Resolving Nitrate Sources in Rivers Through Dual Isotope Analysis of δ15N and δ18O
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Chemical Analysis
2.4. Bayesian Isotope Mixture Model
2.5. Data Analysis
3. Results
3.1. Spatial and Temporal Characteristics of Water Chemistry Parameters
3.2. Spatial Distribution Characteristics of NO3− Stable Isotopes in the Songhua River
4. Discussion
4.1. Nitrogen Dynamics Associated with Water Chemistry Parameters
4.2. NO3− Source Attribution with Isotopes Under Cl− Concentration Constraints
4.3. NO3− Transformation Processes in the Songhua River Basin
4.4. Allocation of Nitrogen Sources Under the MixSIAR Model
| Sources | δ15N (Mean ± SD‰) | δ18O (Mean ± SD‰) | Reference |
|---|---|---|---|
| AD | −2.5 ± 7.5 | 50 ± 25 | [52] |
| M&S | 15 ± 10 | 5 ± 10 | [42,52] |
| CF | 0 ± 6 | 21 ± 4 | [14,53] |
| SN | 5 ± 3 | 5 ± 10 | [54,55] |
4.5. Uncertainty Analysis
5. Conclusions
5.1. Summary
5.2. Research Limitations and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Bisht, M.; Shrivastava, M.; Kumar, S.; Singh, D.K.; Sehgal, V.K. A Stable Isotope-hydrochemical Approach to Assess Groundwater Chemistry and Recharge Dynamics in Southwest Delhi, India. Water Air Soil Pollut. 2025, 236, 868. [Google Scholar] [CrossRef]
- Bisht, M.; Shrivastava, M.; Lal, K.; Varghese, C. Evaluation of Hydrogeochemical Processes for Irrigation Use and Potential Nitrate Contamination Sources in Groundwater Using Nitrogen Stable Isotopes in Southwest, India: A Case Study. Water Air Soil Pollut. 2024, 235, 324. [Google Scholar] [CrossRef]
- Fewtrell, L. Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion. Environ. Health Perspect. 2004, 112, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Liu, S.; Wan, H.; Yan, K.; Tao, Y.; Wang, H. Analysis of nitrate sources in surface water in northern Yantai based on nitrogen and oxygen isotopes and MixSIAR model. Geol. China 2024, 51, 2066–2076. [Google Scholar]
- Bisht, M.; Shrivastava, M.; N Kumar, S.; Singh, R. Evaluation of the drinking water quality and potential health risks of nitrate and fluoride in Southwest Delhi, India. Int. J. Environ. Anal. Chem. 2024, 104, 9652–9674. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, R.; Li, C.; Guo, J.; Zhang, H.; Li, Q.; Wang, N. Spatial distribution and sources analysis of nitrate in the Beiluo River Watershed based on nitrogen and oxygen stable isotope. Environ. Pollut. Control 2024, 46, 43–49. [Google Scholar]
- Zhang, J.; Wei, R.; Zerizghi, T.; Wang, Z.; Cui, M.; Du, C.; Yue, F.; Guo, Q. Nitrate sources and transformations along the Yangtze river and its changes after strict environmental regulation. J. Hydrol. 2023, 617, 129037. [Google Scholar] [CrossRef]
- Ling, J.; Zhang, Y.; Cao, Y.; Li, X.; Zhao, G. An analysis of nitrate sources in Nansi Lake based on nitrogen and oxygen isotopes. China Environ. Sci. 2023, 43, 3100–3106. [Google Scholar]
- Li, Y.; Li, X.; Tao, L.; Zhang, X.; Wang, M. Tracking the Origins and Oxidation Pathways of Nitrate in Wet Deposition Using Nitrogen and Oxygen Isotopes. Res. Environ. Sci. 2024, 37, 336–345. [Google Scholar]
- Yang, Y.; Liu, Y.; Tian, L.; Nie, X.; Peng, B.; Li, Z. Identification of Nitrate Source in Polder Surface Water by Nitrogen and Oxygen Isotopes. Res. Environ. Sci. 2024, 37, 326–335. [Google Scholar]
- Han, Y.; Zhou, J.; Xia, F.; Li, B.; Xie, D. Distribution of nitrate nitrogen and oxygen isotopes along the hydrological path in alpine forests. China Environ. Sci. 2025, 45, 935–942. [Google Scholar]
- Biddau, R.; Dore, E.; Da Pelo, S.; Lorrai, M.; Botti, P.; Testa, M.; Cidu, R. Geochemistry, stable isotopes and statistic tools to estimate threshold and source of nitrate in groundwater (Sardinia, Italy). Water Res. 2023, 232, 119663. [Google Scholar] [CrossRef] [PubMed]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing Anthropogenic Inputs of Nitrogen to Ecosystems. In Stable Isotopes in Ecology and Environmental Science; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; pp. 375–449. [Google Scholar]
- Kumar, A.; Ajay, A.; Dasgupta, B.; Bhadury, P.; Sanyal, P. Deciphering the nitrate sources and processes in the Ganga river using dual isotopes of nitrate and Bayesian mixing model. Environ. Res. 2023, 216, 114744. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, Y.J.; Ni, M.; Wang, C.; Li, S. Riverine nitrate source and transformation as affected by land use and land cover. Environ. Res. 2023, 222, 115380. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Guo, S.; Dong, D. Cu and Zn adsorption onto non-residual and residual components in the natural surface coatings samples (NSCSs) in the Songhua River, China. Environ. Pollut. 2006, 143, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.-F.; Chen, A.-Q.; Cui, R.-Y.; Ye, Y.-H.; Min, J.-H.; Fu, B.; Yan, H.; Zhang, D. Identification of Nitrate Source and Transformation Process in Shallow Groundwater Around Dianchi Lake. Huan Jing Ke Xue 2023, 44, 6062–6070. [Google Scholar]
- Wang, Y.; Zhou, Z.; Kong, J.; Wang, C.; Zou, Y.; Zhang, F.; Li, L. Tracing and estimation of nitrate sources based on hydrochemistry and nitrogen and oxygen isotopes in karst mountainous water: A case study of the Pingzhai reservoir. China Environ. Sci. 2023, 43, 5265–5276. [Google Scholar]
- Tang, W.Z.; Pei, Y.S.; Zheng, H.; Zhao, Y.; Shu, L.M.; Zhang, H. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere 2022, 295, 133875. [Google Scholar] [CrossRef]
- Xiao, C.; Sun, Y.; Zhao, T.; Chen, X.; Li, P.; Chen, F. Atmospheric nitrate-nitrogen dry deposition characteristics and source analysis in the Xichuan reservoir area of Danjiangkou Reservoir. China Environ. Sci. 2024, 44, 1515–1525. [Google Scholar]
- Gao, Y.D.; Tian, Y.; Zhan, W.; Li, L.P.; Sun, H.H.; Zhao, T.R.; Zhang, H.R.; Meng, Y.M.; Li, Y.L.; Liu, T.; et al. Characterizing legacy nitrogen-induced time lags in riverine nitrogen reduction for the Songhuajiang River Basin: Source analysis, spatio-seasonal patterns, and impacts on future water quality improvement. Water Res. 2023, 242, 120292. [Google Scholar] [CrossRef] [PubMed]
- HJ 828–2017; Water Quality–Determination of the Chemical Oxygen Demand–Dichromate Method. China Environmental Science Press: Beijing, China, 2017.
- Lutz, S.R.; Trauth, N.; Musolff, A.; Van Breukelen, B.M.; Knöller, K.; Fleckenstein, J.H. How Important is Denitrification in Riparian Zones? Combining End-Member Mixing and Isotope Modeling to Quantify Nitrate Removal from Riparian Groundwater. Water Resour. Res. 2020, 56, e2019WR025528. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, B.; Jia, H.; Chen, Z. Determination sources of nitrates into the Three Gorges Reservoir using nitrogen and oxygen isotopes. Sci. Total Environ. 2019, 687, 128–136. [Google Scholar] [CrossRef]
- Jung, H.; Kim, Y.S.; Yoo, J.; Han, S.J.; Lee, J. Identification of nitrate sources in tap water sources across South Korea using multiple stable isotopes: Implications for land use and water management. Sci. Total Environ. 2023, 864, 161026. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Z.; Song, X.; Chi, L.; Wu, Z.; Yuan, Y. Nitrate dynamics and source apportionment on the East China Sea shelf revealed by nitrate stable isotopes and a Bayesian mixing model. Sci. Total Environ. 2023, 869, 161762. [Google Scholar] [CrossRef]
- Dang, X.-N.; Liu, Y.-L.; Zhang, Z.-Y.; Wang, N.-T. Hydrochemical Characteristics of Surface Water and Groundwater in Shiyan Urban Area and Sources of Nitrate. Huan Jing Ke Xue 2025, 46, 253–262. [Google Scholar]
- Kim, S.H.; Kim, H.-R.; Yu, S.; Kang, H.-J.; Hyun, I.-H.; Song, Y.-C.; Kim, H.; Yun, S.-T. Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island, South Korea: With emphasis on legacy effects on water management. Water Res. 2021, 191, 116814. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Cai, G.; Li, G.; Li, H.; Chen, X.; Liu, Y.; Zhang, W.; Zhang, J.; Zhao, X.; Tang, Z. Basin-wide tracking of nitrate cycling in Yangtze River through dual isotope and machine learning. Sci. Total Environ. 2024, 912, 169656. [Google Scholar] [CrossRef]
- GB 3838–2002; Environmental Quality Standards for Surface Water. China Environmental Science Press: Beijing, China, 2002.
- Wang, A.; Xie, Z.; Chen, D.; Wang, B.; Yang, X.; Chen, H.; Wang, Q. Spatiotemporal variation and source analysis of agricultural non-point source pollution in autumn and winter in Zengcheng small watershed of Guangzhou. J. Agro-Environ. Sci. 2024, 43, 2828–2837. [Google Scholar]
- Wei, Y.-H.; Hu, M.-P.; Chen, D.-J. Nitrate Pollution Characteristics and Its Quantitative Source Identification of Major River Systems in China. Huan Jing Ke Xue 2024, 45, 755–767. [Google Scholar] [PubMed]
- Chen, X.; Feng, Z.; Xu, Q.; Xia, R.; Ma, C.; Xia, X. Decadal dynamics of nitrate content, source variations and influencing factors in the middle and lower reaches of the Yellow River. Acta Sci. Circumstantiae 2025, 45, 241–250. [Google Scholar]
- Meng, Z.; Liu, T.; Gao, Y.; Wang, J.; Zhang, Y. Source apportionment of nitrate pollution in the Xiaohe River Irrigation Area based on stable isotope. Acta Sci. Circumstantiae 2024, 44, 27–36. [Google Scholar]
- Yu, F.; Li, Y.; Chen, Y.; Li, X.; Ren, S. Spatial and temporal distribution and source of nitrogen in the lower reaches of Qin River based on nitrogen and oxygen isotope techniques. Acta Sci. Circumstantiae 2025, 45, 178–189. [Google Scholar]
- Gao, Y.; Liu, Y.; Liu, A.; Wang, H.; Wang, X.; Jiang, X.; Zhang, B.; Wei, K. Nitrate source analysis in an agricultural basin of reservoir in hilly areas based on hydrochemistry, nitrogen and oxygen isotopes. Trans. Chin. Soc. Agric. Eng. 2024, 40, 202–211. [Google Scholar]
- Chen, T.; Xiao, H.; Guan, W.; Xiao, H. Tracing the sources and formation mechanisms of marine atmospheric nitrate using stable isotopes. J. Trop. Oceanogr. 2025, 44, 167–178. [Google Scholar]
- Yong, L.; Wang, Y.; Feng, M. Analysis of nitrate pollution sources in Changhe River Basin under mixed land use. Acta Sci. Circumstantiae 2023, 43, 56–69. [Google Scholar]
- Lu, Z.-X.; Xie, B.; Zheng, X.-Q.; Wang, J.-J.; Huang, D.-Y.; Yu, W.-W.; Liu, W.-H.; Chen, B. Identification of the nitrate pollution in surface water of Dongshan Bay based on stable isotope technology. J. Appl. Ecol. 2024, 35, 1944–1950. [Google Scholar]
- Wang, G.; Gao, H.-B.; Long, B.; Wu, J.-F. Research progress on nitrate isotope coupled multi-tracer tracing groundwater nitrate pollution. J. Appl. Ecol. 2024, 35, 970–984. [Google Scholar]
- Xue, D.; Botte, J.; De Baets, B.; Accoe, F.; Nestler, A.; Taylor, P.; Van Cleemput, O.; Berglund, M.; Boeckx, P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef]
- Xu, Q.-F.; Xia, Y.; Li, S.-J.; Wang, W.-Z.; Li, Z. Temporal and Spatial Distribution Characteristics and Source Analysis of Nitrate in Surface Water of Wuding River Basin. Huan Jing Ke Xue 2023, 44, 3174–3183. [Google Scholar]
- Wang, K.; Chen, H.; Wu, Z.; Qiu, Y.; Fu, S. Spatial distribution and traceability analysis of nitrate in karst water system in Jinan spring basin. Environ. Chem. 2024, 43, 961–973. [Google Scholar]
- Barnes, R.T.; Raymond, P.A. Land-use controls on sources and processing of nitrate in small watersheds: Insights from dual isotopic analysis. Ecol. Appl. 2010, 20, 1961–1978. [Google Scholar] [CrossRef]
- Cao, S.; Fei, Y.; Tian, X.; Cui, X.; Zhang, X.; Yuan, R.; Li, Y. Determining the origin and fate of nitrate in the Nanyang Basin, Central China, using environmental isotopes and the Bayesian mixing model. Environ. Sci. Pollut. Res. 2021, 28, 48343–48361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Jiang, J.; Guo, J.; Peng, J.; Lei, K.; Cheng, Q.; Bai, Z. Nitrogen pollution characteristics and nitrate sources analysis in Yinma River Basin of Qinhuangdao City. J. Environ. Eng. Technol. 2025, 15, 882–891. [Google Scholar]
- Huang, Y.; Jiang, T.; Ding, J.; Xuan, Y.; Chen, J.; Li, R. Composition and Source Identification of Nitrogen in Groundwater in an Urbanized Basin. Trop. Geogr. 2023, 43, 1400–1410. [Google Scholar]
- Jiang, C.; Chen, A.; Hu, W.; Fu, B.; Zhu, L.; Liu, Y.; Li, M.; Wang, C.; Zhang, D. Spatiotemporal Variations of NO_3~--N Concentration in Shallow Groundwater around Yilong Lake and Its Source Analysis. Ecol. Environ. Sci. 2025, 34, 570–580. [Google Scholar]
- Yang, P.; Hua, M.; Luo, W.; Guo, W. Research progress of nitrate tracing in karst groundwater based on CiteSpace. Carsologica Sin. 2024, 43, 563–574. [Google Scholar]
- Wollheim, W.M.; Harms, T.K.; Robison, A.L.; Koenig, L.E.; Helton, A.M.; Song, C.; Bowden, W.B.; Finlay, J.C. Superlinear scaling of riverine biogeochemical function with watershed size. Nat. Commun. 2022, 13, 1230. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Cheng, S.; Li, Q.; Yu, H. Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain, China. Sci. Total Environ. 2020, 717, 137134. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, P.; Li, F.; Wei, A.; Song, J.; Ma, J. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model. Chemosphere 2018, 208, 493–501. [Google Scholar] [CrossRef]
- Xing, M.; Liu, W. Using dual isotopes to identify sources and transformations of nitrogen in water catchments with different land uses, Loess Plateau of China. Environ. Sci. Pollut. Res. 2016, 23, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-Y.; Toor, G.S. δ15N and δ18O Reveal the Sources of Nitrate-Nitrogen in Urban Residential Stormwater Runoff. Environ. Sci. Technol. 2016, 50, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, S.-L.; Yue, F.-J.; Liu, J.; Zhong, J.; Yan, Z.-F.; Zhang, R.-C.; Wang, Z.-J.; Xu, S. Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model. Sci. Total Environ. 2019, 646, 801–810. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, H.; Kang, T.; Li, R.; Zhang, C. Resolving Nitrate Sources in Rivers Through Dual Isotope Analysis of δ15N and δ18O. Water 2025, 17, 3370. https://doi.org/10.3390/w17233370
Wang S, Li H, Kang T, Li R, Zhang C. Resolving Nitrate Sources in Rivers Through Dual Isotope Analysis of δ15N and δ18O. Water. 2025; 17(23):3370. https://doi.org/10.3390/w17233370
Chicago/Turabian StyleWang, Shuai, Heng Li, Tao Kang, Ruixin Li, and Chengzhong Zhang. 2025. "Resolving Nitrate Sources in Rivers Through Dual Isotope Analysis of δ15N and δ18O" Water 17, no. 23: 3370. https://doi.org/10.3390/w17233370
APA StyleWang, S., Li, H., Kang, T., Li, R., & Zhang, C. (2025). Resolving Nitrate Sources in Rivers Through Dual Isotope Analysis of δ15N and δ18O. Water, 17(23), 3370. https://doi.org/10.3390/w17233370

