Deep Learning-Driven Sandy Beach Resilience Assessment: Integrating External Forcing Forecasting, Process Simulation, and Risk-Informed Decision Support
Abstract
1. Introduction
2. Methods: Deep Learning
2.1. Literature Search and Data Sources
2.2. Spatial Characterization
2.3. Time Series and Cross-Scale Dependencies
2.4. Physics-Informed/Physics-Guided DL
| Type | Feature | Typical Advantage | Limitation/Risk | Application Scenario | Ref. |
|---|---|---|---|---|---|
| CNN | Local translation invariance; hierarchical texture; controllable multi-scale | Strong spatial feature recognition capability; computationally friendly | Weak temporal dependence; poor multi-scale processing capability; dependence on the quality of training samples | Raster image classification | [26] |
| ViT | Global self-attention; non-local interaction; hierarchical window | Global long-range dependence; cross-scale fusion | High demand for data and computing power; easy overfitting with small samples | Large-sample data; multi-scale scenario correlation | [30] |
| RNN | Control information extraction using a gating mechanism | Strong univariate feature extraction capability; good at capturing nonlinear dynamics | Poor interpretability; gradient vanishing in long sequences | Univariate sequences; short-to-medium-term sequences | [33] |
| Transformer-based long-time series | Sparse/selective attention mechanism; covariate embedding and interpretation | Global dependence; cross-variable; high parallel computing efficiency | Large scale of training samples; relatively complex model structure | Long sequences; multi-scenario and multi-source variables | [34,37] |
| Physics-guided/Physics-informed DL | Physical information embedding; physical boundary constraints | Physical consistency; interpretability; robust extrapolation; strong generalization | Difficulty in loss convergence; complexity in boundary handling; high computational cost | Sparse observation; tasks requiring conservation constraints for extrapolation | [46] |
3. Application of DL in Sandy Beach Hazards and Hydrodynamic Processes
3.1. Typhoon Track/Intensity and Storm Surge Peak Value Forecasting
3.2. Large-Scale and Nearshore Wave Generation and Acceleration
4. Application of DL in Coastal Morphological Evolution and Sediment Simulation
4.1. Reconstruction and Evolution of Sandy Beach Profiles and Shorelines
4.2. Sediment Transport: Surrogate Modeling, High-Resolution Flow Field Driving with Physical Constraints
5. Application of DL in Sandy Beach Management and Decision-Making
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HFRs | High-Frequency Radars |
| UAVs | Unmanned Aerial Vehicles |
| AI | Artificial intelligence |
| DL | Deep learning |
| ML | Machine learning |
| CNN | Convolutional neural network |
| FCN | Fully convolutional network |
| ViT | Vision Transformer |
| MLP | Multilayer perceptron |
| RNN | Recurrent neural network |
| TFT | Temporal fusion transformers |
| LSTM | Long short-term memory |
| GRU | Gated recurrent unit |
| PINN | Physics-informed neural network |
| GNS | Graph network-based simulator |
| RTK | Real-time kinematic |
| TL cameras | Time-lapse cameras |
| GAN | Generative adversarial network |
| HWRF | Hybrid weather research and forecasting |
| NACCS | North Atlantic coast com-prehensive study |
| NOAA | National Oceanic and Atmospheric Administration |
| STOFS | Storm and tidal operational forecast system |
| SWAN | Simulating Waves Nearshore model |
| IEWT | Improved empirical wavelet transform |
| EMD | Empirical mode decomposition |
| DELWAVE | Deep learning wave emulating model |
| EDS | Edge depth supervision |
| CSDS | Cooperative semantic depth supervision |
| AFM | Attention fusion module |
| DNN | Deep Neural Network |
| SSC | Suspended sediment concentration |
| SWE | Shallow water equations |
| PIFCN | Physics-informed fully connected networks |
| PICN | Physics-informed convolutional networks |
| LLM | Large language model |
References
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A Global Analysis of Human Settlement in Coastal Zones. J. Coast. Res. 2003, 19, 584–599. Available online: http://www.jstor.org/stable/4299200 (accessed on 27 August 2025).
- Amoudry, L.O.; Souza, A.J. Deterministic coastal morphological and sediment transport modeling: A review and discussion. Rev. Geophys. 2011, 49, RG2002. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Wahl, T.; Haigh, I.D.; Nicholls, R.J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.B.A. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Commun. 2017, 8, 16075. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef]
- Young, I.R.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Coastal erosion and control. Ocean Coast Manag. 2011, 54, 867–887. [Google Scholar] [CrossRef]
- Masselink, G.; Lazarus, E.D. Defining Coastal Resilience. Water 2019, 11, 2587. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, C.; Jiang, Y.; Zhu, Y.; Jin, Y.; Wang, X.; Feng, X.; Feng, W. A whole process resilience management practice in coastal engineering. Front. Mar. Sci. 2025, 11, 1518249. [Google Scholar] [CrossRef]
- Wang, Y.; Imai, K.; Horikawa, H. Tsunami Early Warning Using High--Frequency Ocean Radar System in the Kii Channel, Japan. Seismol. Res. Lett. 2025, 96, 990–1000. [Google Scholar] [CrossRef]
- Wang, Y.; Imai, K.; Miyashita, T.; Ariyoshi, K.; Takahashi, N.; Satake, K. Coastal tsunami prediction in Tohoku region, Japan, based on S-net observations using artificial neural network. Earth Planets Space 2023, 75, 154. [Google Scholar] [CrossRef]
- Holman, R.A.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Lesser, G.R.; Roelvink, J.V.; van Kester, J.T.M.; Stelling, G.S. Development and validation of a three-dimensional morphological model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Cueto, J.; Otero, L. Morphodynamic response to extreme wave events of microtidal dissipative and reflective beaches. Appl. Ocean Res. 2022, 101, 102283. [Google Scholar] [CrossRef]
- Castelle, B.; Masselink, G. Morphodynamics of wave-dominated beaches. Camb. Prism. Coast. Futures 2023, 1, e1. [Google Scholar] [CrossRef]
- Shen, C. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Yu, R.; Wang, R. Learning dynamical systems from data: An introduction to physics-guided deep learning. Proc. Natl. Acad. Sci. USA 2024, 121, e2311808121. [Google Scholar] [CrossRef] [PubMed]
- Swischuk, R.; Mainini, L.; Peherstorfer, B.; Willcox, K. Projection-based model reduction: Formulations for physics-based machine learning. Comput. Fluids. 2019, 179, 704–717. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Sun, W.; Wang, R. Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM. IEEE Geosci. Remote Sens. Lett. 2018, 15, 474–478. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Chen, C.; Pan, Z. Multi-scale dilated convolution of convolutional neural network for image denoising. Multimed. Tools Appl. 2019, 78, 19945–19960. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 30 June 2016. [Google Scholar]
- Wang, Y.; Huang, R.; Song, S.; Huang, Z.; Huang, G. Not all images are worth 16 × 16 words: Dynamic transformers for efficient image recognition. NeurIPS 2021, 34, 11960–11973. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Xie, E.; Wang, W.H.; Yu, Z.D.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. NeurIPS 2021, 34, 12077–12090. [Google Scholar]
- Yu, Y.; Si, X.S.; Hu, C.H.; Zhang, J.X. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Kolter, J.Z.; Koltun, V. Convolutional sequence modeling revisited. In Proceedings of the ICLR 2018 Conference Paper 501 Official Comment, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. arXiv 2019, arXiv:1905.10437. [Google Scholar]
- Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 2020, 36, 1181–1191. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 11106–11115. [Google Scholar] [CrossRef]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers Effective for Time Series Forecasting? In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 11121–11128. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning Through Physics–Informed Neural Networks: Where we are and What’s Next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [Google Scholar] [CrossRef]
- Rudy, S.H.; Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Data-driven discovery of partial differential equations. Sci. Adv. 2017, 3, e1602614. [Google Scholar] [CrossRef]
- Bar-Sinai, Y.; Hoyer, S.; Hickey, J.; Brenner, M.P. Learning data-driven discretizations for partial differential equations. Proc. Natl. Acad. Sci. USA 2019, 116, 15344–15349. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, A.; Godwin, J.; Pfaff, T.; Ying, R.; Leskovec, J.; Battaglia, P. Learning to simulate complex physics with graph networks. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 8459–8468. Available online: https://arxiv.org/abs/2002.09405 (accessed on 28 August 2025).
- Kochkov, D.; Smith, J.A.; Alieva, A.; Wang, Q.; Brenner, M.P.; Hoyer, S. Machine learning–accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. USA 2021, 118, e2101784118. [Google Scholar] [CrossRef]
- Westerink, J.J.; Luettich, R.A.; Feyen, J.C.; Atkinson, J.H.; Dawson, C.; Roberts, H.J.; Powell, M.D.; Dunion, J.P.; Kubatko, E.J.; Pourtaheri, H. A Basin- to Channel-Scale Unstructured Grid Hurricane Storm Surge Model Applied to Southern Louisiana. Mon. Weather Rev. 2008, 136, 833–864. [Google Scholar] [CrossRef]
- Rueda-Bayona, J.G.; Osorio, A.F.; Guzmán, A. Set-up and input dataset files of the Delft3d model for hydrodynamic modelling considering wind, waves, tides and currents through multidomain grids. Data Br. 2019, 28, 104921. [Google Scholar] [CrossRef] [PubMed]
- Calvino, C.; Dabrowski, T.; Dias, F. A study of the sea level and current effects on the sea state in Galway Bay, using the numerical model COAWST. Ocean Dyn. 2022, 72, 761–774. [Google Scholar] [CrossRef]
- Gu, B.H.; Woo, S.B.; Kim, S. Improved estuaries salinity stratification at Gyeonggi Bay using data assimilation with Finite Volume Coastal Ocean Model (FVCOM). J. Coast. Res. 2019, 91, 416–420. [Google Scholar] [CrossRef]
- Rüttgers, M.; Lee, S.; Jeon, S.; You, D. Prediction of a typhoon track using a generative adversarial network and satellite images. Sci. Rep. 2019, 9, 6057. [Google Scholar] [CrossRef] [PubMed]
- Giffard-Roisin, S.; Yang, M.; Charpiat, G.; Kumler Bonfanti, C.; Kégl, B.; Monteleoni, C. Tropical Cyclone Track Forecasting Using Fused Deep Learning From Aligned Reanalysis Data. Front. Big Data 2020, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Stengel, K.; Glaws, A.; Hettinger, D.; King, R.N. Adversarial super-resolution of climatological wind and solar data. Proc. Natl. Acad. Sci. USA 2020, 117, 16805–16815. [Google Scholar] [CrossRef]
- Kurth, T.; Subramanian, S.; Harrington, P.; Pathak, J.; Mardani, M.; Hall, D.; Miele, A.; Kashinath, K.; Anandkumar, A. Fourcastnet: Accelerating global high-resolution weather forecasting using adaptive fourier neural operators. In Proceedings of the Platform for Advanced Scientific Computing Conference, Davos, Switzerland, 26–28 June 2023; pp. 1–11. [Google Scholar] [CrossRef]
- Lam, R.; Sanchez-Gonzalez, A.; Matthew Willson, M.; Wirnsberger, P.; Fortunato, M.; Alet, F.; Ravuri, S.; Ewalds, T.; Eaton-Rosen, Z.; Hu, W.H.; et al. Learning skillful medium-range global weather forecasting. Science 2023, 382, 1416–1421. [Google Scholar] [CrossRef]
- Bi, K.; Xie, L.X.; Zhang, H.H.; Chen, X.; Gu, X.T.; Tian, Q. Accurate medium-range global weather forecasting with 3D neural networks. Nature 2023, 619, 533–538. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zhong, X.H.; Xu, X.Z.; Huang, Y.Q.; Li, H.; Neelin, J.D.; Chen, D.L.; Feng, J.; Han, W.; Wu, L.B.; et al. A data-to-forecast machine learning system for global weather. Nat. Commun. 2025, 16, 6658. [Google Scholar] [CrossRef]
- Adeli, E.; Sun, L.N.; Wang, J.X.; Taflanidis, A.A. An advanced spatio-temporal convolutional recurrent neural network for storm surge predictions. Neural Comput. Appl. 2023, 35, 18971–18987. [Google Scholar] [CrossRef]
- Ramos-Valle, A.N.; Curchitser, E.N.; Bruyère, C.L.; McOwen, S. Implementation of an artificial neural network for storm surge forecasting. J. Geophys. Res. Atmos. 2021, 126, e2020JD033266. [Google Scholar] [CrossRef]
- Xie, W.; Xu, G.; Zhang, H.; Dong, C. Developing a deep learning-based storm surge forecasting model. Ocean Model. 2023, 182, 102179. [Google Scholar] [CrossRef]
- Jiang, W.; Zhong, X.; Zhang, J. Surge-NF: Neural Fields inspired peak storm surge surrogate modeling with multi-task learning and positional encoding. Coast. Eng. 2024, 193, 104573. [Google Scholar] [CrossRef]
- Tedesco, P.; Rabault, J.; Sætra, M.L.; Kristensen, N.M.; Aarnes, O.J.; Breivik, Ø.; Mauritzen, C.; Sætra, Ø. Bias correction of operational storm surge forecasts using Neural Networks. Ocean Model. 2024, 188, 102334. [Google Scholar] [CrossRef]
- Cerrone, A.R.; Westerink, L.G.; Ling, G.; Blakely, C.P.; Wirasaet, D.; Dawson, C.; Westerink, J.J. Correcting physics-based global tide and storm water level forecasts with the temporal fusion transformer. Ocean Model. 2025, 195, 102509. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Wang, J.; Bethel, B.J.; Xie, W.; Dong, C. A hybrid model for significant wave height prediction based on an improved empirical wavelet transform decomposition and long-short term memory network. Ocean Model. 2024, 189, 102367. [Google Scholar] [CrossRef]
- Hao, W.; Sun, X.; Wang, C.; Chen, H.; Huang, L. A hybrid EMD-LSTM model for non-stationary wave prediction in offshore China. Ocean Eng. 2022, 246, 110566. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Gao, S.; Ren, P. Ocean Wave Height Series Prediction with Numerical Long Short-Term Memory. J. Mar. Sci. Eng. 2021, 9, 514. [Google Scholar] [CrossRef]
- Choi, H.; Park, M.; Son, G.; Jeong, J.; Park, J.; Mo, K.; Kang, P. Real-time significant wave height estimation from raw ocean images based on 2D and 3D deep neural networks. Ocean Eng. 2020, 201, 107129. [Google Scholar] [CrossRef]
- Bai, G.; Wang, Z.; Zhu, X.; Feng, Y. Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea. Appl. Ocean Res. 2022, 118, 103012. [Google Scholar] [CrossRef]
- Bento, P.; Pombo, J.; Calado, M.D.R.; Mariano, S. Ocean wave power forecasting using convolutional neural networks. IET Renew. Power Gener. 2021, 15, 3341–3353. [Google Scholar] [CrossRef]
- Mlakar, P.; Ricchi, A.; Carniel, S.; Bonaldo, D.; Ličer, M. DELWAVE 1.0: Deep learning surrogate model of surface wave climate in the Adriatic Basin. Geosci. Model Dev. 2024, 17, 4705–4725. [Google Scholar] [CrossRef]
- Kuhn, J. Machine Learning Methods for the Analysis of Coastal Sea States. Ph.D. Thesis, Université de Pau et des Pays de l’Adour, Pau, France, 2024. [Google Scholar]
- Hu, R.; Fan, Y.; Zhang, X. Satellite-Derived Shoreline Changes of an Urban Beach and Their Relationship to Coastal Engineering. Remote Sens. 2024, 16, 2469. [Google Scholar] [CrossRef]
- Dey, M.; Priyaa, S.; Jena, B.K. A shoreline change detection (2012–2021) and forecasting using digital shoreline analysis system (DSAS) tool: A case study of Dahej Coast, Gulf of Khambhat, Gujarat, India. Indones. J. Geogr. 2021, 53, 295–309. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 833–851. [Google Scholar]
- Park, S.; Song, A. Shoreline change analysis with Deep Learning Semantic Segmentation using remote sensing and GIS data. KSCE J. Civ. Eng. 2024, 28, 928–938. [Google Scholar] [CrossRef]
- Scala, P.; Manno, G.; Ciraolo, G. Semantic segmentation of coastal aerial/satellite images using deep learning techniques: An application to coastline detection. Comput. Geosci. 2024, 192, 105704. [Google Scholar] [CrossRef]
- Feng, J.; Wang, S.; Gu, Z. A novel sea-land segmentation network for enhanced coastline extraction using satellite remote sensing images. Adv. Space Res. 2024, 74, 2200–2213. [Google Scholar] [CrossRef]
- Dang, K.B.; Dang, V.B.; Ngo, V.L.; Vu, K.C.; Nguyen, H.; Nguyen, D.A.; Nguyen, T.D.L.; Pham, T.P.N.; Giant, T.L.; Nguyen, H.D.; et al. Application of deep learning models to detect coastlines and shorelines. J. Environ. Manag. 2022, 320, 115732. [Google Scholar] [CrossRef]
- Splinter, K.D.; Turner, I.L.; Davidson, M.A.; Barnard, P.; Castelle, B.; Oltman-Shay, J. A generalized equilibrium model for predicting daily to interannual shoreline response. J. Geophys. Res. Earth Surf. 2014, 119, 1936–1958. [Google Scholar] [CrossRef]
- Davidson, M.A.; Splinter, K.D.; Turner, I.L. A simple equilibrium model for predicting shoreline change. Coast. Eng. 2013, 73, 191–202. [Google Scholar] [CrossRef]
- Calkoen, F.; Luijendijk, A.; Rivero, C.R.; Kras, E.; Baart, F. Traditional vs. Machine-Learning Methods for Forecasting Sandy Shoreline Evolution Using Historic Satellite-Derived Shorelines. Remote Sens. 2021, 13, 934. [Google Scholar] [CrossRef]
- Manamperi, T.U.S.; Karunarathna, H.; Rahat, A.; Banno, M.; Pender, D.; Cristaudo, D. Machine Learning Techniques for Cross Shore Beach Change Forecasting. Coast. Eng. Proc. 2024, 38, 60. [Google Scholar] [CrossRef]
- Lee, Y.; Chang, S.; Kim, J.; Kim, I. Estimation of Beach Profile Response on Coastal Hydrodynamics Using LSTM-Based Encoder–Decoder Network. J. Mar. Sci. Eng. 2024, 12, 2212. [Google Scholar] [CrossRef]
- Gomez-de la Peña, E.; Coco, G.; Whittaker, C.; Montaño, J. On the use of convolutional deep learning to predict shoreline change. Earth Surf. Dyn. 2023, 11, 1145–1160. [Google Scholar] [CrossRef]
- Adusumilli, S.; Cirrito, N.; Engeman, L.; Fiedler, J.W.; Guza, R.T.; Lange, A.M.Z.; Merrifield, M.A.; O’Reilly, W.; Young, A.P. Predicting shoreline changes along the California coast using deep learning applied to satellite observations. JGR Mach. Learn. Comput. 2024, 1, e2024JH000172. [Google Scholar] [CrossRef]
- Montaño, J.; Coco, G.; Antolínez, J.A.A.; Beuzen, T.; Bryan, K.R.; Cagigal, L.; Castelle, B.; Davidson, M.A.; Goldstein, E.B.; Ibaceta, R.; et al. Blind testing of shoreline evolution models. Sci. Rep. 2020, 10, 2137. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ. 2012, 123, 1–11. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Sánchez-García, E.; Almonacid-Caballer, J.; Palomar-Vázquez, J.M.; Priego de los Santos, E.; Fernández-Sarría, A.; Balaguer-Beser, Á. Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sens. 2018, 10, 326. [Google Scholar] [CrossRef]
- Kim, T.; Lee, W.D. Review on applications of machine learning in coastal and ocean engineering. J. Ocean Eng. Technol. 2022, 36, 194–210. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef]
- Weber de Melo, W.; Pinho, J.L.; Iglesias, I. Emulating the estuarine morphology evolution using a deep convolutional neural network emulator based on hydrodynamic results of a numerical model. J. Hydroinform. 2022, 24, 1254–1268. [Google Scholar] [CrossRef]
- Fajardo-Urbina, J.M.; Liu, Y.; Georgievska, S.; Gräwe, U.; Clercx, H.J.; Gerkema, T.; Duran-Matute, M. Efficient deep learning surrogate method for predicting the transport of particle patches in coastal environments. Mar. Pollut. Bull. 2024, 209, 117251. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.B.; Feng, X.R.; Gao, T.H.; Wang, Z.F.; Wan, K.; Yin, B.S. Application of deep learning in predicting suspended sediment concentration: A case study in Jiaozhou Bay, China. Mar. Pollut. Bull. 2024, 201, 116255. [Google Scholar] [CrossRef] [PubMed]
- Leiteritz, R.; Hurler, M.; Pfluger, D. Learning Free-Surface Flow with Physics-Informed Neural Networks. In Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Virtual, 13–16 December 2021; IEEE: Pasadena, CA, USA, 2021; pp. 1668–1673. [Google Scholar] [CrossRef]
- Dazzi, S. Physics-informed neural networks for the augmented system of shallow water equations with topography. Water Resour. Res. 2024, 60, e2023WR036589. [Google Scholar] [CrossRef]
- Qi, X.; de Almeida, G.A.M.; Maldonado, S. Physics-informed neural networks for solving flow problems modeled by the 2D Shallow Water Equations without labeled data. J. Hydrol. 2024, 636, 131263. [Google Scholar] [CrossRef]
- Bihlo, A.; Popovych, R.O. Physics-informed neural networks for the shallow-water equations on the sphere. J. Comput. Phys. 2022, 456, 111024. [Google Scholar] [CrossRef]
- Huang, Y.H.; Xu, Z.; Qian, C.; Liu, L. Solving free-surface problems for non-shallow water using boundary and initial conditions-free physics-informed neural network (bif-PINN). J. Comput. Phys. 2023, 479, 112003. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef] [PubMed]
- Dal Barco, M.K.; Maraschini, M.; Ferrario, D.M.; Nguyen, N.D.; Torresan, S.; Vascon, S.; Critto, A. A machine learning approach to evaluate coastal risks related to extreme weather events in the Veneto region (Italy). Int. J. Disaster Risk Reduct. 2024, 108, 104526. [Google Scholar] [CrossRef]
- Garzon, J.L.; Ferreira, O.; Plomaritis, T.A.; Zózimo, A.C.; Fortes, C.J.E.M.; Pinheiro, L.V. Development of a Bayesian network-based early warning system for storm-driven coastal erosion. Coast. Eng. 2024, 189, 104460. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Dimitriadis, T.; Gneiting, T.; Jordan, A.I. Stable reliability diagrams for probabilistic classifiers. Proc. Natl. Acad. Sci. USA 2021, 118, e2016191118. [Google Scholar] [CrossRef]
- Gneiting, T.; Raftery, A.E. Strictly Proper Scoring Rules, Prediction, and Estimation. J. Am. Stat. Assoc. 2007, 102, 359–378. [Google Scholar] [CrossRef]
- Chen, G.; Yang, J.; Huang, B.X.; Ma, C.Y.; Tian, F.L.; Ge, L.Y.; Xia, L.H.; Li, J.H. Toward digital twin of the ocean: From digitalization to cloning. Intell. Mar. Technol. Syst. 2023, 1, 3. [Google Scholar] [CrossRef]
- Papachristopoulou, K.; Ipektsidis, C.; Bye, B.L.; Berre, A.J.; Sylaios, G.; van Dam, S.; Chatziapostolidis, M. Digital Twins of the Ocean: From Idea to Practical Execution—The Paradigm of Iliad. In Proceedings of the OCEANS 2025 Brest, Brest, France, 16–19 June 2025; pp. 1–9. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Bresch, D.N.; Calil, J.; Meliane, I. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS ONE 2018, 13, e0192132. [Google Scholar] [CrossRef]
- Beck, M.W.; Losada, I.J.; Menéndez, P.; Reguero, B.G.; Díaz-Simal, P.; Fernández, F. The global flood protection savings provided by coral reefs. Nat. Commun. 2018, 9, 2186. [Google Scholar] [CrossRef]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The Global Flood Protection Benefits of Mangroves. Sci. Rep. 2020, 10, 4404. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.-M.; Burks-Copes, K.A. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [PubMed]
- Temmerman, S.; Horstman, E.M.; Krauss, K.W.; Mullarney, J.C.; Pelckmans, I.; Schoutens, K. Marshes and mangroves as nature-based coastal storm buffers. Annu. Rev. Mar. Sci. 2023, 15, 95–118. [Google Scholar] [CrossRef] [PubMed]
- Barzehkar, M.; Parnell, K.; Soomere, T. Incorporating a Machine Learning Approach into an Established Decision Support System for Coastal Vulnerability in the Eastern Baltic Sea. J. Coast. Res. 2025, 113, 58–62. [Google Scholar] [CrossRef]
- Marchau, V.A.W.J.; Walker, W.E.; Bloemen, P.J.T.M.; Popper, S.W. Decision Making Under Deep Uncertainty: From Theory to Practice; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Hu, W. Thoughts on the utilization and management of shorelines in typical sections of the middle and lower reaches of the Yangtze River. Water Resour. Dev. Res. 2025, 25, 32–36. [Google Scholar] [CrossRef]






| Task | Core Input | Core Output | Representative Models and Key Points | Ref. |
|---|---|---|---|---|
| Short-term; direct typhoon track and intensity | Satellite cloud images; reanalysis atmospheric images | Typhoon track; typhoon intensity | CNN; GAN | [51,52] |
| Extracting typhoons and storm surges indirectly from large-scale meteorological fields | Global-scale surface and upper-air meteorological fields (including wind fields and pressure differences) | Extracting meteorological elements such as wind fields at the boundaries | GraphCast; Swin transformer | [56,57] |
| Extreme water level caused by the arrival of a storm surge at a single point location | Wind; air pressure; astronomical tide; station water level | Time series and peak values of extreme water levels | RNN; Attention mechanism | [59] |
| Spatial process and intensity of storm surges | Single-point water level; two-dimensional wind fields | Storm surge processes at multiple stations within a region | ConvLSTM; ResNet | [58,60] |
| Forecasting and correction of global tidal levels and storm surges | Results of physical forecasting models | Generated correction sequence | Transformer | [63] |
| Temporal forecasting or deviation correction of wave height | Temporal processes of wave height from buoys; numerical models | Temporal process of wave height at a single point | LSTM; EMD; IEWT | [65,66] |
| Spatial-temporal distribution and forecasting of wave fields in a region | Original wave height images; wave height data from multiple stations | Distribution of significant wave height in a region | CNN; ConvLSTM | [68,69] |
| DL-based proxy wave simulation and forecasting at sparse locations | Atmospheric boundary; rough/high-resolution wind field conditions | Spatial wave field; temporal processes at sparse locations | DELWAVE; CNN; RNN | [71] |
| Task | Common Method | Main Data Sources | Training Scale | Advantage | Limitation/Risk | Ref. |
|---|---|---|---|---|---|---|
| Identification and extraction of shorelines | U-Net; attention mechanism; transfer learning | Multi-period satellite images; UAV | Multi-scenario and multi-year time series | Automation; wide coverage; batch processing | Affected by tidal levels and meteorological cloud cover; limited cross-domain generalization | [76,78] |
| Classification and identification of shoreline geomorphic details | CNN; attention module | Multi-period satellite images; UAV; temporarily deployed sensors | Multi-scenario and multi-year time series | Automation; wide coverage; batch processing | Affected by tidal levels, meteorological cloud cover, and surface feature diversity; limited cross-domain generalization | [77,79] |
| Prediction of profile and shoreline evolution | LSTM/GRU; ConvLSTM; Transformer; attention mechanism | Profile survey lines; shore-based video shooting; reanalysis data of waves, tides, wind fields | Time series on weekly–annual scales | Fast calculation speed with low parameters; fast response to extreme events; good at capturing data variation | Relying on high-quality sample sequences; poor generalization | [85,88] |
| Inversion and prediction of SSC | CNN | Wind, wave, and tide time Series; in situ sampling (stations, buoys, sections) | Short time series; multi-site and multi-variable | Saving computational resources; effectively coupling physical processes | Relying on high-quality sample sequences | [95,96,97] |
| Physical coupling (PINN, hybrid) | PINN + FCN; PINN + CNN | Boundary field composed of multi-source observation data; governing equation | According to equation and grid settings; short time series | Improved interpretability and physical consistency; minute-level fast inference; robust extrapolation | Uncertainty of extreme scenarios; high computing power requirement; unstable convergence | [98,100,102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Zhou, Y.; Zhang, J. Deep Learning-Driven Sandy Beach Resilience Assessment: Integrating External Forcing Forecasting, Process Simulation, and Risk-Informed Decision Support. Water 2025, 17, 3383. https://doi.org/10.3390/w17233383
Jiang Y, Zhou Y, Zhang J. Deep Learning-Driven Sandy Beach Resilience Assessment: Integrating External Forcing Forecasting, Process Simulation, and Risk-Informed Decision Support. Water. 2025; 17(23):3383. https://doi.org/10.3390/w17233383
Chicago/Turabian StyleJiang, Yuanshu, Yingtao Zhou, and Juntong Zhang. 2025. "Deep Learning-Driven Sandy Beach Resilience Assessment: Integrating External Forcing Forecasting, Process Simulation, and Risk-Informed Decision Support" Water 17, no. 23: 3383. https://doi.org/10.3390/w17233383
APA StyleJiang, Y., Zhou, Y., & Zhang, J. (2025). Deep Learning-Driven Sandy Beach Resilience Assessment: Integrating External Forcing Forecasting, Process Simulation, and Risk-Informed Decision Support. Water, 17(23), 3383. https://doi.org/10.3390/w17233383

