Aquafarm Use and Energy Transition of the Aquavoltaics Policy on Small-Scale Aquaculture in Taiwan
Abstract
1. Introduction
2. Research Background and Scope
3. Methods
3.1. The Hedonic Price Model (HPM)
3.2. Spatial Econometrics Models
3.2.1. Spatial Lag Model (SLM)
3.2.2. Spatial Error Model (SEM)
4. Data Description
4.1. Data Sources
4.2. Factors Influencing Aquafarm Prices
4.2.1. Aquafarm Prices
4.2.2. Land Attributes
4.2.3. Aquaculture Attributes
4.2.4. Renewable Energy Attributes
5. Results and Discussion
5.1. Descriptive Statistics
5.2. Spatial Econometrics Analysis
5.2.1. Spatial Clustering and Heterogeneity of Transacted Aquafarms
5.2.2. The Spatial Econometrics Model Outperforms to Analyze the Impact Assessment of Aquavoltaics Policy
5.2.3. Incorporating ‘Area’ as a Variable Captures the Relationship with Aquafarm Prices
5.3. The Effects of an Aquavoltaics Policy on Small Scale Aquaculture
5.3.1. Policy Implementation Increases Aquafarm Prices
5.3.2. An Aquavoltaics Policy Should Give Priority to Shellfish Farming and Empty Ponds
5.3.3. Renewable Energy Facilities Influence Solar PV Investment Intentions
5.4. Toward a Systematic Approach to Aquafarm Use and Pricing in Small-Scale Aquaculture
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency (IEA). Market Report Series: Renewables 2017—Analysis and Forecasts to 2022; IEA: Paris, France, 2017; Available online: https://www.iea.org/reports/renewables-2017 (accessed on 12 October 2025).
- International Energy Agency (IEA). Renewables 2023: Analysis and Forecast to 2028; IEA: Paris, France, 2024; Available online: https://www.iea.org/reports/renewables-2023 (accessed on 12 October 2025).
- International Energy Agency (IEA). Solar PV Global Supply Chains; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/solar-pv-global-supply-chains (accessed on 12 October 2025).
- Tsai, W.T.; Tsai, C.H. Analysis of Changes in Greenhouse Gas Emissions and Technological Approaches for Achieving Carbon Neutrality by 2050 in Taiwan. Environ. Sci. Pollut. Res. 2023, 31, 41552–41562. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Economic Affairs (MOEA). 2050 Net Zero; MOEA: Taipei, Taiwan, 2024; Available online: https://go-moea.tw/ (accessed on 12 October 2025).
- Energy Administration, Ministry of Economic Affairs (MOEAEA). Renewable Energy Statistics; MOEA: Taipei, Taiwan, 2024; Available online: https://www.esist.org.tw/newest/monthly (accessed on 12 October 2025).
- Ioakeimidis, C.; Polatidis, H.; Haralambopoulos, D. Use of Renewable Energy in Aquaculture: An Energy Audit Case-Study Analysis. Glob. Nest J. 2013, 15, 282–294. [Google Scholar]
- Vo, T.T.E.; Ko, H.; Huh, J.H.; Park, N. Overview of Solar Energy for Aquaculture: The Potential and Future Trends. Energies 2021, 14, 6923. [Google Scholar] [CrossRef]
- Scroggins, R.E.; Fry, J.P.; Brown, M.T.; Neff, R.A.; Asche, F.; Anderson, J.L.; Love, D.C. Renewable Energy in Fisheries and Aquaculture: Case Studies from the United States. J. Clean. Prod. 2022, 376, 134153. [Google Scholar] [CrossRef]
- Han, I.; Yang, M.H. A Feasible Mechanism for Regional Agriculture in Taiwan: Research in the Yun-Cha-Nan Context. Surv. Res. Method Appl. 2014, 32, 87–128. [Google Scholar]
- Cheng, A.T. The Development and Transition of Farmland Conversion and Forestland Occupation. J. Taiwan Land Res. 2022, 25, 157–185. [Google Scholar]
- Yang, H.J. An Actor–Network Analysis of the “Building Solar Farms over Fish Ponds” Scheme: Local Government, Solar PV Firms, and Local Farmers. Taiwan J. Anthropol. 2017, 15, 45–96. [Google Scholar]
- Chen, W.C. Conflicts and Reconciliation of “Farmland Used for Farming” and “Green Energy Facilities”: A Study Centers on the Regulation for Approval of Agriculture Facilities Usage. Taiwan Law Rev. 2018, 274, 16–30. [Google Scholar]
- Seifert, S.; Kahle, C.; Hüttel, S. Price Dispersion in Farmland Markets: What Is the Role of Asymmetric Information? Am. J. Agric. Econ. 2021, 103, 1545–1568. [Google Scholar] [CrossRef]
- Hsiao, Y.J.; Chen, J.L.; Huang, C.T. What Are the Challenges and Opportunities in Implementing Taiwan’s Aquavoltaics Policy? A Roadmap for Achieving Symbiosis between Small-Scale Aquaculture and Photovoltaics. Energy Policy 2021, 153, 112264. [Google Scholar] [CrossRef]
- Plantinga, A.J.; Miller, J.D. Agricultural Land Value and the Value of Rights to Future Land Development. Land Econ. 2001, 77, 56–67. [Google Scholar] [CrossRef]
- Shaik, S.; Helmers, G.A.; Atwood, J.A. The Evolution of Farm Programs and Their Contribution to Agricultural Land Values. Am. J. Agric. Econ. 2005, 87, 1190–1197. [Google Scholar] [CrossRef]
- Hersperger, A.; Gennaio, M.; Verburg, P.H.; Bürgi, M. Linking Land Change with Driving Forces and Actors: Four Conceptual Models. Ecol. Soc. 2010, 15, 1–17. [Google Scholar] [CrossRef]
- Lehn, F.; Bahrs, E. Analysis of Factors Influencing Standard Farmland Values with Regard to Stronger Interventions in the German Farmland Market. Land Use Policy 2018, 73, 138–146. [Google Scholar] [CrossRef]
- Chang, H.S.; Chen, T.L.; Chen, P.C. Explore the Spatial Relationship between Farmland Use Changes and Farmland Transactions. J. Archit. Plan. 2013, 14, 167–182. [Google Scholar]
- Lee, B.; Chang, H.H.; Wang, S.Y. Solar Power Promotion Plans, Energy Market Liberalization, and Farmland Prices—Empirical Evidence from Taiwan. Energy Econ. 2021, 99, 105317. [Google Scholar] [CrossRef]
- Franziska, A.; Arlette, O.W.; Alfons, B. Effects of the German Renewable Energy Act on Structural Change in Agriculture—The Case of Biogas. Util. Policy 2016, 41, 172–182. [Google Scholar]
- Yang, X.; Liu, Y.; Thrän, D.; Bezama, A.; Wang, M. Effects of the German Renewable Energy Sources Act and Environmental, Social and Economic Factors on Biogas Plant Adoption and Agricultural Land Use Change. Energy Sustain. Soc. 2021, 11, 6. [Google Scholar] [CrossRef]
- Valeria, J.S.; August, W.; Payal, S. Assessing the Impact of Renewable Energy on Regional Sustainability—A Comparative Study of Sogn og Fjordane (Norway) and Okinawa (Japan). Sustainability 2017, 9, 1969. [Google Scholar] [CrossRef]
- Wen, L.C.; Lin, C.H.; Lee, Y.C. Are Aquavoltaics Investable? A Framework for Economic and Environmental Cost–Benefit Analysis. Sustainability 2023, 15, 8965. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding Farmers’ Intention and Willingness to Install Renewable Energy Technology: A Solution to Reduce the Environmental Emissions of Agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Lombardi, G.V.; Berni, R. Renewable Energy in Agriculture: Farmers’ Willingness-to-Pay for a Photovoltaic Electric Farm Tractor. J. Clean. Prod. 2021, 313, 127520. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Komendantova, N.; Zobeidi, T. Explaining Intention to Apply Renewable Energy in Agriculture: The Case of Broiler Farms in Southwest Iran. Int. J. Green Energy 2021, 19, 836–846. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Goodman, A.C.; Kawai, M. Permanent Income, Hedonic Prices, and Housing Demand: New Evidence. J. Urban Econ. 1982, 12, 214–237. [Google Scholar] [CrossRef]
- Lin, C.L.; Lin, J.H. Analyzing the Effect of School Characteristics and Geographical Distance on Local Housing Price—The Case of Taipei City. Taiwan Econ. Rev. 2014, 42, 215–271. [Google Scholar]
- Chen, W.B.; Lee, C.L.; Chang, C.R.; Wang, C.H. An Analysis of Agricultural Land Change Factors and Spatial Planning Policies Review for Lan-Yang Plain: The System Approach. J. Taiwan Land Res. 2016, 19, 1–35. [Google Scholar]
- Tsai, M.K.; Wu, P.I.; Liou, J.L. Spatial Hedonic Quantile Durbin Model for Benefit Evaluation of Diversified Open Spaces in Urban Planning Division in Taoyuan City. City Plan. 2019, 46, 297–341. [Google Scholar]
- Goodman, A.C. Hedonic Prices, Price Indices and Housing Markets. J. Urban Econ. 1978, 5, 471–484. [Google Scholar] [CrossRef]
- Freeman, A.M. The Benefits of Environmental Improvement: Theory and Practice; Johns Hopkins University Press: Baltimore, MD, USA, 1979. [Google Scholar]
- Follain, J.R.; Malpezzi, S. Dissecting Housing Value and Rent; The Urban Institute: Washington, DC, USA, 1980. [Google Scholar]
- Vural, H.; Fidan, H. Land Marketing and Hedonic Price Model in Turkish Markets: Case Study of Karacabey District of Bursa Province. Afr. J. Agric. Res. 2009, 4, 71–75. [Google Scholar]
- Lee, W.; Chen, Y.; Lee, Y.; Liao, I.C. The Competitiveness of the Eel Aquaculture in Taiwan, Japan, and China. Aquaculture 2003, 221, 115–124. [Google Scholar] [CrossRef]
- Taiwan Fisheries Agency. Fisheries Statistical Yearbook: Taiwan, Kinmen and Matsu Area; Taiwan Fisheries Agency: Taipei, Taiwan, 2022. Available online: https://www.fa.gov.tw/list.php?theme=FS_AR&subtheme= (accessed on 12 October 2025).
- Huang, Y.J.; Chiang, Y.H.; Chang, C.O. Impact of Public Housing on Nearby Residential Property Values in Taipei City. City Plan. 2017, 44, 277–302. [Google Scholar]
- Lai, M.C.; Wu, P.I.; Liou, J.L.; Chen, Y.; Chen, H.H. The Impact of Promoting Renewable Energy in Taiwan: How Much Hail Is Added to Snow in Farmland Prices? J. Clean. Prod. 2019, 241, 118519. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Teng, C.S. The Spatial Factors in Electoral Studies: The Example of Presidential Elections in Taiwan. J. Natl. Dev. Stud. 2006, 6, 89–144. [Google Scholar]
- Anselin, L. Exploring Spatial Data with GeoDa: A Workbook; Arizona State University: Tempe, AZ, USA, 2005; Available online: https://www.geos.ed.ac.uk/~gisteac/fspat/geodaworkbook.pdf (accessed on 12 October 2025).
- Tisdell, C. Overview of Environmental and Sustainability Issues in Aquaculture. Aqua. Econ. Manag. 1999, 3, 1–5. [Google Scholar] [CrossRef]
- Bauwens, T.; Devine-Wright, P. Positive Energies? An Empirical Study of Community Energy Participation and Attitudes to Renewable Energy. Energy Policy 2018, 118, 612–625. [Google Scholar] [CrossRef]
- Braunholtz-Speight, T.; Sharmina, M.; Manderson, E.; McLachlan, C.; Hannon, M.; Hardy, J.; Mander, S. Business Models and Financial Characteristics of Community Energy in the UK. Nat. Energy 2020, 5, 169–177. [Google Scholar] [CrossRef]
- Venus, T.E.; Strauss, F.; Venus, T.J.; Sauer, J. Understanding Stakeholder Preferences for Future Biogas Development in Germany. Land Use Policy 2021, 109, 105704. [Google Scholar] [CrossRef]
- Leonhardt, R.; Noble, B.; Poelzer, G.; Fitzpatrick, P.; Belcher, K.; Holdmann, G. Advancing Local Energy Transitions: A Global Review of Government Instruments Supporting Community Energy. Energy Res. Soc. Sci. 2022, 83, 102350. [Google Scholar] [CrossRef]


| Output (Metric Tons) | Output Value (NT$ Million) | Area (Hectare) | Number of Aquaculture Farmers | |||||
|---|---|---|---|---|---|---|---|---|
| Year | Tainan City | Nationwide (%) | Tainan City | Nationwide (%) | Tainan City | Nationwide (%) | Tainan City | Nationwide (%) |
| 2012 | 87,426 | 27.6% | 6989 | 20.8% | 13,733 | 34.5% | 19,482 | 29.4% |
| 2013 | 83,233 | 26.2% | 7503 | 21.9% | 12,672 | 33.1% | 19,278 | 28.3% |
| 2014 | 84,785 | 27.4% | 8450 | 23.4% | 11,526 | 31.7% | 18,650 | 27.6% |
| 2015 | 77,476 | 26.8% | 6740 | 20.2% | 12,233 | 34.9% | 18,338 | 26.6% |
| 2016 | 73,365 | 31.9% | 6828 | 24.0% | 11,728 | 34.6% | 17,118 | 25.6% |
| 2017 | 75,558 | 29.5% | 7580 | 24.6% | 12,180 | 35.5% | 16,740 | 23.9% |
| 2018 | 77,486 | 29.9% | 7122 | 22.4% | 11,753 | 34.9% | 15,083 | 21.7% |
| 2019 | 84,476 | 31.3% | 7169 | 22.9% | 13,355 | 37.6% | 14,872 | 23.2% |
| 2020 | 77,476 | 30.3% | 6043 | 22.3% | 13,666 | 38.5% | 14,737 | 21.7% |
| 2021 | 75,951 | 29.9% | 7072 | 26.0% | 13,000 | 38.2% | 14,898 | 22.9% |
| 2022 | 74,219 | 30.3% | 7810 | 27.0% | 11,619 | 36.0% | 14,896 | 22.9% |
| Category | Variable | Definition | Expected Relationship |
|---|---|---|---|
| Dependent Variable | Price | Total price ÷ Land transfer area (m2) | − |
| Land Attributes | Tarea | Transacted land surface area (m2) | − |
| Tarea2 | Square of transacted land transfer surface area (m2) | − | |
| Dcity | Linear distance from transacted land to neighboring city (m) | − | |
| Droad | Linear distance from transacted land to neighboring road (m) | − | |
| AreaQ, B, G, M, S | Administrative regions in which transacted land is located, including Qigu, Beimen, Jiangjun, Madou, Xuejia, and Annan (control group) Districts | − | |
| Aquaculture Attributes | Fish | Cost of cultivating fishes in the aquafarm | + |
| Shrimp | Cost of cultivating shrimps in the aquafarm | + | |
| Shellfish | Cost of cultivating shellfish in the aquafarm | + | |
| YD | Holder or not a holder of aquaculture permit or license | + | |
| Empty | Presence or absence of empty pond in the aquafarm | + | |
| Renewable Energy Attributes | Line | Presence or absence of feeder lines nearby to power the land | + |
| SQ | Presence or absence of suitable landform/shape | + | |
| After | Before or after the launch of the Two-Year Solar Promotion Plan | + | |
| Green1 | The aquafarm is in an existing aquaculture production area, has an area of more than 10 ha used for farming, and has a fish pond occupying more than 60% of the land | + | |
| Green2 | The aquafarm has an area of more than 25 ha used for farming, and has a fish pond occupying more than 60% of the land | + | |
| Dsolar | Distance from transacted land to nearest solar farm (m) | − |
| Type of Variable | Variable | Mean | Standard Deviation | Min. | Max. |
|---|---|---|---|---|---|
| Dependent Variable | Price | 1418.175 | 1735.976 | 68 | 13,202 |
| Land Attributes | Tarea | 10,986.06 | 32,370.72 | 2.16 | 577,448 |
| Dcity | 727.437 | 825.073 | 1 | 5233 | |
| Droad | 293.486 | 438.139 | 1 | 2897 | |
| AreaQ | 0.288 | 0.453 | 0 | 1 | |
| AreaB | 0.187 | 0.390 | 0 | 1 | |
| AreaG | 0.045 | 0.207 | 0 | 1 | |
| AreaM | 0.077 | 0.267 | 0 | 1 | |
| AreaS | 0.135 | 0.342 | 0 | 1 | |
| Aquaculture Attributes | Fish | 5.524 | 14.516 | 0 | 261.409 |
| Shrimp | 1.465 | 4.231 | 0 | 76.694 | |
| Shellfish | 0.908 | 4.551 | 0 | 116.332 | |
| YD | 0.397 | 0.490 | 0 | 1 | |
| Empty | 0.352 | 0.478 | 0 | 1 | |
| Renewable Energy Attributes | Line | 0.281 | 0.450 | 0 | 1 |
| SQ | 0.479 | 0.500 | 0 | 1 | |
| After | 0.573 | 0.495 | 0 | 1 | |
| Green1 | 0.782 | 0.413 | 0 | 1 | |
| Green2 | 0.102 | 0.302 | 0 | 1 | |
| Dsolar | 2190.834 | 2932.389 | 6.662 | 12,705.18 |
| Model | OLS | SLM | SEM | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | ||||
| CONSTANT | 2.77754 | 0.000 | *** | 0.57431 | 0.000 | *** | 2.80394 | 0.000 | *** |
| Tarea | −5.90 × 10−7 | 0.239 | −1.65 × 10−7 | 0.676 | 3.12 × 10−8 | 0.937 | |||
| Tarea2 | 1.40 × 10−12 | 0.250 | 4.44 × 10−13 | 0.644 | 2.24 × 10−14 | 0.981 | |||
| Dcity | −8.87 × 10−5 | 0.000 | *** | −5.14 × 10−6 | 0.619 | −3.26 × 10−5 | 0.080 | * | |
| Droad | 5.48 × 10−6 | 0.812 | −2.46 × 10−5 | 0.175 | −3.42 × 10−5 | 0.092 | * | ||
| Fish | 0.00096 | 0.062 | * | 0.00085 | 0.036 | ** | 0.00106 | 0.007 | *** |
| Shrimp | 0.00150 | 0.404 | 0.00098 | 0.491 | 0.00089 | 0.525 | |||
| Shellfish | −0.00275 | 0.102 | −0.00224 | 0.090 | * | −0.00178 | 0.176 | ||
| YD | −0.01573 | 0.295 | 0.00862 | 0.467 | 0.01031 | 0.390 | |||
| Empty | 0.03740 | 0.024 | ** | 0.03001 | 0.022 | ** | 0.02210 | 0.093 | * |
| Line | 0.10046 | 0.000 | *** | 0.03788 | 0.017 | * | 0.02427 | 0.185 | |
| SQ | −0.00199 | 0.893 | −0.0031 | 0.791 | −0.01049 | 0.378 | |||
| After | 0.09626 | 0.000 | *** | 0.10639 | 0.000 | *** | 0.11754 | 0.000 | *** |
| Green1 | −0.08623 | 0.000 | *** | −0.09202 | 0.000 | *** | −0.09312 | 0.000 | *** |
| Green2 | −0.2316 | 0.000 | *** | −0.11303 | 0.000 | *** | −0.11167 | 0.005 | *** |
| Dsolar | 9.85 × 10−5 | 0.000 | *** | 1.88 × 10−5 | 0.000 | *** | 6.39 × 10−5 | 0.000 | *** |
| Pho (ρ) | 0.79213 | 0.000 | *** | ||||||
| LAMDA () | 0.86688 | 0.000 | *** | ||||||
| R-squared | 0.69610 | 0.80776 | 0.8097 | ||||||
| Adj-R-squared | 0.69158 | ||||||||
| F-statistic | 153.925 | ||||||||
| BP | 55.6794 | 0.000 | *** | 61.4536 | 0.000 | *** | 61.5041 | 0.000 | *** |
| LIK | 69.6863 | 278.347 | 273.9041 | ||||||
| AIC | −107.373 | −524.694 | −515.808 | ||||||
| SBC | −28.4691 | −438.858 | −436.905 | ||||||
| S.E | 0.22605 | 0.17979 | 0.17889 | ||||||
| Moran’s I | 0.2956 | 0.000 | *** | ||||||
| LM (lag) | 767.8211 | 0.000 | *** | ||||||
| Robust LM (lag) | 76.2751 | 0.000 | *** | ||||||
| LM (error) | 816.2545 | 0.000 | *** | ||||||
| Robust LM (error) | 124.7084 | 0.000 | *** | ||||||
| Likelihood-Ratio (lag) | 417.321 | 0.000 | *** | ||||||
| Likelihood-Ratio (error) | 408.436 | 0.000 | *** | ||||||
| Model | OLS | SLM | SEM | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | ||||
| CONSTANT | 3.2940 | 0.000 | *** | 1.06 × 100 | 0.000 | *** | 3.39 × 100 | 0.000 | *** |
| Tarea | −3.60 × 10−7 | 0.415 | −7.56 × 10−8 | 0.848 | 2.10 × 10−8 | 0.957 | |||
| Tarea2 | 6.37 × 10−13 | 0.552 | 2.09 × 10−13 | 0.827 | 9.46 × 10−15 | 0.991 | |||
| Dcity | −4.60 × 10−5 | 0.000 | *** | −2.02 × 10−6 | 0.847 | −2.38 × 10−5 | 0.154 | ||
| Droad | −3.34 × 10−5 | 0.100 | −3.26 × 10−5 | 0.073 | * | −4.16 × 10−5 | 0.038 | ** | |
| AreaQ | −0.5448 | 0.000 | *** | −0.18432 | 0.000 | *** | −0.6636 | 0.000 | *** |
| AreaB | −0.6148 | 0.000 | *** | −0.19097 | 0.000 | *** | −0.6784 | 0.000 | *** |
| AreaG | −0.5666 | 0.000 | *** | −0.19058 | 0.000 | *** | −0.6267 | 0.000 | *** |
| AreaM | −0.3711 | 0.000 | *** | −0.08401 | 0.034 | ** | −0.4737 | 0.000 | *** |
| AreaS | −0.5035 | 0.000 | *** | −0.18032 | 0.000 | *** | −0.6764 | 0.000 | *** |
| Fish | 0.00084 | 0.063 | ** | 0.00085 | 0.036 | ** | 0.00096 | 0.015 | ** |
| Shrimp | 0.00125 | 0.431 | 0.00072 | 0.612 | 0.00101 | 0.468 | |||
| Shellfish | −0.00243 | 0.099 | * | −0.00225 | 0.087 | * | −0.00205 | 0.116 | |
| YD | 0.00649 | 0.432 | 0.01399 | 0.238 | 0.01445 | 0.225 | |||
| Empty | 0.02485 | 0.091 | * | 0.02418 | 0.066 | * | 0.01882 | 0.149 | |
| Line | 0.04228 | 0.022 | ** | 0.03033 | 0.065 | * | 0.01973 | 0.275 | |
| SQ | 0.00401 | 0.758 | −0.00153 | 0.896 | −0.00846 | 0.473 | |||
| After | 0.10698 | 0.000 | *** | 0.11122 | 0.000 | *** | 1.16 × 10−1 | 0.000 | *** |
| Green1 | −0.09216 | 0.000 | *** | −9.12 × 10−2 | 0.000 | *** | −0.09090 | 0.000 | *** |
| Green2 | −1.39 × 10−1 | 0.000 | *** | −0.10428 | 0.000 | *** | −0.10713 | 0.004 | *** |
| Dsolar | 3.24 × 10−5 | 0.000 | *** | 8.85 × 10−6 | 0.060 | * | 1.47 × 10−5 | 0.215 | |
| Pho (ρ) | 0.67525 | 0.000 | *** | ||||||
| LAMBDA () | 0.73331 | 0.000 | *** | ||||||
| R-squared | 0.768 | 0.811 | 0.814 | ||||||
| Adj-R-squared | 0.763 | ||||||||
| F-statistic | 166.086 | ||||||||
| BP | 61.072 | 0.000 | *** | 75.853 | 0.000 | *** | 77.891 | 0.000 | *** |
| LIK | 208.080 | 296.437 | 302.077 | ||||||
| AIC | −374.160 | −548.874 | −562.155 | ||||||
| SBC | −270.599 | −440.382 | −458.594 | ||||||
| S.E | 0.199 | 0.178 | 0.177 | ||||||
| Moran’s I | 0.1662 | 0.000 | *** | ||||||
| LM (lag) | 232.146 | 0.000 | *** | ||||||
| Robust LM (lag) | 8.425 | 0.004 | *** | ||||||
| LM (error) | 257.994 | 0.000 | *** | ||||||
| Robust LM (error) | 34.273 | 0.000 | *** | ||||||
| Likelihood-Ratio (lag) | 176.715 | 0.000 | *** | ||||||
| Likelihood-Ratio (error) | 187.995 | 0.000 | *** | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, Y.-J. Aquafarm Use and Energy Transition of the Aquavoltaics Policy on Small-Scale Aquaculture in Taiwan. Water 2025, 17, 3388. https://doi.org/10.3390/w17233388
Hsiao Y-J. Aquafarm Use and Energy Transition of the Aquavoltaics Policy on Small-Scale Aquaculture in Taiwan. Water. 2025; 17(23):3388. https://doi.org/10.3390/w17233388
Chicago/Turabian StyleHsiao, Yao-Jen. 2025. "Aquafarm Use and Energy Transition of the Aquavoltaics Policy on Small-Scale Aquaculture in Taiwan" Water 17, no. 23: 3388. https://doi.org/10.3390/w17233388
APA StyleHsiao, Y.-J. (2025). Aquafarm Use and Energy Transition of the Aquavoltaics Policy on Small-Scale Aquaculture in Taiwan. Water, 17(23), 3388. https://doi.org/10.3390/w17233388
