new three-layer bed with a catalytic layer in the system (order of layers from the nozzle bottom):
- Layer I—catalytic mass G1 with granulation 0.35–1.2 mm, layer height approx. 300 mm;
- Layer II—filter sand with granulation 0.5–1.2 mm, layer height approx. 900 mm;
- Layer III—anthracite N2 with granulation 1.4–2.5 mm, layer height approx. 450 mm
- Water disinfection–takes place after the filters using a solution of approximately 15% sodium hypochlorite in a dose depending on the parameters of the raw water, including temperature, water and pH.
- Dosing of coagulant solution and flocculant to the pipeline before rapid filters (surface coagulation, flocculation)–the coagulation process is carried out using the hydrated coagulant Flokor 105b (highly polymerised aluminium hydrochloride), and the flocculation process–using the Praestol 2540 agent (polymers based on acrylamide derivatives), which are dosed directly to the pipeline before entering the water treatment plant. The coagulation process is usually started in autumn, when raw water parameters deteriorate (increased turbidity).
- Control of free chlorine content in treated water flowing by gravity through the main pipeline to the reserve-equalisation tanks on the premises of the Ciernie WTP and the Sportowa WTP in Świebodzice.
2.5. Research Parameters
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Meeting Drinking Water Standards
3.3. Reasons for Exceeding Standards, Remedies, Guidelines and Recommendations
3.4. Discussion of Results–Other Drinking Water Reservoirs and Their Problems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A

| Parameters | Name of the Method | Parametric Value * |
|---|---|---|
| Escherichia coli | PN-EN ISO 9308-1:2014-12 PN-EN ISO 9308-1:2014-12/A1:2017-04 | 0 (CFU/100 mL) |
| Arsenic | PN-EN ISO 15586:2005 PN-EN ISO 11885:2009 | 10 (µg/L) |
| Nitrates | PN-EN ISO 13395:2001 PN-EN ISO 10304-1:2009 PN-EN ISO 10304-1:2009 PN-EN ISO 10304-1:2009+AC:2012 | 50 (mg/L) |
| Nitrites | PN-EN ISO 13395:2001 PN-EN ISO 10304-1:2009 | 0.50 (mg/L) |
| Benzene | PN-EN ISO 15586:2005 | 1.0 (µg/L) |
| Benzo(a)pyrene | PN-EN ISO 17993:2005 | 0.010 (µg/L) |
| Boron | PN-EN ISO 11885:2009 PN-EN ISO 17924-2:2016-11 | 1.0 (mg/L) |
| Chromium | PN-EN ISO 15586:2005 PN-EN ISO 11885:2009 PN-EN ISO 17924-2:2016-11 | 50 (µg/L) |
| Cyanides | PN-EN ISO 14403-2:2012 | 50 (µg/L) |
| Fluorides | PBL/CH/25/06 | 1.5 (mg/L) |
| Cadmium | PN-EN ISO 15586:2005 PN-EN ISO 11885:2009 PN-EN ISO 17924-2:2016-11 | 5.0 (µg/L) |
| Copper | PN-EN ISO 15586:2005 PN-EN ISO 11885:2009 PN-EN ISO 17924-2:2016-11 | 2.0 (mg/L) |
| Nickel | PN-EN ISO 15586:2005 PN-EN ISO 11885:2009 PN-EN ISO 17294-2:2016-11 | 20 (µg/L) |
| Lead | PN-EN ISO 15586:2005 PN-EN ISO 11885:2009 PN-EN ISO 17924-2:2016-11 | 10 (µg/L) |
| Pesticides–total | PN-EN ISO 6468:2002 | 0.50 (µg/L) |
| Mercury | PN-EN ISO 17852:2009 PN-EN ISO 17924-2:2016-11 | 1.0 (µg/L) |
| Selenium | PN-EN ISO 11885:2009 PN-EN ISO 17924-2:2016-11 | 10 (µg/L) |
| Polycyclic aromatic hydrocarbons | PB-160/LF | 0.10 (µg/L) |
| Coliform bacteria | PN-EN ISO 9308-1:2014-12 PN-EN ISO 9308-1:2014-12/A1:2017-04 | 0 (CFU/100 mL) |
| Total number of microorganisms at 22 °C | PN-EN ISO 6222:2004 | 0 (-) |
| Clostridium perfringens | PN-EN ISO 14189:2016-10 | 0 (CFU/100 mL) |
| Aluminum | PN-EN ISO 15586:2005 | 200 (µg/L) |
| Color | PN-EN ISO 7887:2012 | 15 (-) |
| Chlorides | PN ISO 9297:1994 PN-EN ISO 10304-1:2009 PN-EN ISO 10304-1:2009/AC:2012 | 250 (mg/L) |
| Manganese | PN-92/C-04570/01 PN-EN ISO 11885:2009 PN-EN ISO 17924-2:2016-11 | 50 (µg/L) |
| Turbidity | PN-EN ISO 7027:2003 | 1 (NTU) |
| pH | PN-EN ISO 10523:2012 | 6.5–9.5 (-) |
| Electrolytic conductivity | PN-EN 27888:1999 | 2.500 (µS/cm) |
| Sulfates | PN-EN ISO 10304-1:2009 PN-EN ISO 10304-1:2009/AC:2012 | 250 (mg/L) |
| Taste | PN-C-04557:1972 PN-EN 1622:2003 PN-EN 1622:2006 | acceptable by consumers (-) |
| Odor | PN-C-04557:1972 PN-EN 1622:2003 PN-EN 1622:2006 | 1 (-) |
| Iron | PN-EN ISO 11885:2009 PN-EN ISO 17924-2:2016-11 | 200 (µg/L) |
| Parameters | Characteristics | |||
|---|---|---|---|---|
| DF | Statistic | p-Value | Decision at Level (5%) | |
| Escherichia coli | 19 | 0.3118 | 3.37E−05 | Reject normality |
| Arsenic | 33 | 0.45267 | 1.73E−19 | Reject normality |
| Nitrates | 63 | 0.08249 | 0.2 | Cannot reject normality |
| Nitrites | 9 | 0.50392 | 2.04E−07 | Reject normality |
| NO3/50 + NO2/3 | 7 | 0.25221 | 0.17632 | Can’t reject normality |
| Benzene | 29 | 0.48466 | 7.42E−20 | Reject normality |
| Benzo(a)pyrene | 70 | 0.37454 | 1.18E−27 | Reject normality |
| Boron | 26 | 0.42308 | 2.10E−13 | Reject normality |
| Chromium | 19 | 0.48263 | 3.65E−13 | Reject normality |
| Cyanides | 24 | 0.48406 | 1.63E−16 | Reject normality |
| Fluorides | 38 | 0.10999 | 0.2 | Cannot reject normality |
| Cadmium | 38 | 0.32783 | 2.58E−11 | Reject normality |
| Copper | 37 | 0.28925 | 1.88E−08 | Reject normality |
| Nickel | 56 | 0.1459 | 0.00458 | Reject normality |
| Lead | 40 | 0.40659 | 8.98E−19 | Reject normality |
| Pesticides-total | 18 | 0.53761 | 9.65E−16 | Reject normality |
| Mercury | 48 | 0.40431 | 3.10E−22 | Reject normality |
| Selenium | 23 | 0.47295 | 4.26E−15 | Reject normality |
| Polycyclic aromatic hydrocarbons | 9 | 0.36707 | 9.43E−04 | Reject normality |
| Coliform bacteria | 76 | 0.44321 | 9.86E−43 | Reject normality |
| Total number of microorganisms at 22 °C | -- | -- | -- | a* |
| Clostridium perfringens | 0 | -- | -- | c* |
| Aluminum | 0 | -- | -- | c* |
| Color | 69 | 0.20209 | 2.03E−07 | Reject normality |
| Chlorides | 65 | 0.106 | 0.06709 | Can’t reject normality |
| Manganese | 49 | 0.44413 | 1.19E−27 | Reject normality |
| Turbidity | -- | -- | -- | a* |
| pH | 105 | 0.13713 | 4.73E−05 | Reject normality |
| Electrolytic conductivity | 104 | 0.06308 | 0.2 | Can’t reject normality |
| Sulfates | 57 | 0.18379 | 5.18E−05 | Reject normality |
| Taste | -- | -- | -- | a* |
| Odor | 65 | 0.50916 | 8.92E−49 | Reject normality |
| Iron | 42 | 0.5087 | 1.47E−31 | Reject normality |
| Parameters | Characteristics | |||
|---|---|---|---|---|
| DF | Statistic | p-Value | Decision at Level (5%) | |
| Escherichia coli | 97 | 0.53013 | 3.06E−79 | Reject normality |
| Arsenic | 12 | 0.20034 | 0.19484 | Cannot reject normality |
| Nitrates | 16 | 0.14719 | 0.2 | Cannot reject normality |
| Nitrites | 9 | 0.36689 | 9.51E−04 | Reject normality |
| NO3/50 + NO2/3 | 9 | 0.20882 | 0.2 | Cannot reject normality |
| Benzene | 11 | 0.42841 | 3.22E−06 | Reject normality |
| Benzo(a)pyrene | 9 | 0.34379 | 0.00291 | Reject normality |
| Boron | 11 | 0.17878 | 0.2 | Cannot reject normality |
| Chromium | 12 | 0.34101 | 3.99E−04 | Reject normality |
| Cyanides | 11 | 0.42887 | 3.11E−06 | Reject normality |
| Fluorides | 13 | 0.20349 | 0.14453 | Cannot reject normality |
| Cadmium | 12 | 0.41746 | 2.36E−06 | Reject normality |
| Copper | 12 | 0.44057 | 3.95E−07 | Reject normality |
| Nickel | 12 | 0.29431 | 0.00505 | Reject normality |
| Lead | 12 | 0.27918 | 0.01042 | Reject normality |
| Pesticides-total | 10 | 0.35874 | 6.50E−04 | Reject normality |
| Mercury | 11 | 0.27706 | 0.01809 | Reject normality |
| Selenium | 12 | 0.29848 | 0.0041 | Reject normality |
| Polycyclic aromatic hydrocarbons | 12 | 0.44355 | 3.11E−07 | Reject normality |
| Coliform bacteria | 92 | 0.53065 | 2.75E−75 | Reject normality |
| Total number of microorganisms at 22 °C | 49 | 0.32933 | 1.00E−14 | Reject normality |
| Clostridium perfringens | 0 | -- | -- | c* |
| Aluminum | 86 | 0.48624 | 1.09E−58 | Reject normality |
| Color | 103 | 0.30717 | 5.08E−27 | Reject normality |
| Chlorides | 14 | 0.41683 | 2.85E−07 | Reject normality |
| Manganese | 15 | 0.23297 | 0.0278 | Reject normality |
| Turbidity | 95 | 0.30808 | 4.98E−25 | Reject normality |
| pH | 103 | 0.10105 | 0.01145 | Reject normality |
| Electrolytic conductivity | 94 | 0.2648 | 5.25E−18 | Reject normality |
| Sulfates | 16 | 0.25644 | 0.00607 | Reject normality |
| Taste | 0 | -- | -- | c* |
| Odor | 98 | 0.5317 | 1.49E−80 | Reject normality |
| Iron | 15 | 0.22957 | 0.0324 | Reject normality |
| Parameters | Characteristics | |||
|---|---|---|---|---|
| DF | Statistic | p-Value | Decision at Level (5%) | |
| Escherichia coli | 0 | -- | -- | c* |
| Arsenic | 8 | 0.36697 | 0.00216 | Reject normality |
| Nitrates | 10 | 0.19754 | 0.2 | Cannot reject normality |
| Nitrites | 8 | 0.41153 | 2.43E−04 | Reject normality |
| NO3/50 + NO2/3 | 8 | 0.18819 | 0.2 | Cannot reject normality |
| Benzene | 8 | 0.33042 | 0.01035 | Reject normality |
| Benzo(a)pyrene | 6 | 0.27472 | 0.15948 | Cannot reject normality |
| Boron | 8 | 0.14745 | 0.2 | Cannot reject normality |
| Chromium | 8 | 0.32563 | 0.01252 | Reject normality |
| Cyanides | 8 | 0.45542 | 2.11E−05 | Reject normality |
| Fluorides | 7 | 0.26155 | 0.14235 | Cannot reject normality |
| Cadmium | 8 | 0.51316 | 5.42E−07 | Reject normality |
| Copper | 8 | 0.38413 | 9.64E−04 | Reject normality |
| Nickel | 8 | 0.38256 | 0.00104 | Reject normality |
| Lead | 7 | 0.35753 | 0.00722 | Reject normality |
| Pesticides-total | 8 | 0.43732 | 5.99E−05 | Reject normality |
| Mercury | 8 | 0.42583 | 1.13E−04 | Reject normality |
| Selenium | 7 | 0.43406 | 2.32E−04 | Reject normality |
| Polycyclic aromatic hydrocarbons | 8 | 0.45542 | 2.11E−05 | Reject normality |
| Coliform bacteria | 111 | 0.5288 | 2.41E−90 | Reject normality |
| Total number of microorganisms at 22 °C | 68 | 0.44509 | 1.51E−38 | Reject normality |
| Clostridium perfringens | 0 | -- | -- | c* |
| Aluminum | 97 | 0.25202 | 9.39E−17 | Reject normality |
| Color | 110 | 0.25914 | 3.16E−20 | Reject normality |
| Chlorides | 8 | 0.18932 | 0.2 | Can’t reject normality |
| Manganese | 10 | 0.31158 | 0.00667 | Reject normality |
| Turbidity | 107 | 0.2076 | 2.59E−12 | Reject normality |
| pH | 111 | 0.11032 | 0.00203 | Reject normality |
| Electrolytic conductivity | 111 | 0.28977 | 8.04E−26 | Reject normality |
| Sulfates | 11 | 0.33673 | 0.00102 | Reject normality |
| Taste | 0 | -- | -- | c* |
| Odor | 118 | 0.53025 | 1.19E−96 | Reject normality |
| Iron | 8 | 0.16369 | 0.2 | Cannot reject normality |
| Parameters | Descriptive Statistics | ||||||
|---|---|---|---|---|---|---|---|
| Min | Median | Max | Mean | SD | CV | IR (Q3–Q1) | |
| 1 (CFU/100 mL) | 0 | 0 | 70 | 10.10526 | 20.59098 | 203.77% | 10 |
| 2 (µg/L) | 5.00E−04 | 0.0016 | 2.5 | 0.2133 | 0.61234 | 287.08% | 0.002 |
| 3 (mg/L) | 3.5 | 15.8 | 31 | 15.68397 | 6.09282 | 38.85% | 7.6 |
| 4 (mg/L) | 0.021 | 0.131 | 6.78 | 0.85956 | 2.22108 | 258.40% | 0.079 |
| 5 (mg/L) | 0.265 | 0.34433 | 0.54967 | 0.39738 | 0.11289 | 28.41% | 0.21133 |
| 6 (µg/L) | 0.125 | 2.5 | 10 | 3.35603 | 2.74102 | 81.67% | 0.35 |
| 7 (µg/L) | 1.00E−04 | 9.10E−04 | 0.0239 | 0.00236 | 0.00456 | 193.13% | 0.00159 |
| 8 (mg/L) | 0.017 | 0.025 | 0.033 | 0.025 | 0.00276 | 11.03% | 0 |
| 9 (µg/L) | 1.00E−04 | 0.0015 | 0.5 | 0.05379 | 0.13335 | 247.91% | 0.00175 |
| 10 (µg/L) | 0.0025 | 0.00375 | 2.5 | 0.14896 | 0.51994 | 349.05% | 0.0025 |
| 11 (mg/L) | 0.05 | 0.1495 | 0.28 | 0.14705 | 0.04962 | 33.74% | 0.05 |
| 12 (µg/L) | 2.50E−05 | 0.015 | 0.25 | 0.05007 | 0.08176 | 163.28% | 0.032 |
| 13 (mg/L) | 5.00E−04 | 0.0025 | 0.011 | 0.00292 | 0.00226 | 77.21% | 0.001 |
| 14 (µg/L) | 5.00E−04 | 0.6 | 2.4 | 0.70366 | 0.55925 | 79.48% | 0.7 |
| 15 (µg/L) | 5.00E−04 | 0.25 | 36 | 1.38196 | 5.66914 | 410.22% | 0.46375 |
| 16 (µg/L) | 0.005 | 0.005 | 0.025 | 0.00611 | 0.00471 | 77.14% | 0 |
| 17 (µg/L) | 1.00E−05 | 0.005 | 0.25 | 0.01911 | 0.05094 | 266.55% | 0.00498 |
| 18 (µg/L) | 0.0025 | 0.0025 | 0.5 | 0.0697 | 0.17052 | 244.67% | 0.0055 |
| 19 (µg/L) | 0.0025 | 0.003 | 0.103 | 0.02139 | 0.03423 | 160.03% | 0.025 |
| 20 (CFU/100 mL) | 0 | 55 | 46000 | 1043.19342 | 5446.88 | 522.14% | 172 |
| 21 (-) | 71 | 71 | 71 | 71 | -- | -- | 0 |
| 22 (CFU/100 mL) | 0 | 0 | 0 | 0 | 0 | -- | 0 |
| 23 (µg/L) | 0.01 | 0.01 | 0.01 | 0.01 | 0 | 0.00% | 0 |
| 24 (-) | 2.5 | 10 | 34 | 12.98696 | 7.25646 | 55.88% | 8 |
| 25 (mg/L) | 2 | 14.8 | 23 | 14.24308 | 3.91292 | 27.47% | 6 |
| 26 (µg/L) | 5.00E−04 | 0.012 | 54.3 | 4.98368 | 12.18308 | 244.46% | 0.121 |
| 27 (NTU) | 2.1 | 2.75 | 3.4 | 2.75 | 0.91924 | 33.43% | 1.3 |
| 28 (-) | 7.1 | 8.2 | 10 | 8.30762 | 0.56733 | 6.83% | 0.7 |
| 29 (µS/cm) | 172 | 323 | 415 | 322.00962 | 39.19022 | 12.17% | 44 |
| 30 (mg/L) | 0 | 35 | 50 | 34.75614 | 6.5509 | 18.85% | 4 |
| 31 (-) | 1 | 1 | 1 | 1 | -- | -- | 0 |
| 32 (-) | 1 | 1 | 4 | 1.27692 | 0.81983 | 64.20% | 0 |
| 33 (µg/L) | 5.00E−04 | 0.0057 | 93 | 3.77009 | 16.17137 | 428.94% | 0.0175 |
| Parameters | Descriptive Statistics | ||||||
|---|---|---|---|---|---|---|---|
| Min | Median | Max | Mean | SD | CV | IR (Q3–Q1) | |
| 1 (CFU/100 mL) | 0 | 0 | 7 | 0.07216 | 0.71074 | 984.89% | 0 |
| 2 (µg/L) | 0.12 | 1.25 | 5 | 1.84333 | 1.71199 | 92.87% | 2 |
| 3 (mg/L) | 5.4 | 16.6 | 30.7 | 17.29563 | 6.95965 | 40.24% | 8.3 |
| 4 (mg/L) | 0.015 | 0.015 | 0.033 | 0.02117 | 0.00889 | 41.99% | 0.018 |
| 5 (mg/L) | 0.113 | 0.327 | 0.571 | 0.31379 | 0.13361 | 42.58% | 0.126 |
| 6 (µg/L) | 5.00E−03 | 0.25 | 0.25 | 0.20727 | 0.08097 | 39.07% | 0.1 |
| 7 (µg/L) | 0.001 | 0.0015 | 0.0015 | 0.00131 | 2.43E−04 | 18.61% | 5.00E−04 |
| 8 (mg/L) | 0.0055 | 0.02 | 0.029 | 0.01768 | 0.00893 | 50.51% | 0.0195 |
| 9 (µg/L) | 0.016 | 0.375 | 1.5 | 0.428 | 0.37737 | 88.17% | 0.25 |
| 10 (µg/L) | 0.5 | 2.5 | 15 | 4.04545 | 5.49752 | 135.89% | 2 |
| 11 (mg/L) | 0.05 | 0.18 | 0.37 | 0.2 | 0.08981 | 44.91% | 0.09 |
| 12 (µg/L) | 0.1 | 0.25 | 0.25 | 0.2 | 0.07385 | 36.93% | 1.50E−01 |
| 13 (mg/L) | 7.30E−04 | 0.0013 | 0.012 | 0.00229 | 0.0031 | 135.61% | 0.001 |
| 14 (µg/L) | 0.25 | 1.75 | 2 | 1.49333 | 0.61677 | 41.30% | 1.085 |
| 15 (µg/L) | 0.25 | 1.75 | 2.5 | 1.4375 | 1.08777 | 75.67% | 2.25 |
| 16 (µg/L) | 2.50E−03 | 0.005 | 0.025 | 0.01255 | 0.01075 | 85.66% | 0.02 |
| 17 (µg/L) | 0.05 | 0.13 | 0.25 | 0.13727 | 0.09435 | 68.73% | 0.2 |
| 18 (µg/L) | 0.005 | 0.5 | 0.82 | 0.48292 | 0.19531 | 40.45% | 0.06 |
| 19 (µg/L) | 0.0025 | 0.003 | 0.025 | 0.00479 | 0.0064 | 133.59% | 5.00E−04 |
| 20 (CFU/100 mL) | 0 | 0 | 31 | 0.33696 | 3.23197 | 959.17% | 0 |
| 21 (-) | 0 | 0 | 177 | 14.65306 | 33.17036 | 226.37% | 19 |
| 22 (CFU/100 mL) | 0 | 0 | 0 | 0 | 0 | -- | 0 |
| 23 (µg/L) | 5.00E−04 | 0.0237 | 334 | 6.34449 | 38.44207 | 605.91% | 0.0459 |
| 24 (-) | 0.51 | 2.5 | 11 | 3.94184 | 2.10061 | 53.29% | 2.5 |
| 25 (mg/L) | 14 | 20.95 | 120 | 26.7 | 27.16791 | 101.75% | 6.3 |
| 26 (µg/L) | 0.001 | 5.2 | 32 | 9.69673 | 9.9029 | 102.13% | 17.6 |
| 27 (NTU) | 0.1 | 0.55 | 8.5 | 0.69042 | 0.86825 | 125.76% | 0.49 |
| 28 (-) | 6.7 | 7.7 | 9 | 7.74864 | 0.47157 | 6.09% | 0.8 |
| 29 (µS/cm) | 151 | 379.5 | 1011 | 405.48936 | 115.74 | 28.54% | 51 |
| 30 (mg/L) | 1 | 37.5 | 70 | 38.375 | 13.54437 | 35.30% | 9.5 |
| 31 (-) | 1 | 1 | 1 | 1 | 0 | 0.00% | 0 |
| 32 (-) | 1 | 1 | 4 | 1.08163 | 0.4466 | 41.29% | 0 |
| 33 (µg/L) | 0.5 | 26 | 50 | 21.68667 | 19.93432 | 91.92% | 40.5 |
| Parameters (Units) | Descriptive Statistics | ||||||
|---|---|---|---|---|---|---|---|
| Min | Median | Max | Mean | SD | CV | IR (Q3–Q1) | |
| 1 (CFU/100 mL) | 0 | 0 | 0 | 0 | 0 | –– | 0 |
| 2 (µg/L) | 0.5 | 0.5 | 2.5 | 1.0875 | 0.90465 | 83.19% | 1.35 |
| 3 (mg/L) | 0.015 | 17.5 | 29 | 15.0163 | 11.81956 | 78.71% | 26.967 |
| 4 (mg/L) | 0.015 | 0.033 | 0.033 | 0.03038 | 0.0063 | 20.74% | 0.0015 |
| 5 (mg/L) | 0.0053 | 0.361 | 0.591 | 0.3155 | 0.2232 | 70.75% | 0.38017 |
| 6 (µg/L) | 0.125 | 0.15 | 0.25 | 0.18125 | 0.05786 | 31.93% | 0.1125 |
| 7 (µg/L) | 0.001 | 0.00175 | 5.50E−03 | 0.00225 | 0.0017 | 75.36% | 0.0015 |
| 8 (mg/L) | 0.001 | 0.0125 | 0.026 | 0.01225 | 0.00971 | 79.24% | 0.017 |
| 9 (µg/L) | 0.25 | 0.375 | 1.5 | 0.5075 | 0.42311 | 83.37% | 0.28 |
| 10 (µg/L) | 0.5 | 0.5 | 2.5 | 1 | 0.92582 | 92.58% | 1 |
| 11 (mg/L) | 0.05 | 0.15 | 0.23 | 0.14714 | 0.05314 | 36.11% | 0.03 |
| 12 (µg/L) | 0.25 | 0.25 | 0.4 | 0.26875 | 0.05303 | 19.73% | 0 |
| 13 (mg/L) | 0.0012 | 0.0035 | 0.042 | 0.00871 | 0.01365 | 156.68% | 0.00485 |
| 14 (µg/L) | 0.25 | 2 | 6.40 | 2.135 | 1.848 | 86.56% | 0.885 |
| 15 (µg/L) | 0.25 | 0.25 | 2.5 | 1.14286 | 1.12599 | 98.52% | 2.25 |
| 16 (µg/L) | 5.00E−04 | 0.015 | 0.5 | 0.07694 | 0.17174 | 223.22% | 0.0325 |
| 17 (µg/L) | 0.005 | 0.05 | 0.25 | 0.09438 | 0.0973 | 103.10% | 0.1 |
| 18 (µg/L) | 0.38 | 0.5 | 0.5 | 0.46857 | 0.05398 | 11.52% | 0.1 |
| 19 (µg/L) | 0.0025 | 0.0025 | 0.003 | 0.00263 | 2.31E−04 | 8.82% | 2.50E−04 |
| 20 (CFU/100 mL) | 0 | 0 | 9 | 0.08108 | 0.85424 | 1053.57% | 0 |
| 21 (–) | 0 | 0 | 73 | 6.72059 | 14.33693 | 213.33% | 0 |
| 22 (CFU/100 mL) | 0 | 0 | 0 | 0 | 0 | –– | 0 |
| 23 (µg/L) | 0.002 | 0.026 | 0.5 | 0.04437 | 0.06128 | 138.11% | 0.0317 |
| 24 (–) | 0 | 4 | 11 | 4.17273 | 2.1066 | 50.49% | 2.5 |
| 25 (mg/L) | 17.4 | 21 | 25 | 21.3125 | 2.6573 | 12.47% | 4.15 |
| 26 (µg/L) | 0.2 | 2.5 | 20 | 6.14 | 6.52333 | 106.24% | 9.5 |
| 27 (NTU) | 0.005 | 0.59 | 3.79 | 0.63154 | 0.49054 | 77.67% | 0.43 |
| 28 (–) | 7 | 7.9 | 9 | 7.85198 | 0.44718 | 5.70% | 0.7 |
| 29 (µS/cm) | 33 | 381 | 914 | 394.96396 | 90.80758 | 22.99% | 40 |
| 30 (mg/L) | 0 | 35 | 40 | 27.90909 | 14.72042 | 52.74% | 17 |
| 31 (–) | 1 | 1 | 1 | 1 | 0 | 0.00% | 0 |
| 32 (–) | 1 | 1 | 4 | 1.07627 | 0.41668 | 38.72% | 0 |
| 33 (µg/L) | 0.5 | 36 | 112 | 43.625 | 37.31981 | 85.55% | 50.75 |
| Parameter | N | ||
|---|---|---|---|
| Raw Water | Water Supply Network | End Users | |
| 1 | 19 | 97 | 115 |
| 2 | 33 | 12 | 8 |
| 3 | 63 | 16 | 10 |
| 4 | 9 | 9 | 8 |
| 5 | 7 | 9 | 8 |
| 6 | 29 | 11 | 8 |
| 7 | 70 | 9 | 6 |
| 8 | 26 | 11 | 8 |
| 9 | 19 | 12 | 8 |
| 10 | 24 | 11 | 8 |
| 11 | 38 | 13 | 7 |
| 12 | 38 | 12 | 8 |
| 13 | 37 | 12 | 8 |
| 14 | 56 | 12 | 8 |
| 15 | 40 | 12 | 7 |
| 16 | 18 | 10 | 8 |
| 17 | 48 | 11 | 8 |
| 18 | 23 | 12 | 7 |
| 19 | 9 | 12 | 8 |
| 20 | 76 | 92 | 112 |
| 21 | 1 | 49 | 69 |
| 22 | 4 | 93 | 105 |
| 23 | 5 | 86 | 97 |
| 24 | 69 | 103 | 110 |
| 25 | 65 | 14 | 8 |
| 26 | 49 | 15 | 10 |
| 27 | 2 | 95 | 107 |
| 28 | 105 | 103 | 111 |
| 29 | 104 | 94 | 111 |
| 30 | 57 | 16 | 11 |
| 31 | 1 | 71 | 91 |
| 32 | 65 | 98 | 118 |
| 33 | 42 | 15 | 8 |
| Escherichia coli | ||||||||
|---|---|---|---|---|---|---|---|---|
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 53.3511 | 9.045 | 5.8984 | 14.1202 | 0 | 0 | 7.80% | 12.17% |
| x1–x3 | 54.5263 | 9.3593 | 5.8259 | 13.9467 | 0 | 0 | 6.98% | 10.41% |
| x2–x3 | 1.1753 | 0.3619 | 3.2477 | 7.7746 | 0.7174 | 0.3587 | 0.17% | 3.67% |
| Arsenic | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −23.3106 | 4.5396 | 5.135 | 12.2927 | 5.637E−06 | 2.818E−06 | 10.09% | 27.32% |
| x1–x3 | −20.6439 | 3.4389 | 6.003 | 14.3707 | 0.000584 | 0.000292 | 8.39% | 35.05% |
| x2–x3 | 2.6667 | 0.3835 | 6.9528 | 16.6443 | 0.7013 | 0.3507 | 1.92% | 83.22% |
| Nitrates | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −6.2808 | 0.8687 | 7.2304 | 17.3088 | 0.385 | 0.1925 | 1.10% | 21.91% |
| x1–x3 | −3.0183 | 0.3433 | 8.7916 | 21.0463 | 0.7314 | 0.3657 | 0.47% | 28.83% |
| x2–x3 | 3.2625 | 0.3134 | 10.4113 | 24.9236 | 0.754 | 0.377 | 1.21% | 95.86% |
| Nitrites | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 12.0556 | 3.4359 | 3.5087 | 8.3995 | 0.0005906 | 0.0002953 | 19.09% | 46.66% |
| x1–x3 | 6.8403 | 1.8913 | 3.6167 | 8.6581 | 0.05858 | 0.02929 | 11.13% | 50.93% |
| x2–x3 | −5.2153 | 1.442 | 3.6167 | 8.6581 | 0.1493 | 0.07465 | 8.48% | 50.93% |
| Nitrates/50 + Nitrites/3 | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 3.5635 | 1.0004 | 3.5619 | 8.5269 | 0.3171 | 0.1585 | 6.25% | 53.29% |
| x1–x3 | 1.3482 | 0.3686 | 3.658 | 8.757 | 0.7125 | 0.3562 | 2.46% | 58.38% |
| x2–x3 | −2.2153 | 0.645 | 3.4344 | 8.2217 | 0.5189 | 0.2595 | 3.79% | 48.36% |
| Benzene | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 21.431 | 4.4471 | 4.8191 | 11.5366 | 8.705E−06 | 4.353E−06 | 11.12% | 28.84% |
| x1–x3 | 24.1185 | 4.4377 | 5.4349 | 13.0107 | 9.092E−06 | 4.546E−06 | 11.99% | 35.16% |
| x2–x3 | 2.6875 | 0.425 | 6.3237 | 15.1383 | 0.6708 | 0.3354 | 2.24% | 79.68% |
| Benzo(a)pyrene | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −5.7929 | 0.6658 | 8.7003 | 20.8278 | 0.5055 | 0.2528 | 0.84% | 26.36% |
| x1–x3 | −16.7095 | 1.5988 | 10.4514 | 25.0197 | 0.1099 | 0.05493 | 2.10% | 32.92% |
| x2–x3 | −10.9167 | 0.843 | 12.9491 | 30.999 | 0.3992 | 0.1996 | 5.62% | 206.66% |
| Boron | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 9.9808 | 2.2295 | 4.4767 | 10.7168 | 0.02578 | 0.01289 | 6.03% | 28.96% |
| x1–x3 | 17.1058 | 3.3994 | 5.0321 | 12.0463 | 0.0006755 | 0.0003377 | 10.00% | 35.43% |
| x2–x3 | 7.125 | 1.232 | 5.7833 | 13.8446 | 0.2179 | 0.109 | 6.48% | 72.87% |
| Chromium | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −16.1579 | 3.8983 | 4.1449 | 9.9224 | 0.00009687 | 0.00004844 | 12.58% | 32.01% |
| x1–x3 | −17.9704 | 3.7932 | 4.7376 | 11.3413 | 0.0001487 | 0.00007437 | 14.05% | 42.00% |
| x2–x3 | −1.8125 | 0.3533 | 5.1307 | 12.2824 | 0.7239 | 0.3619 | 1.77% | 61.41% |
| Cyanides | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −21.2936 | 4.8004 | 4.4358 | 10.6189 | 1.584E−06 | 7.92E−07 | 13.72% | 30.34% |
| x1–x3 | −16.5208 | 3.3217 | 4.9735 | 11.9062 | 0.0008946 | 0.0004473 | 10.38% | 37.21% |
| x2–x3 | 4.7727 | 0.8431 | 5.6608 | 13.5514 | 0.3992 | 0.1996 | 4.44% | 71.32% |
| Fluorides | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −10.831 | 1.9977 | 5.4216 | 12.9789 | 0.04575 | 0.02287 | 3.92% | 25.45% |
| x1–x3 | 0.1635 | 0.02356 | 6.9402 | 16.6143 | 0.9812 | 0.4906 | 0.05% | 36.92% |
| x2–x3 | 10.9945 | 1.3899 | 7.9105 | 18.9369 | 0.1646 | 0.08228 | 6.95% | 94.68% |
| Cadmium | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −22.0482 | 4.0754 | 5.4101 | 12.9514 | 0.00004594 | 0.00002297 | 8.15% | 25.90% |
| x1–x3 | −27.6941 | 4.3575 | 6.3555 | 15.2144 | 0.00001315 | 6.577E−06 | 9.47% | 33.07% |
| x2–x3 | −5.6458 | 0.7571 | 7.4574 | 17.8522 | 0.449 | 0.2245 | 3.79% | 89.26% |
| Copper | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 12.1802 | 2.2168 | 5.4944 | 13.1531 | 0.02663 | 0.01332 | 4.52% | 26.84% |
| x1–x3 | −11.049 | 1.7134 | 6.4487 | 15.4377 | 0.08665 | 0.04332 | 3.81% | 34.31% |
| x2–x3 | −23.2292 | 3.0771 | 7.5491 | 18.0718 | 0.00209 | 0.001045 | 15.39% | 90.36% |
| Nickel | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −24.5387 | 3.5051 | 7.0009 | 16.7596 | 0.0004565 | 0.0002283 | 5.15% | 24.65% |
| x1–x3 | −26.8929 | 3.2329 | 8.3184 | 19.9134 | 0.001225 | 0.0006126 | 5.05% | 31.11% |
| x2–x3 | −2.3542 | 0.2344 | 10.0454 | 24.0477 | 0.8147 | 0.4074 | 1.17% | 120.24% |
| Lead | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −15.5341 | 2.8209 | 5.5068 | 13.1827 | 0.004789 | 0.002394 | 5.42% | 25.35% |
| x1–x3 | −9.7679 | 1.474 | 6.6269 | 15.8641 | 0.1405 | 0.07024 | 3.14% | 33.75% |
| x2–x3 | 5.7662 | 0.7373 | 7.8204 | 18.7213 | 0.4609 | 0.2305 | 3.88% | 98.53% |
| Pesticides–Total | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max effect Size |
| x1–x2 | −2.7389 | 0.7896 | 3.4686 | 8.3035 | 0.4297 | 0.2149 | 2.82% | 29.66% |
| x1–x3 | −6.2014 | 1.6595 | 3.7369 | 8.9459 | 0.09702 | 0.04851 | 6.38% | 34.41% |
| x2–x3 | −3.4625 | 0.83 | 4.1716 | 9.9864 | 0.4065 | 0.2033 | 4.61% | 55.48% |
| Mercury | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max effect Size |
| x1–x2 | −30.6155 | 4.7998 | 6.3786 | 15.2697 | 1.589E−06 | 7.94E−07 | 8.14% | 25.88% |
| x1–x3 | −24.7292 | 3.3937 | 7.2869 | 17.4441 | 0.0006897 | 0.0003448 | 6.06% | 31.15% |
| x2–x3 | 5.8864 | 0.6639 | 8.8664 | 21.2254 | 0.5068 | 0.2534 | 3.49% | 111.71% |
| Selenium | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −17.5145 | 4.2078 | 4.1624 | 9.9643 | 0.00002578 | 0.00001289 | 12.02% | 28.47% |
| x1–x3 | −17.0621 | 3.3816 | 5.0455 | 12.0786 | 0.0007206 | 0.0003603 | 11.27% | 40.26% |
| x2–x3 | 0.4524 | 0.08138 | 5.559 | 13.3077 | 0.9351 | 0.4676 | 0.43% | 70.04% |
| Polycyclic Aromatic Hydrocarbons | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 2.0139 | 0.5848 | 3.444 | 8.2446 | 0.5587 | 0.2794 | 2.78% | 39.26% |
| x1–x3 | 6.8472 | 1.8042 | 3.7951 | 9.0851 | 0.0712 | 0.0356 | 10.61% | 53.44% |
| x2–x3 | 4.8333 | 1.3558 | 3.5649 | 8.534 | 0.1752 | 0.08758 | 6.78% | 42.67% |
| Coliform Bacteria | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 129.5023 | 13.3972 | 9.6664 | 23.1404 | 0 | 0 | 7.97% | 13.77% |
| x1–x3 | 129.9107 | 13.9921 | 9.2846 | 22.2264 | 0 | 0 | 7.44% | 11.82% |
| x2–x3 | 0.4084 | 0.04645 | 8.7923 | 21.048 | 0.963 | 0.4815 | 0.02% | 10.32% |
| Total Number of Microorganisms at 22 Degrees | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 50.4898 | 1.7764 | 28.4222 | 68.0402 | 0.07566 | 0.03783 | 3.55% | 136.08% |
| x1–x3 | 59.9265 | 2.1144 | 28.3427 | 67.8498 | 0.03449 | 0.01724 | 3.02% | 96.93% |
| x2–x3 | 9.4367 | 1.7898 | 5.2724 | 12.6217 | 0.07348 | 0.03674 | 1.52% | 10.70% |
| Clostridium perfringens | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 0 | NaN | 0 | 0 | NaN | NaN | 0.00% | 0.00% |
| x1–x3 | 0 | NaN | 0 | 0 | NaN | NaN | 0.00% | 0.00% |
| x2–x3 | 0 | NaN | 0 | 0 | NaN | NaN | 0.00% | 0.00% |
| Aluminum | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −54.8314 | 2.1942 | 24.9894 | 59.8223 | 0.02822 | 0.01411 | 2.41% | 65.74% |
| x1–x3 | −57.9845 | 2.3276 | 24.9114 | 59.6356 | 0.01993 | 0.009966 | 2.28% | 58.47% |
| x2–x3 | −3.1531 | 0.3919 | 8.0456 | 19.2605 | 0.6951 | 0.3476 | 0.21% | 10.52% |
| Color | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 128.1271 | 10.379 | 12.3448 | 29.5523 | 0 | 0 | 6.03% | 17.18% |
| x1–x3 | 119.2806 | 9.7882 | 12.1862 | 29.1727 | 0 | 0 | 5.47% | 16.30% |
| x2–x3 | −8.8464 | 0.8131 | 10.8802 | 26.0462 | 0.4162 | 0.2081 | 0.38% | 12.23% |
| Chlorides | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −27.8341 | 3.7441 | 7.434 | 17.7964 | 0.000181 | 0.0000905 | 4.74% | 22.53% |
| x1–x3 | −38.0394 | 4.0239 | 9.4535 | 22.6307 | 0.00005725 | 0.00002863 | 5.51% | 31.00% |
| x2–x3 | −10.2054 | 0.9126 | 11.1824 | 26.7695 | 0.3614 | 0.1807 | 4.15% | 121.68% |
| Manganese | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −22.9429 | 3.6223 | 6.3338 | 15.1626 | 0.000292 | 0.000146 | 5.66% | 23.69% |
| x1–x3 | −22.1429 | 2.9729 | 7.4482 | 17.8302 | 0.00295 | 0.001475 | 5.04% | 30.22% |
| x2–x3 | 0.8 | 0.09129 | 8.7629 | 20.9775 | 0.9273 | 0.4636 | 0.37% | 83.91% |
| Turbidity | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 97.2526 | 2.3061 | 42.1712 | 100.9538 | 0.0211 | 0.01055 | 2.38% | 104.08% |
| x1–x3 | 100.4953 | 2.3858 | 42.1224 | 100.837 | 0.01704 | 0.008521 | 2.19% | 92.51% |
| x2–x3 | 3.2427 | 0.3897 | 8.3201 | 19.9175 | 0.6967 | 0.3484 | 0.19% | 9.86% |
| pH | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 88.6583 | 6.9469 | 12.7624 | 30.5519 | 3.74E−12 | 1.87E−12 | 3.34% | 14.69% |
| x1–x3 | 71.0458 | 5.6709 | 12.528 | 29.991 | 1.42E−08 | 7.10E−09 | 2.63% | 13.88% |
| x2–x3 | −17.6125 | 1.3989 | 12.5904 | 30.1402 | 0.1618 | 0.08092 | 0.65% | 14.08% |
| Electrolytic Conductivity | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max effect Size |
| x1–x2 | −115.6302 | 9.0945 | 12.7143 | 30.4369 | 0 | 0 | 4.59% | 15.37% |
| x1–x3 | −113.5796 | 9.3157 | 12.1922 | 29.187 | 0 | 0 | 4.33% | 13.58% |
| x2–x3 | 2.0507 | 0.1638 | 12.5226 | 29.9779 | 0.8699 | 0.435 | 0.08% | 14.62% |
| Sulfates | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −13.7155 | 1.9933 | 6.8807 | 16.4718 | 0.04623 | 0.02311 | 2.73% | 22.56% |
| x1–x3 | 7.0885 | 0.885 | 8.0092 | 19.1734 | 0.3761 | 0.1881 | 1.30% | 28.20% |
| x2–x3 | 20.804 | 2.184 | 9.5257 | 22.8036 | 0.02896 | 0.01448 | 8.09% | 84.46% |
| Taste | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 0 | NaN | 0 | 0 | NaN | NaN | 0.00% | 0.00% |
| x1–x3 | 0 | NaN | 0 | 0 | NaN | NaN | 0.00% | 0.00% |
| x2–x3 | 0 | NaN | 0 | 0 | NaN | NaN | 0.00% | 0.00% |
| Odor | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | 11.6678 | 2.1726 | 5.3704 | 12.8562 | 0.02981 | 0.0149 | 1.33% | 7.89% |
| x1–x3 | 11.4855 | 2.2148 | 5.1857 | 12.4141 | 0.02677 | 0.01339 | 1.21% | 6.78% |
| x2–x3 | −0.1823 | 0.03973 | 4.5883 | 10.984 | 0.9683 | 0.4842 | 0.02% | 5.09% |
| Iron | ||||||||
| Pair | Mean Rank Difference | Z | SE | Critical Value | p–Value | p–Value/2 | Effect Size | Max Effect Size |
| x1–x2 | −26.5119 | 4.703 | 5.6372 | 13.495 | 2.564E−06 | 1.282E−06 | 8.25% | 23.68% |
| x1–x3 | −31.6369 | 4.376 | 7.2296 | 17.307 | 0.00001209 | 6.043E−06 | 8.75% | 34.61% |
| x2–x3 | −5.125 | 0.6246 | 8.2049 | 19.6417 | 0.5322 | 0.2661 | 2.72% | 85.40% |
References
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Singh, S.; Jayaram, R. Attainment of water and sanitation goals: A review and agenda for research. Sustain. Water Resour. Manag. 2022, 8, 146. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.; Carvalho, M.; Martins, S. Sustainable water management: Understanding the socioeconomic and cultural dimensions. Sustainability 2023, 15, 13074. [Google Scholar] [CrossRef]
- Musie, W.; Gonfa, G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon 2023, 9, e18685. [Google Scholar] [CrossRef] [PubMed]
- Dieter, C.A.; Maupin, M.A.; Caldwell, R.R.; Harris, M.A.; Ivahnenko, T.I.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2015; Geological Survey Circular: Reston, VA, USA, 2018. [Google Scholar]
- Anderson, L.E.; DeMont, I.; Dunnington, D.D.; Bjorndahl, P.; Redden, D.J.; Brophy, M.J.; Gagnon, G.A. A review of long-term change in surface water natural organic matter concentration in the northern hemisphere and the implications for drinking water treatment. Sci. Total Environ. 2023, 858, 159699. [Google Scholar] [CrossRef]
- Eurostat. Annual Freshwater Abstraction by Source and Sector. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_wat_abs/default/table?lang=en&category=env.env_wat.env_nwat (accessed on 27 October 2025).
- Akpan, V.E.; Omole, D.O.; Bassey, D.E. Assessing the public perceptions of treated wastewater reuse: Opportunities and implications for urban communities in developing countries. Heliyon 2020, 6, e05246. [Google Scholar] [CrossRef]
- Esmaeilion, F.; Ahmadi, A.; Hoseinzadeh, S.; Aliehyaei, M.; Makkeh, S.A.; Garcia, D.A. Renewable energy desalination: A sustainable approach for water scarcity in arid lands. Int. J. Sustain. Eng. 2021, 14, 1916–1942. [Google Scholar] [CrossRef]
- Strokal, M.; Spanier, J.E.; Kroeze, C.; A Koelmans, A.; Flörke, M.; Franssen, W.; Hofstra, N.; Langan, S.; Tang, T.; van Vliet, M.T.; et al. Global multi-pollutant modelling of water quality: Scientific challenges and future directions. Curr. Opin. Environ. Sustain. 2019, 36, 116–125. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 2021, 16, 024020. [Google Scholar] [CrossRef]
- Hayes, N.M.; Deemer, B.R.; Corman, J.R.; Razavi, N.R.; Strock, K.E. Key differences between lakes and reservoirs modify climate signals: A case for a new conceptual model. Limnol. Oceanogr. Lett. 2017, 2, 47–62. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. Global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Zhang, A.T.; Gu, V.X. Global dam tracker: A database of more than 35,000 dams with location, catchment, and attribute information. Sci. Data 2023, 10, 111. [Google Scholar] [CrossRef]
- Feldbauer, J.; Kneis, D.; Hegewald, T.; Berendonk, T.U.; Petzoldt, T. Managing climate change in drinking water reservoirs: Potentials and limitations of dynamic withdrawal strategies. Environ. Sci. Eur. 2020, 32, 48. [Google Scholar] [CrossRef]
- Połomski, M.; Wiatkowski, M. Impounding reservoirs, benefits and risks: A review of environmental and technical aspects of construction and operation. Sustainability 2023, 15, 16020. [Google Scholar] [CrossRef]
- Grzegorzek, M.; Wartalska, K.; Kaźmierczak, B. Review of water treatment methods with a focus on energy consumption. Int. Commun. Heat Mass Transf. 2023, 143, 106674. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; WHO: Geneva, Switzerland, 2022; ISBN 978-92-4-004506-4. [Google Scholar]
- Pakharuddin, N.H.; Fazly, M.N.; Sukari, S.H.A.; Tho, K.; Zamri, W.F.H. Water treatment process using conventional and advanced methods: A comparative study of Malaysia and selected countries. IOP Conf. Ser. Earth Environ. Sci. 2021, 880, 012017. [Google Scholar] [CrossRef]
- Płuciennik-Koropczuk, E.; Mossetty, J. Chemical stability of water in the water supply network-preliminary research. Civ. Environ. Eng. Rep. 2018, 28, 79–89. [Google Scholar] [CrossRef]
- Zhou, Q.; Bian, Z.; Yang, D.; Fu, L. Stability of Drinking Water Distribution Systems and Control of Disinfection By-Products. Toxics 2023, 11, 606. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Fu, L.; Li, M. A review of secondary contamination of drinking water quality in distribution systems: Sources, mechanisms, and prospects. AQUA—Water Infrastruct. Ecosyst. Soc. 2025, 74, 118–141. [Google Scholar] [CrossRef]
- Bertelli, C.; Courtois, S.; Rosikiewicz, M.; Piriou, P.; Aeby, S.; Robert, S.; Loret, J.-F.; Greub, G. Reduced chlorine in drinking water distribution systems impacts bacterial biodiversity in biofilms. Front. Microbiol. 2018, 9, 2520. [Google Scholar] [CrossRef]
- Kowalski, D.; Kowalska, B.; Hołota, E.; Choma, A. Water quality correction within water distribution system. Ecol. Chem. Eng. S 2015, 22, 401–410. [Google Scholar] [CrossRef][Green Version]
- Pieron, Ł.; Absalon, D.; Habel, M.; Matysik, M. Inventory of reservoirs of key significance for water management in Poland—Evaluation of changes in their capacity. Energies 2021, 14, 7951. [Google Scholar] [CrossRef]
- Cietrzewska, E.; Sroka-Nowicka, K. Projekt Stref Ochronnych Ujęcia Wody na Zbiorniku Zaporowym Dobromierz; Geotech: Wrocław, Poland, 2013. [Google Scholar]
- GUS BDL. Ludność Według Wieku i Płci; GUS: Warszawa, Poland, 2024. [Google Scholar]
- Dąbrowska, J.; Dąbek, P.B.; Lejcuś, I. Identifying surface runoff pathways for cost-effective mitigation of pollutant inputs to drinking water reservoir. Water 2018, 10, 1300. [Google Scholar] [CrossRef]
- Wawrzyniak, I. Operat Wodnoprawny na Usługę Wodną—Pobór Wód Powierzchniowych ze Zbiornika Dobromierz; PPD Wrotech: Wrocław, Poland, 2022. [Google Scholar]
- Szewczyk, M.; Tomczyk, P.; Wiatkowski, M. Water management on drinking water reservoirs in the aspect of climate variability: A case study of the Dobromierz dam reservoir, Poland. Sustainability 2024, 16, 6478. [Google Scholar] [CrossRef]
- Główny Urząd Statystyczny (GUS). Gospodarka Mieszkaniowa i Komunalna. In Rocznik Statystyczny Rzeczypospolitej Polskiej; GUS: Warszawa, Poland, 2023. [Google Scholar]
- Szewczyk, M.; Tomczyk, P.; Wiatkowski, M. Long-term water quality assessment and trophic status trends in Dobromierz, Lubachów and Sosnówka drinking water reservoirs in southwestern Poland. Sci. Rep. 2025, 15, 9804. [Google Scholar] [CrossRef]
- Kulikowski, S. Program Ochrony Środowiska dla Gminy Dobromierz na Lata 2022–2025 z Perspektywą do 2029 Roku; Urząd Gminy Dobromierz: Dobromierz, Poland, 2022. [Google Scholar]
- Ministry of Health (MH). Rozporządzenie Ministra Zdrowia w Sprawie Jakości Wody Przeznaczonej do Spożycia Przez Ludzi; Dziennik Ustaw, pozycja 2294, Warsaw, Poland. 2017. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170002294 (accessed on 3 December 2025).
- WIOŚ Wrocław. Results of Water Quality Analysis for the Dobromierz Reservoir for years 2009-2023; Provincial Inspectorate of Environmental Protection: Wrocław, Poland, 2024. [Google Scholar]
- SANEPID Wrocław. Results of Water Quality Analysis for the Dobromierz Reservoir and Water Quality in the Świebodzice Water Supply Network for Years 2009–2023; Wojewódzka Stacja Sanitarno-Epidemiologiczna: Wrocław, Poland, 2024. [Google Scholar]
- ZWiK Świebodzice. Results of Water Quality Analysis for the Dobromierz Reservoir and Water Quality in the Świebodzice Water Supply Network for Years 2009–2023; ZWiK Świebodzice: Świebodzice, Poland, 2024. [Google Scholar]
- Stefpol. Projekt Strefy Ochrony Sanitarnej Zbiornika Retencyjnego Dobromierz—Część II; Stefpol: Wrocław, Poland, 1996. [Google Scholar]
- SANEPID Świdnica. Stan Sanitarny Powiatu Świdnickiego w 2024 Roku; Powiatowa Stacja Sanitarno-Epidemiologiczna: Świdnica, Poland, 2025. [Google Scholar]
- Rabeiy, R.E. Assessment and modeling of groundwater quality using WQI and GIS in upper Egypt area. Environ. Sci. Pollut. Res. 2018, 25, 30808–30817. [Google Scholar] [CrossRef]
- Liggett, J.E.; Gonzalez, B.C.; Lytle, D.A.; Pressman, J.G.; Dionysiou, D.D.; Lee, W.H.; Harmon, S.M.; Wahman, D.G. Applying microelectrodes to investigate aged ductile iron and copper coupon reactivity during free chlorine application. Water Res. 2024, 253, 121324. [Google Scholar] [CrossRef]
- Weston, S.L.; Collins, R.P.; Boxall, J.B. An experimental study of how hydraulic transients cause mobilisation of material within drinking water distribution systems. Water Res. 2021, 194, 116890. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Liu, Z.; Sha, Y.; Korshin, G.V.; Chen, Y. Metal-release potential from iron corrosion scales under stagnant and active flow, and varying water quality conditions. Water Res. 2020, 175, 115675. [Google Scholar] [CrossRef]
- Wdowczyk, A.; Szymańska-Pulikowska, A.; Chęcmanowski, J.; Kierzek, K.; Wiercik, P. Assessment of changes occurring in biochar/zeolite substrates used in the vegetation-activated sludge process in the treatment of leachate from landfills. Water Resour. Ind. 2025, 33, 100280. [Google Scholar] [CrossRef]
- Linden, K.; Hull, N.; Speight, V. Thinking outside the treatment plant: UV for water distribution system disinfection. Acc. Chem. Res. 2019, 52, 1226–1233. [Google Scholar] [CrossRef]
- Jurczak, T.; Jodlowski, A.; Sorlini, S.; Biasibetti, M.; Gialdini, F. Integrated Drinking water processes: Case studies. In Water Treatment for Purification from Cyanobacteria and Cyanotoxins; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Agus, W.; Yusriani, S.; Sholihah, F.M.; Rozet, S.J.; Rekarti, E.; Kurniawan, F.R.; Baihaqi, A.F. The application of green technology in clean water treatment installation: A case study of Batuah Village. In Proceedings of the International Seminar on Business, Economics, Social Sciences and Technology; Atlantis Press: Dordrecht, The Netherlands, 2023. [Google Scholar]
- Ihsan, T.; Derosya, V. Drinking water problems in rural areas: Review of point-of-use methods to improve water quality and public health. Larhyss J. 2024, 58, 55–71. [Google Scholar]
- Khadse, G.K.; Patni, P.M.; Talkhande, A.V.; Labhasetwar, P.K. Change in drinking water quality from catchment to consumers: A case study. Sustain. Water Resour. Manag. 2016, 2, 453–460. [Google Scholar] [CrossRef][Green Version]
- Sorlini, S.; Rondi, L.; Gomez, A.P.; Collivignarelli, C. Appropriate technologies for drinking water treatment in Mediterranean countries. Environ. Eng. Manag. J. 2015, 14, 1721–1733. [Google Scholar] [CrossRef]
- Luvhimbi, N.; Tshitangano, T.G.; Mabunda, J.T.; Olaniyi, F.C.; Edokpayi, J.N. Water quality assessment and evaluation of human health risk of drinking water from source to point of use at Thulamela municipality, Limpopo Province. Sci. Rep. 2022, 12, 6059. [Google Scholar] [CrossRef] [PubMed]
- Gora, S.L.; Trueman, B.F.; Anaviapik-Soucie, T.; Gavin, M.K.; Ontiveros, C.C.; Campbell, J.; L’Hérault, V.; Stoddart, A.K.; Gagnon, G.A. Source water characteristics and building-specific factors influence corrosion and point of use water quality in a decentralized Arctic drinking water system. Environ. Sci. Technol. 2020, 54, 2192–2201. [Google Scholar] [CrossRef]
- Toller, S.; Giambastiani, B.M.S.; Greggio, N.; Antonellini, M.; Vasumini, I.; Dinelli, E. Assessment of seasonal changes in water chemistry of the Ridracoli water reservoir (Italy): Implications for water management. Water 2020, 12, 581. [Google Scholar] [CrossRef]
- Reitter, C.; Petzoldt, H.; Korth, A.; Schwab, F.; Stange, C.; Hambsch, B.; Tiehm, A.; Lagkouvardos, I.; Gescher, J.; Hügler, M. Seasonal dynamics in the number and composition of coliform bacteria in drinking water reservoirs. Sci. Total Environ. 2021, 787, 147539. [Google Scholar] [CrossRef]
- Mete, B.; Karaden, G.E.; Bayram, A. Water Quality Assessment of the Erfelek Dam Lake in the Context of Drinking Water Treatment Plant, Sinop Municipality, Northern Türkiye. Karadeniz Fen Bilim. Derg. 2024, 14, 2082–2102. [Google Scholar] [CrossRef]
- McIlwain, B.; Park, Y.; Gagnon, G.A. Fountain autopsy to determine lead occurrence in drinking water. J. Environ. Eng. 2016, 142, 4015083. [Google Scholar] [CrossRef]
- Wiewiórska, I.; Lobur, M.; Vovk, M.; Makara, A.; Kowalski, Z. Analysis of the impact of changes in surface water quality on the dynamics of treatment processes in drinking water treatment technological systems. Desalination Water Treat. 2023, 315, 1–12. [Google Scholar] [CrossRef]
- Basta, E.; Ciuła, J. Study of the quality of surface waters in the Sącz agglomeration. J. Ecol. Eng. 2024, 25, 223–243. [Google Scholar] [CrossRef]
- Wiewiórska, I. The role of selected technological processes in drinking water treatment. Archit. Civ. Eng. Environ. 2023, 16, 189–200. [Google Scholar] [CrossRef]
- Kadinski, L.; Salcedo, C.; Boccelli, D.L.; Berglund, E.; Ostfeld, A. A Hybrid Data-Driven-Agent-Based Modelling Framework for Water Distribution Systems Contamination Response during COVID-19. Water 2022, 14, 1088. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Zhang, C.; Fu, G. Real-time water quality prediction in water distribution networks using graph neural networks with sparse monitoring data. Water Res. 2022, 250, 121018. [Google Scholar] [CrossRef] [PubMed]




| Parameter | Group of Point | ||
|---|---|---|---|
| Raw Water | Water Supply Network | End Users | |
| Escherichia coli (MPN/100 mL) | 52.63% | 98.97% | 100.00% |
| Arsenic (µg/L) | 100.00% | 100.00% | 100.00% |
| Nitrates (mg/L) | 100.00% | 100.00% | 100.00% |
| Nitrites (mg/L) | 88.89% | 100.00% | 100.00% |
| Nitrates + nitrites (mg/L) | 100.00% | 100.00% | 100.00% |
| Benzene (µg/L) | 3.45% * | 100.00% | 100.00% |
| Benzo(a)pyrene (µg/L) | 94.29% | 100.00% | 100.00% |
| Boron (mg/L) | 100.00% | 100.00% | 100.00% |
| Chromium (µg/L) | 100.00% | 100.00% | 100.00% |
| Cyanides (µg/L) | 100.00% | 100.00% | 100.00% |
| Fluorides (mg/L) | 100.00% | 100.00% | 100.00% |
| Cadmium (µg/L) | 100.00% | 100.00% | 100.00% |
| Copper (mg/L) | 100.00% | 100.00% | 100.00% |
| Nickel (µg/L) | 100.00% | 100.00% | 100.00% |
| Lead (µg/L) | 97.50% | 100.00% | 100.00% |
| Pesticides–total (µg/L) | 100.00% | 100.00% | 100.00% |
| Mercury (µg/L) | 100.00% | 100.00% | 100.00% |
| Selenium (µg/L) | 100.00% | 100.00% | 100.00% |
| Polycyclic aromatic hydrocarbons (µg/L) | 88.89% | 100.00% | 100.00% |
| Coliform bacteria (CFU/100 mL) | 6.58% | 98.91% | 99.11% |
| Total number of microorganisms at 22 °C (CFU/100 mL) | 100.00% | 95.92% | 100.00% |
| Clostridium perfringens (CFU/100 mL) | 100.00% | 100.00% | 100.00% |
| Aluminum (µg/L) | 100.00% | 98.84% | 100.00% |
| Color (–) | 72.46% | 100.00% | 100.00% |
| Chlorides (mg/L) | 100.00% | 100.00% | 100.00% |
| Manganese (µg/L) | 97.96% | 100.00% | 100.00% |
| Turbidity (NTU) | 0.00% | 94.74% | 98.13% |
| pH | 99.05% | 100.00% | 100.00% |
| Electrolytic conductivity (µS/cm) | 100.00% | 100.00% | 100.00% |
| Sulfates (mg/L) | 100.00% | 100.00% | 100.00% |
| Taste (–) | 100.00% | 100.00% | 100.00% |
| Odor (–) | 87.69% | 95.92% | 95.76% |
| Iron (µg/L) | 100.00% | 100.00% | 100.00% |
| Reservoir/ Location | The Treatment Proces | Raw Water Quality | Water Quality in the Network/At End Users | Reference |
|---|---|---|---|---|
| Vico Lake/Italy |
|
|
| Jurczak et al., 2020 [46] |
| Yashwant Sagar Dam/India |
|
| Water quality in the network: turbidity 1.2–3.0 NTU, coliform bacteria up to 80 CFU/100 mL. Water quality at end users: presence of coliform bacteria in the range of 7–607 CFU/100 mL. Causes: poor maintenance of the distribution network and contamination of water during transport. | Khadse et al., 2016 [49] |
| Cheffia Dam/ Algeria |
|
|
| Sorlini et al., 2015 [50] |
| Nandoni Dam/South Africa |
| E. coli and total coliform 0 MPN/100 mL | End users (street taps and taps in homes): coliform bacteria above 2000 MPN/100 mL Causes: point pollution in the network due to pipe bursts, installation and repair works | Luvhimbi et al., 2022 [51] |
| Water Lake in Nunavut/Canada |
| Turbidity below 5 NTU Iron: median = 332 μg/L (range = 70–898 μg/L) Manganese: median 61 μg/L (range = 5–187 μg/L) Lead: median = 0 μg/L (range = 0–9 μg/L) Copper: median = 14 μg L −1 (range = 3–60 μg/L) | End users: turbidity below 5 NTU Iron: median = 338 μg/L (range = 12–977 μg/L) Manganese: median 76 μg/L (range = 0–191 μg/L) Lead: median = 2 μg/L, (range = 0–760 μg/L) Copper: median = 556 μg/L, (range = 51–3915 μg/L) Causes: turbidity at a constant level throughout the system due to the lack of water filtration. The source of iron and manganese in the network is raw water. Elevated copper and lead values at end recipients due to the corrosiveness of the water installation. | Gora et al., 2020 [52] |
| Ridracoli Reservoir/ Italy |
| Higher concentrations of Fe and Mn Fe > 200 µg/L Mn > 50 µg/L | No data. | Toller et al., 2020 [53] |
| Klingenberg Reservoir/Germany |
| Presence of E. coli, max. 7 MPN/100 mL Presence of Enterococci, max. 11 CFU/100 mL Presence of coliform bacteria, max. 4 × 103 MPN/100 mL | No data. | Reitter et al., 2021 [54] |
| Kleine Kinzig Reservoir/Germany |
| Presence of E. coli, max. 4 MPN/100 mL Presence of Enterococci, max. 2 CFU/100 mL Presence of coliform bacteria, max. 1.7 × 103 MPN/100 mL | No data. | Reitter et al., 2021 [54] |
| Erfelek Reservoir/Turkey |
| Turbidity: mean 22.75 NTU (standard 24.89 NTU) Iron: mean 0.17 mg/L (standard 0.11 mg/L) Manganese: mean 0.24 mg/L (standard 0.20 mg/L) | Water after treatment: Turbidity: mean 0.21 NTU (standard 0.21 NTU) Iron: mean 0.09 mg/L (standard 0.04 mg/L) Manganese: mean 0.009 mg/L (standard 0.010 mg/L) | Mete et al., 2024 [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szewczyk, M.; Tomczyk, P.; Wiatkowski, M. Assessment of Drinking Water Quality from the Dobromierz Reservoir During the Treatment Process: Collection, Distribution and Future Challenges. Water 2025, 17, 3467. https://doi.org/10.3390/w17243467
Szewczyk M, Tomczyk P, Wiatkowski M. Assessment of Drinking Water Quality from the Dobromierz Reservoir During the Treatment Process: Collection, Distribution and Future Challenges. Water. 2025; 17(24):3467. https://doi.org/10.3390/w17243467
Chicago/Turabian StyleSzewczyk, Magdalena, Paweł Tomczyk, and Mirosław Wiatkowski. 2025. "Assessment of Drinking Water Quality from the Dobromierz Reservoir During the Treatment Process: Collection, Distribution and Future Challenges" Water 17, no. 24: 3467. https://doi.org/10.3390/w17243467
APA StyleSzewczyk, M., Tomczyk, P., & Wiatkowski, M. (2025). Assessment of Drinking Water Quality from the Dobromierz Reservoir During the Treatment Process: Collection, Distribution and Future Challenges. Water, 17(24), 3467. https://doi.org/10.3390/w17243467

