A Review of Assessment Methods for Coastal Hydro-Environmental Processes: Research Trends and Challenges
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Review Findings
3.1. Publication Patterns and Foci
3.2. Review of Assessment Methods
3.2.1. Meteorological and Hydrodynamic Data Collection

3.2.2. Morphological Data Collection

3.2.3. Laboratory Experiments/Physical Model
3.2.4. Numerical Models

3.2.5. Artificial Intelligence

4. Research Gaps, Challenges, and Future Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The Value of Estuarine and Coastal Ecosystem Services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Chakraborty, S.; Gasparatos, A.; Blasiak, R. Multiple Values for the Management and Sustainable Use of Coastal and Marine Ecosystem Services. Ecosyst. Serv. 2020, 41, 101047. [Google Scholar] [CrossRef]
- Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C.; Beck, M.W. The Role of Ecosystems in Coastal Protection: Adapting to Climate Change and Coastal Hazards. Ocean Coast. Manag. 2014, 90, 50–57. [Google Scholar] [CrossRef]
- Velasco, A.M.; Pérez-Ruzafa, A.; Martínez-Paz, J.M.; Marcos, C. Ecosystem Services and Main Environmental Risks in a Coastal Lagoon (Mar Menor, Murcia, SE Spain): The Public Perception. J. Nat. Conserv. 2018, 43, 180–189. [Google Scholar] [CrossRef]
- Rees, S.E.; Foster, N.L.; Langmead, O.; Pittman, S.; Johnson, D.E. Defining the Qualitative Elements of Aichi Biodiversity Target 11 with Regard to the Marine and Coastal Environment in Order to Strengthen Global Efforts for Marine Biodiversity Conservation Outlined in the United Nations Sustainable Development Goal 14. Mar. Policy 2018, 93, 241–250. [Google Scholar] [CrossRef]
- Lau, J.D.; Hicks, C.C.; Gurney, G.G.; Cinner, J.E. What Matters to Whom and Why? Understanding the Importance of Coastal Ecosystem Services in Developing Coastal Communities. Ecosyst. Serv. 2019, 35, 219–230. [Google Scholar] [CrossRef]
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The Coasts of Our World: Ecological, Economic and Social Importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Apalowo, R.K.; Abas, A.; Zawawi, M.H.; Zahari, N.M.; Itam, Z. Prediction Modeling of Coastal Sediment Transport Using Accelerated Smooth Particle Hydrodynamics Approach. Dyn. Atmos. Ocean 2023, 104, 101406. [Google Scholar] [CrossRef]
- Ma, H.; Xu, L.; Okon, S.U.; Hu, P.; Li, W.; Shi, H.; He, Z. Sediment Transport and Bed Erosion during Storm Surge Using a Coupled Hydrodynamic and Morphodynamic Model Considering Wave and Current Interaction. Coast. Eng. 2024, 187, 104409. [Google Scholar] [CrossRef]
- De Vries, S.; Wengrove, M.; Bosboom, J. Marine Sediment Transport. In Sandy Beach Morphodynamics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 187–212. ISBN 978-0-08-102927-5. [Google Scholar]
- Green, M.O.; Coco, G. Review of Wave-Driven Sediment Resuspension and Transport in Estuaries: Wave-driven sediment transport. Rev. Geophys. 2014, 52, 77–117. [Google Scholar] [CrossRef]
- Nelson, K.S.; Fringer, O.B. Sediment Dynamics in Wind Wave-Dominated Shallow-Water Environments. J. Geophys. Res. Oceans 2018, 123, 6996–7015. [Google Scholar] [CrossRef]
- Anthony, E.J. Storms, Shoreface Morphodynamics, Sand Supply, and the Accretion and Erosion of Coastal Dune Barriers in the Southern North Sea. Geomorphology 2013, 199, 8–21. [Google Scholar] [CrossRef]
- Fourniotis, N.T.; Horsch, G.M.; Leftheriotis, G.A. Wind and Tide-Induced Hydrodynamics and Sedimentation of Two Tidal Inlets in Western Greece. Period. Polytech. Civ. Eng. 2018, 62, 851–857. [Google Scholar] [CrossRef]
- Maerz, J.; Hofmeister, R.; Van Der Lee, E.M.; Gräwe, U.; Riethmüller, R.; Wirtz, K.W. Maximum Sinking Velocities of Suspended Particulate Matter in a Coastal Transition Zone. Biogeosciences 2016, 13, 4863–4876. [Google Scholar] [CrossRef]
- Griffiths, J.R.; Kadin, M.; Nascimento, F.J.A.; Tamelander, T.; Törnroos, A.; Bonaglia, S.; Bonsdorff, E.; Brüchert, V.; Gårdmark, A.; Järnström, M.; et al. The Importance of Benthic–Pelagic Coupling for Marine Ecosystem Functioning in a Changing World. Glob. Change Biol. 2017, 23, 2179–2196. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, J.; Lu, X.; Su, C.; Zhang, Y.; Wang, C.; Cao, X.; Li, Q.; Su, J.; Ittekkot, V.; et al. Major Threats of Pollution and Climate Change to Global Coastal Ecosystems and Enhanced Management for Sustainability. Environ. Pollut. 2018, 239, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Maestro, M.; Pérez-Cayeiro, M.L.; Chica-Ruiz, J.A.; Reyes, H. Marine Protected Areas in the 21st Century: Current Situation and Trends. Ocean Coast. Manag. 2019, 171, 28–36. [Google Scholar] [CrossRef]
- Yin, K.; Zhao, Y.; Zhou, S.; Li, X. How Do Storm Surge Disaster Losses Affect Economic Development? Perspectives from Disaster Prevention and Mitigation Capacity. Sci. Total Environ. 2024, 951, 175526. [Google Scholar] [CrossRef]
- Armenio, E.; Ben Meftah, M.; De Padova, D.; De Serio, F.; Mossa, M. Monitoring Systems and Numerical Models to Study Coastal Sites. Sensors 2019, 19, 1552. [Google Scholar] [CrossRef] [PubMed]
- Alosairi, Y.; Pokavanich, T.; Alsulaiman, N. Three-Dimensional Hydrodynamic Modelling Study of Reverse Estuarine Circulation: Kuwait Bay. Mar. Pollut. Bull. 2018, 127, 82–96. [Google Scholar] [CrossRef]
- Aslan, S.; Zennaro, F.; Furlan, E.; Critto, A. Recurrent Neural Networks for Water Quality Assessment in Complex Coastal Lagoon Environments: A Case Study on the Venice Lagoon. Environ. Model. Softw. 2022, 154, 105403. [Google Scholar] [CrossRef]
- Mulligan, R.P.; Smith, P.C.; Tao, J.; Hill, P.S. Wind-Wave and Tidally Driven Sediment Resuspension in a Macrotidal Basin. Estuaries Coasts 2019, 42, 641–654. [Google Scholar] [CrossRef]
- Jeyaraj, S.; Ramakrishnan, B. Monitoring the Nearshore Currents Pattern along the Anthropogenically Influenced Coast of Puducherry. J. Earth Syst. Sci. 2023, 132, 163. [Google Scholar] [CrossRef]
- Lee, J.-M.; Park, J.-Y.; Choi, J.-Y. Evaluation of Sub-Aerial Topographic Surveying Techniques Using Total Station and RTK-GPS for Applications in Macrotidal Sand Beach Environment. J. Coast. Res. 2013, 65, 535–540. [Google Scholar] [CrossRef]
- Abessolo Ondoa, G.; Almar, R.; Kestenare, E.; Bahini, A.; Houngue, G.-H.; Jouanno, J.; Du Penhoat, Y.; Castelle, B.; Melet, A.; Meyssignac, B.; et al. Potential of Video Cameras in Assessing Event and Seasonal Coastline Behaviour: Grand Popo, Benin (Gulf of Guinea). J. Coast. Res. 2016, 75, 442–446. [Google Scholar] [CrossRef]
- Abayazid, H.O.; El-Adawy, A. Modeling versus Remote Sensing Techniques for Water Quality Monitoring in Deltaic Coastal Lake in Egypt. Int. J. Eng. Adv. Technol. 2019, 8, 328–333. [Google Scholar]
- Van Rooijen, A.; Lowe, R.; Rijnsdorp, D.P.; Ghisalberti, M.; Jacobsen, N.G.; McCall, R. Wave-Driven Mean Flow Dynamics in Submerged Canopies. J. Geophys. Res. Oceans 2020, 125, e2019JC015935. [Google Scholar] [CrossRef]
- Weisscher, S.A.H.; Boechat-Albernaz, M.; Leuven, J.R.F.W.; Van Dijk, W.M.; Shimizu, Y.; Kleinhans, M.G. Complementing Scale Experiments of Rivers and Estuaries with Numerically Modelled Hydrodynamics. Earth Surf. Dynam. 2020, 8, 955–972. [Google Scholar] [CrossRef]
- Hsieh, T.-C.; Ding, Y.; Yeh, K.-C.; Jhong, R.-K. Investigation of Morphological Changes in the Tamsui River Estuary Using an Integrated Coastal and Estuarine Processes Model. Water 2020, 12, 1084. [Google Scholar] [CrossRef]
- Choo, J.F.; Chow, J.H.; Tkalich, P. Prediction of Tidal-Driven Currents Using Convolutional Neural Network. J. Phys. Conf. Ser. 2022, 2311, 012023. [Google Scholar] [CrossRef]
- Sukhinov, A.I.; Kolgunova, O.V.; Ghirmay, M.Z.; Nahom, O.S. Two Dimensional Hydrodynamics Model with Evaporation for Coastal Systems. Comput. Math. Inf. Technol. 2024, 7, 9–21. [Google Scholar] [CrossRef]
- Chondros, M.K.; Metallinos, A.S.; Papadimitriou, A.G. Integrated Modeling of Coastal Processes Driven by an Advanced Mild Slope Wave Model. Modelling 2024, 5, 458–482. [Google Scholar] [CrossRef]
- Fourniotis, N.T.; Horsch, G.M. Baroclinic Circulation in the Gulf of Patras (Greece). Ocean Eng. 2015, 104, 238–248. [Google Scholar] [CrossRef]
- Badru, G.S.; Odunuga, S.S.; Omojola, A.S.; Oladipo, E.O. Numerical Modelling of Sediment Transport in Southwest Coast of Nigeria: Implications for Sustainable Management of Coastal Erosion in the Bight of Benin. J. Afr. Earth Sci. 2022, 187, 104466. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Cheriton, O.M.; Cronin, K.M.; van der Heijden, L.H.; Winter, G.; Rosenberger, K.J.; Logan, J.B.; McCall, R.T. Observations of Coastal Circulation, Waves, and Sediment Transport along West Maui, Hawai’i (November 2017–March 2018), and Modeling Effects of Potential Watershed Restoration on Decreasing Sediment Loads to Adjacent Coral Reefs; U.S. Geological Survey Open-File Report 2022-1121; U.S. Geological Survey: Santa Cruz, CA, USA, 2023. [Google Scholar]
- Movahedinejad, S.; Bohluly, A.; Haghshenas, S.A.; Bidokhti, A.A. A 2D Numerical Model for Simulation of Cohesive Sediment Transport. Comput. Geosci. 2023, 27, 451–463. [Google Scholar] [CrossRef]
- Xiao, Z.; Carlin, G.; Steven, A.D.L.; Livsey, D.N.; Song, D.; Crosswell, J.R. A Measurement-to-Modelling Approach to Understand Catchment-to-Reef Processes: Sediment Transport in a Highly Turbid Estuary. Front. Mar. Sci. 2023, 10, 1215161. [Google Scholar] [CrossRef]
- Aspioti, A.G.; Fourniotis, N.T. Numerical Study of Barotropic Circulation in the Gulfs of Patras and Corinth System. Oceans 2025, 6, 10. [Google Scholar] [CrossRef]
- Valentini, N.; Balouin, Y. Assessment of a Smartphone-Based Camera System for Coastal Image Segmentation and Sargassum Monitoring. J. Mar. Sci. Eng. 2020, 8, 23. [Google Scholar] [CrossRef]
- Muñoz, D.F.; Muñoz, P.; Moftakhari, H.; Moradkhani, H. From Local to Regional Compound Flood Mapping with Deep Learning and Data Fusion Techniques. Sci. Total. Environ. 2021, 782, 146927. [Google Scholar] [CrossRef]
- Fogarin, S.; Zanetti, M.; Dal Barco, M.K.; Zennaro, F.; Furlan, E.; Torresan, S.; Pham, H.V.; Critto, A. Combining Remote Sensing Analysis with Machine Learning to Evaluate Short-Term Coastal Evolution Trend in the Shoreline of Venice. Sci. Total. Environ. 2023, 859, 160293. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A Novel Approach for Estimating and Predicting Uncertainty in Water Quality Index Model Using Machine Learning Approaches. Water Res. 2023, 229, 119422. [Google Scholar] [CrossRef]
- Wang, G.; Chen, H.; Jiang, S.; Han, H.; Qiao, J. Neurodynamics-Driven Prediction Model for State Evolution of Coastal Water Quality. IEEE Trans. Instrum. Meas. 2024, 73, 1–9. [Google Scholar] [CrossRef]
- Kamarajan, M.; Mohan, S.R.; Anusuya, S.; Sakthivel, D.; Gopirajan, P.V. Machine Learning Approach for Measuring Water Quality of Coastline and Estuaries in Chennai Coastal Area. Environ. Qual. Manag. 2024, 33, 179–191. [Google Scholar] [CrossRef]
- Stanic, S.; Wiggert, J.D.; Bernard, L.; McKenna, J.; Sunkara, V.; Braud, J.; Diercks, A. Coastal CUBEnet: An Integrated Observation and Modeling System for Sustainable Northern Gulf of Mexico Coastal Areas. Front. Mar. Sci. 2024, 11, 1400511. [Google Scholar] [CrossRef]
- Elnabwy, M.T.; Elbeltagi, E.; Banna, M.M.E.; Elsheikh, M.Y.; Motawa, I.; Hu, J.W.; Kaloop, M.R. Conceptual Prediction of Harbor Sedimentation Quantities Using AI Approaches to Support Integrated Coastal Structures Management. J. Ocean Eng. Sci. 2025, 10, 11–21. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R. Package for Multivariate Analysis. J. Stat. Soft. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Perez, J.C.; Santos, M.A.V.; Calliari, L.J. Numeric Modeling for Assessing Beach Profile Changes in Cassino Beach, RS, Brazil. In Proceedings of the Brazilian Symposium on Sandy Beaches: Morphodynamics, Ecology, Uses, Hazards and Management, Itajaí, Santa Catarina, Brazil, 3–6 September 2000; pp. 343–351. [Google Scholar]
- Van Rijn, L.C.; Walstra, D.J.R.; Grasmeijer, B.; Sutherland, J.; Pan, S.; Sierra, J.P. The Predictability of Cross-Shore Bed Evolution of Sandy Beaches at the Time Scale of Storms and Seasons Using Process-Bassied Profile Models. Coast. Eng. 2003, 47, 295–327. [Google Scholar] [CrossRef]
- Bergamasco, A.; De Nat, L.; Flindt, M.R.; Amos, C.L. Interactions and Feedbacks among Phytobenthos, Hydrodynamics, Nutrient Cycling and Sediment Transport in Estuarine Ecosystems. Cont. Shelf Res. 2003, 23, 1715–1741. [Google Scholar] [CrossRef]
- Van Prooijen, B.C.; Tissier, M.F.S.; De Wit, F.P.; Pearson, S.G.; Brakenhoff, L.B.; Van Maarseveen, M.C.G.; Van Der Vegt, M.; Mol, J.-W.; Kok, F.; Holzhauer, H.; et al. Measurements of Hydrodynamics, Sediment, Morphology and Benthos on Ameland Ebb-Tidal Delta and Lower Shoreface. Earth Syst. Sci. Data 2020, 12, 2775–2786. [Google Scholar] [CrossRef]
- Zhang, S.; Nielsen, P.; Perrochet, P.; Jia, Y. Multiscale Superposition and Decomposition of Field-Measured Suspended Sediment Concentrations: Implications for Extending 1DV Models to Coastal Oceans With Advected Fine Sediments. J. Geophys. Res. Oceans 2021, 126, e2020JC016474. [Google Scholar] [CrossRef]
- Stevens, A.W.; Moritz, H.R.; Elias, E.P.L.; Gelfenbaum, G.R.; Ruggiero, P.R.; Pearson, S.G.; McMillan, J.M.; Kaminsky, G.M. Monitoring and Modeling Dispersal of a Submerged Nearshore Berm at the Mouth of the Columbia River, USA. Coast. Eng. 2023, 181, 104285. [Google Scholar] [CrossRef]
- Zhang, S.; Nielsen, P.; Perrochet, P.; Xu, B.; Jia, Y.; Wen, M. Derivation of Settling Velocity, Eddy Diffusivity and Pick-up Rate from Field-Measured Suspended Sediment Concentration Profiles in the Horizontally Uniform but Vertically Unsteady Scenario. Appl. Ocean Res. 2021, 107, 102485. [Google Scholar] [CrossRef]
- Latif, S.D.; Chong, K.L.; Ahmed, A.N.; Huang, Y.F.; Sherif, M.; El-Shafie, A. Sediment Load Prediction in Johor River: Deep Learning versus Machine Learning Models. Appl. Water Sci. 2023, 13, 79. [Google Scholar] [CrossRef]
- Do, K.; Shin, S.; Cox, D.; Yoo, J. Numerical Simulation and Large-Scale Physical Modelling of Coastal Sand Dune Erosion. J. Coast. Res. 2018, 85, 196–200. [Google Scholar] [CrossRef]
- Galešić, M.; Andričević, R.; Divić, V.; Šakić Trogrlić, R. New Screening Tool for Obtaining Concentration Statistics of Pollution Generated by Rivers in Estuaries. Water 2018, 10, 639. [Google Scholar] [CrossRef]
- Mikkelsen, A.B.; Anderson, T.R.; Coats, S.; Fletcher, C.H. Complex Drivers of Reef-Fronted Beach Change. Mar. Geol. 2022, 446, 106770. [Google Scholar] [CrossRef]
- Kolovoyiannis, V.N.; Tsirtsis, G.E. Downscaling the Marine Modelling Effort: Development, Application and Assessment of a 3D Ecosystem Model Implemented in a Small Coastal Area. Estuar. Coast. Shelf Sci. 2013, 126, 44–60. [Google Scholar] [CrossRef]
- Deb, S.; Chakraborty, A. Simulating the Effects of Tidal Dynamics on the Biogeochemistry of the Hooghly Estuary. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 130–140. [Google Scholar] [CrossRef]
- Sivakholundu, K.M.; Vijaya, R.; Kiran, A.S.; Abhishek, T. Short Term Morphological Evolution of Sandy Beach and Possible Mitigation: A Case Study off Kadalur Periyakuppam. Indian J. Mar. Sci. 2014, 43, 1297–1305. [Google Scholar]
- De Pablo, H.; Sobrinho, J.; Garcia, M.; Campuzano, F.; Juliano, M.; Neves, R. Validation of the 3D-MOHID Hydrodynamic Model for the Tagus Coastal Area. Water 2019, 11, 1713. [Google Scholar] [CrossRef]
- Klonaris, G.; Van Eeden, F.; Verbeurgt, J.; Troch, P.; Constales, D.; Poppe, H.; De Wulf, A. ROMS Based Hydrodynamic Modelling Focusing on the Belgian Part of the Southern North Sea. J. Mar. Sci. Eng. 2021, 9, 58. [Google Scholar] [CrossRef]
- Ari Güner, H.A.; Yüksel, Y.; Çevik, E.Ö. Longshore Sediment Transport—Field Data and Estimations Using Neural Networks, Numerical Model, and Empirical Models. J. Coast. Res. 2013, 29, 311–324. [Google Scholar] [CrossRef]
- Mariani, P.; Benassai, G.; Grieco, L.; Stenberg, C.; Støttrup, J. Monitoring and Modelling Bio-Physical Parameters for Hypoxia Hazard in a Coastal Sand Pit. Sustainability 2018, 10, 785. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Mahammad Diganta, M.T.; Rahman, A.; Olbert, A.I. Robust Machine Learning Algorithms for Predicting Coastal Water Quality Index. J. Environ. Manag. 2022, 321, 115923. [Google Scholar] [CrossRef]
- Niu, J.; Feng, Z.; He, M.; Xie, M.; Lv, Y.; Zhang, J.; Sun, L.; Liu, Q.; Hu, B.X. Incorporating Marine Particulate Carbon into Machine Learning for Accurate Estimation of Coastal Chlorophyll-a. Mar. Pollut. Bull. 2023, 192, 115089. [Google Scholar] [CrossRef] [PubMed]
- Fontana, C.; Grenz, C.; Pinazo, C.; Marsaleix, P.; Diaz, F. Assimilation of SeaWiFS Chlorophyll Data into a 3D-Coupled Physical–Biogeochemical Model Applied to a Freshwater-Influenced Coastal Zone. Cont. Shelf Res. 2009, 29, 1397–1409. [Google Scholar] [CrossRef]
- Su, H.; Lu, X.; Chen, Z.; Zhang, H.; Lu, W.; Wu, W. Estimating Coastal Chlorophyll-A Concentration from Time-Series OLCI Data Based on Machine Learning. Remote Sens. 2021, 13, 576. [Google Scholar] [CrossRef]
- Różyński, G.; Reeve, D. Multi-Resolution Analysis of Nearshore Hydrodynamics Using Discrete Wavelet Transforms. Coast. Eng. 2005, 52, 771–792. [Google Scholar] [CrossRef]
- Suresh, P.K. Numerical Modelling and Measurement of Sediment Transport and Beach Profile Changes along Southwest Coast of India. J. Coast. Res. 2011, 27, 26. [Google Scholar] [CrossRef]
- Colvin, J.; Lazarus, S.; Splitt, M. Extracting Nearshore Wave Properties from Video: A New Method for Coastal Estuaries. Estuar. Coast. Shelf Sci. 2020, 246, 107053. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, Q.; Wang, H.; Wang, N.; Hu, K.; Capurso, W.; Niemoczynski, L.; Snedden, G. Modeling Surface Wave Dynamics in Upper Delaware Bay with Living Shorelines. Ocean Eng. 2023, 284, 115207. [Google Scholar] [CrossRef]
- Rao, V.R.; Ramu, K.; Dash, S.K.; Patra, S.; Vishnuvardhan, K.; Rao, V.D.; Mohan, R. A Study on Hydrodynamic Behaviour of SW Coast of India–Implication to Ecosystem Model. Procedia Eng. 2015, 116, 746–754. [Google Scholar] [CrossRef]
- Marfai, M.A.; Winastuti, R.; Wicaksono, A.; Mutaqin, B.W. Coastal Morphodynamic Analysis in Buleleng Regency, Bali—Indonesia. Nat. Hazards 2022, 111, 995–1017. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless Retrievals of Chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in Inland and Coastal Waters: A Machine-Learning Approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ferreira, P.M.; Almeida, L.P.; Dodet, G.; Psaros, F.; Andriolo, U.; Taborda, R.; Silva, A.N.; Ruano, A.; Ferreira, Ó.M. Performance of Intertidal Topography Video Monitoring of a Meso-Tidal Reflective Beach in South Portugal. Ocean Dyn. 2011, 61, 1521–1540. [Google Scholar] [CrossRef]
- Gao, G.D.; Wang, X.H.; Song, D.; Bao, X.; Yin, B.S.; Yang, D.Z.; Ding, Y.; Li, H.; Hou, F.; Ren, Z. Effects of Wave–Current Interactions on Suspended-Sediment Dynamics during Strong Wave Events in Jiaozhou Bay, Qingdao, China. J. Phys. Oceanogr. 2018, 48, 1053–1078. [Google Scholar] [CrossRef]
- Feng, J.; Chen, H.; Zhang, H.; Li, Z.; Yu, Y.; Zhang, Y.; Bilal, M.; Qiu, Z. Turbidity Estimation from GOCI Satellite Data in the Turbid Estuaries of China’s Coast. Remote Sens. 2020, 12, 3770. [Google Scholar] [CrossRef]
- Cronin, K.M.; Devoy, R.J.N.; Gault, J. Modelling Estuarine Morphodynamics on the South Coast of Ireland. J. Coast. Res. 2007, 50, 474–479. [Google Scholar] [CrossRef]
- Pinazo, C.; Bujan, S.; Douillet, P.; Fichez, R.; Grenz, C.; Maurin, A. Impact of Wind and Freshwater Inputs on Phytoplankton Biomass in the Coral Reef Lagoon of New Caledonia during the Summer Cyclonic Period: A Coupled Three-Dimensional Biogeochemical Modeling Approach. Coral Reefs 2004, 23, 281–296. [Google Scholar] [CrossRef]
- Park, K.; Jung, H.-S.; Kim, H.-S.; Ahn, S.-M. Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D): Application to Kwang-Yang Bay, Korea. Mar. Environ. Res. 2005, 60, 171–193. [Google Scholar] [CrossRef] [PubMed]
- Zi Chew, C.; Gourbesville, P.; Liong, S.-Y. 3D current characteristics simulation with ann. In Advances in Geosciences; World Scientific Publishing Company: Singapore, 2009; Volume 12, pp. 17–29. [Google Scholar]
- Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G. Development of a Three-Dimensional, Regional, Coupled Wave, Current, and Sediment-Transport Model. Comput. Geosci. 2008, 34, 1284–1306. [Google Scholar] [CrossRef]
- Zhang, Z.; Lowe, R.; Ivey, G.; Xu, J.; Falter, J. The Combined Effect of Transient Wind-driven Upwelling and Eddies on Vertical Nutrient Fluxes and Phytoplankton Dynamics along Ningaloo Reef, Western Australia. J. Geophys. Res. Oceans 2016, 121, 4994–5016. [Google Scholar] [CrossRef]
- Schmidt, M.; Eggert, A. Oxygen Cycling in the Northern Benguela Upwelling System: Modelling Oxygen Sources and Sinks. Prog. Oceanogr. 2016, 149, 145–173. [Google Scholar] [CrossRef]
- De Serio, F.; Mossa, M. Meteo and Hydrodynamic Measurements to Detect Physical Processes in Confined Shallow Seas. Sensors 2018, 18, 280. [Google Scholar] [CrossRef]
- Li, H.; Beck, T.M.; Moritz, H.R.; Groth, K.; Puckette, T.; Marsh, J. Sediment Tracer Tracking and Numerical Modeling at Coos Bay Inlet, Oregon. J. Coast. Res. 2019, 35, 4. [Google Scholar] [CrossRef]
- Gould, R.W.; Anderson, S.; Lewis, M.D.; Miller, W.D.; Shulman, I.; Smith, G.B.; Smith, T.A.; Wang, D.W.; Wijesekera, H.W. Assessing the Impact of Tides and Atmospheric Fronts on Submesoscale Physical and Bio-Optical Distributions near a Coastal Convergence Zone. Remote Sens. 2020, 12, 553. [Google Scholar] [CrossRef]
- Valipour, R.; León, L.F.; Howell, T.; Dove, A.; Rao, Y.R. Episodic Nearshore-Offshore Exchanges of Hypoxic Waters along the North Shore of Lake Erie. J. Great Lakes Res. 2021, 47, 419–436. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.P.; Zhu, Q.; Limaye, A.B.; Wu, H. Roles of Advection and Sediment Resuspension-Settling in the Turbidity Maximum Zone of the Changjiang Estuary, China. Cont. Shelf Res. 2021, 229, 104559. [Google Scholar] [CrossRef]
- Garlan, T.; Souffez, J.M.; Mauget, R.; Mazé, J.P.; Leballeur, L. A System of Models and Data Base for Short Term Beach Processes–ECORS Simulator. In Proceedings of the 11th International Coastal Symposium ICS2011, Szczecin, Poland, 9–13 May 2011; pp. 1033–1037. [Google Scholar]
- Ramírez-Mendoza, R.; Souza, A.J.; Amoudry, L.O. Modeling Flocculation in a Hypertidal Estuary. Ocean Dyn. 2014, 64, 301–313. [Google Scholar] [CrossRef]
- Welzel, M.; Schendel, A.; Schlurmann, T.; Hildebrandt, A. Volume-Based Assessment of Erosion Patterns around a Hydrodynamic Transparent Offshore Structure. Energies 2019, 12, 3089. [Google Scholar] [CrossRef]
- Sternberg, R. Sediment Transport in the Coastal Ocean: A Retrospective Evaluation of the Benthic Tripod and Its Impact, Past, Present, and Future. Sci. Mar. 2005, 69, 43–54. [Google Scholar] [CrossRef]
- Gharibreza, M.; Habibi, A.; Imamjomeh, S.R.; Ashraf, M.A. Coastal Processes and Sedimentary Facies in the Zohreh River Delta (Northern Persian Gulf). Catena 2014, 122, 150–158. [Google Scholar] [CrossRef]
- Ondara, K.; Rahmawan, G.A.; Gemilang, W.A.; Wisha, U.J.; Dhiauddin, R. Numerical Hydrodynamic Wave Modelling Using Spatial Discretization in Brebes Waters, Central Java, Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 257. [Google Scholar] [CrossRef]
- Silva, G.V.D.; Silva, P.G.D.; Araujo, R.S.; Klein, A.H.D.F.; Toldo, E.E., Jr. Wave Run-up on Embayed Beaches. Study Case: Itapocorói Bay, Southern Brazil. Braz. J. Oceanogr. 2017, 65, 187–200. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Kirupakaramoorthy, T.; Oumeraci, H.; De La Torre, M.; Wübbold, F.; Wagner, B.; Schimmels, S. The Role of Combined Laser Scanning and Video Techniques in Monitoring Wave-by-Wave Swash Zone Processes. Coast. Eng. 2014, 83, 150–165. [Google Scholar] [CrossRef]
- Petihakis, G.; Triantafyllou, G.; Korres, G.; Tsiaras, K.; Theodorou, A. Ecosystem Modelling: Towards the Development of a Management Tool for a Marine Coastal System Part-II, Ecosystem Processes and Biogeochemical Fluxes. J. Mar. Syst. 2012, 94, S49–S64. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument Imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. [Google Scholar] [CrossRef]
- Li, T.; Sun, G.; Yang, C.; Liang, K.; Ma, S.; Huang, L. Using Self-Organizing Map for Coastal Water Quality Classification: Towards a Better Understanding of Patterns and Processes. Sci. Total. Environ. 2018, 628–629, 1446–1459. [Google Scholar] [CrossRef]
- Pivato, M.; Carniello, L.; Viero, D.P.; Soranzo, C.; Defina, A.; Silvestri, S. Remote Sensing for Optimal Estimation of Water Temperature Dynamics in Shallow Tidal Environments. Remote Sens. 2019, 12, 51. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G.; Petton, S. Predicting Sea Surface Salinity in a Tidal Estuary with Machine Learning. Oceanologia 2023, 65, 318–332. [Google Scholar] [CrossRef]
- Kieu, H.T.; Pak, H.Y.; Trinh, H.L.; Pang, D.S.C.; Khoo, E.; Law, A.W.-K. UAV-Based Remote Sensing of Turbidity in Coastal Environment for Regulatory Monitoring and Assessment. Mar. Pollut. Bull. 2023, 196, 115482. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Guo, H.; Huang, J.J.; Tian, S.; Xu, W.; Mai, Y. An Ensemble Machine Learning Model for Water Quality Estimation in Coastal Area Based on Remote Sensing Imagery. J. Environ. Manag. 2022, 323, 116187. [Google Scholar] [CrossRef] [PubMed]
- Santini, F.; Alberotanza, L.; Cavalli, R.M.; Pignatti, S. A Two-Step Optimization Procedure for Assessing Water Constituent Concentrations by Hyperspectral Remote Sensing Techniques: An Application to the Highly Turbid Venice Lagoon Waters. Remote Sens. Environ. 2010, 114, 887–898. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Alikas, K.; Anstee, J.; Barbosa, C.; Binding, C.; Bresciani, M.; Cremella, B.; Giardino, C.; Gurlin, D.; et al. Simultaneous Retrieval of Selected Optical Water Quality Indicators from Landsat-8, Sentinel-2, and Sentinel-3. Remote Sens. Environ. 2022, 270, 112860. [Google Scholar] [CrossRef]
- Chang, N.-B.; Bai, K.; Chen, C.-F. Integrating Multisensor Satellite Data Merging and Image Reconstruction in Support of Machine Learning for Better Water Quality Management. J. Environ. Manag. 2017, 201, 227–240. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.H.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef]
- Cossarini, G.; Lermusiaux, P.F.J.; Solidoro, C. Lagoon of Venice Ecosystem: Seasonal Dynamics and Environmental Guidance with Uncertainty Analyses and Error Subspace Data Assimilation. J. Geophys. Res. 2009, 114, 2008JC005080. [Google Scholar] [CrossRef]
- Piton, V.; Herrmann, M.; Lyard, F.; Marsaleix, P.; Duhaut, T.; Allain, D.; Ouillon, S. Sensitivity Study on the Main Tidal Constituents of the Gulf of Tonkin by Using the Frequency-Domain Tidal Solver in T-UGOm. Geosci. Model Dev. 2020, 13, 1583–1607. [Google Scholar] [CrossRef]
- Khalykov, Y.; Lyy, Y.; Abitbayeva, A.; Togys, M.; Valeyev, A. Terrestrial laser scanning method for monitoring erosion of the southwestern shore of alakol lake. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Sofia, Bulgaria, 20 September 2020; pp. 117–130. [Google Scholar]
- Penne, C.; Garrett, J.L.; Johansen, T.A.; Orlandić, M.; Heggebø, R. Independent Component Analysis: A Tool for Algal Bloom Detection. In Proceedings of the 2023 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Athens, Greece, 31 October 2023; IEEE: New York, NY, USA; pp. 1–5.
- Noujas, V.; Thomas, K.V. Shoreline Management Plan for a Medium Energy Coast along West Coast of India. J. Coast. Conserv. 2018, 22, 695–707. [Google Scholar] [CrossRef]
- Abessolo, G.O.; Almar, R.; Bonou, F.; Bergsma, E. Error Proxies in Video-Based Depth Inversion: Temporal Celerity Estimation. J. Coast. Res. 2020, 95, 1101. [Google Scholar] [CrossRef]
- Bertocco, M.; Bertoni, D.; Peruzzi, G.; Pozzebon, A.; Sarti, G. Machine Learning Techniques Applied to RFID-Based Marine Sediment Tracking. In Proceedings of the 2023 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), La Valletta, Malta, 4 October 2023; IEEE: New York, NY, USA; pp. 427–432.
- Van Wiechen, P.P.J.; De Vries, S.; Reniers, A.J.H.M.; Aarninkhof, S.G.J. Dune Erosion during Storm Surges: A Review of the Observations, Physics and Modelling of the Collision Regime. Coast. Eng. 2023, 186, 104383. [Google Scholar] [CrossRef]
- O’Dea, A.; Brodie, K.L.; Hartzell, P. Continuous Coastal Monitoring with an Automated Terrestrial Lidar Scanner. J. Mar. Sci. Eng. 2019, 7, 37. [Google Scholar] [CrossRef]
- Fragoso, M.R.; Pellegrini, J.A.C.; Pessoa, M.E. Combining Remote Sensing, in Situ Data Collection and Numerical Forecasts for Enhancing Environmental Protection in Brazilian Amazonian Shelf. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS: Brussels, Belgium, 11 July 2021; IEEE: New York, NY, USA; pp. 6751–6753.
- Kang, B.; Duran Vinent, O. The Application of CNN-Based Image Segmentation for Tracking Coastal Erosion and Post-Storm Recovery. Remote Sens. 2023, 15, 3485. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, F. Mapping Marine Litter Using UAS on a Beach-Dune System: A Multidisciplinary Approach. Sci. Total. Environ. 2020, 706, 135742. [Google Scholar] [CrossRef]
- Huber, S.; Hansen, L.B.; Nielsen, L.T.; Rasmussen, M.L.; Sølvsteen, J.; Berglund, J.; Paz Von Friesen, C.; Danbolt, M.; Envall, M.; Infantes, E.; et al. Novel Approach to Large-Scale Monitoring of Submerged Aquatic Vegetation: A Nationwide Example from Sweden. Integr. Environ. Assess. Manag. 2021, 18, 909–920. [Google Scholar] [CrossRef]
- de Moura, J.E.; Scudelari, A.C.; Neves, C.F.; Amaro, V.E. Evaluation of the Influence of Digital Elevation Models on a Hydrodynamic Circulation Model. In Proceedings of the 11th International Coastal Symposium ICS2011, Szczecin, Poland, 9–13 May 2011; pp. 1140–1144. [Google Scholar]
- Cluzard, M.; Kazmiruk, T.N.; Kazmiruk, V.D.; Bendell, L.I. Intertidal Concentrations of Microplastics and Their Influence on Ammonium Cycling as Related to the Shellfish Industry. Arch. Env. Contam. Toxicol. 2015, 69, 310–319. [Google Scholar] [CrossRef]
- Park, H.S.; Sim, J.S.; Yoo, J.; Lee, D.Y. Breaking Wave Measurement Using Terrestrial LIDAR: Validation with Field Experiment on the Mallipo Beach. In Proceedings of the 11th International Coastal Symposium ICS2011, Szczecin, Poland, 9–13 May 2011; pp. 1718–1721. [Google Scholar]
- Beuzen, T.; Goldstein, E.B.; Splinter, K.D. Ensemble Models from Machine Learning: An Example of Wave Runup and Coastal Dune Erosion. Nat. Hazards Earth Syst. Sci. 2019, 19, 2295–2309. [Google Scholar] [CrossRef]
- Proisy, C.; Degenne, P.; Anthony, E.J.; Berger, U.; Blanchard, E.; Fromard, F.; Gardel, A.; Olagoke, A.; Santos, V.; Walcker, R.; et al. A Multiscale Simulation Approach for Linking Mangrove Dynamics to Coastal Processes Using Remote Sensing Observations. J. Coast. Res. 2016, 75, 810–814. [Google Scholar] [CrossRef]
- Gad, F.-K.; Hatiris, G.-A.; Loukaidi, V.; Dimitriadou, S.; Drakopoulou, P.; Sioulas, A.; Kapsimalis, V. Long-Term Shoreline Displacements and Coastal Morphodynamic Pattern of North Rhodes Island, Greece. Water 2018, 10, 849. [Google Scholar] [CrossRef]
- Park, S.J.; Achmad, A.R.; Syifa, M.; Lee, C.-W. Machine Learning Application for Coastal Area Change Detection in Gangwon Province, South Korea Using High-Resolution Satellite Imagery. J. Coast. Res. 2019, 90, 228. [Google Scholar] [CrossRef]
- Souza Filho, P.W.M.; Farias Martins, E.D.S.; Da Costa, F.R. Using Mangroves as a Geological Indicator of Coastal Changes in the Bragança Macrotidal Flat, Brazilian Amazon: A Remote Sensing Data Approach. Ocean Coast. Manag. 2006, 49, 462–475. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kalivas, D.P.; Griffiths, H.M.; Dimou, P.P. Remote Sensing and GIS Analysis for Mapping Spatio-Temporal Changes of Erosion and Deposition of Two Mediterranean River Deltas: The Case of the Axios and Aliakmonas Rivers, Greece. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 217–228. [Google Scholar] [CrossRef]
- Danilo, C.; Melgani, F. High-Coverage Satellite-Based Coastal Bathymetry through a Fusion of Physical and Learning Methods. Remote Sens. 2019, 11, 376. [Google Scholar] [CrossRef]
- Li, H.; Zhang, G.; Zhu, Y.; Kaufmann, H.; Xu, G. Inversion and Driving Force Analysis of Nutrient Concentrations in the Ecosystem of the Shenzhen-Hong Kong Bay Area. Remote Sens. 2022, 14, 3694. [Google Scholar] [CrossRef]
- Philipp, M.; Dietz, A.; Ullmann, T.; Kuenzer, C. Automated Extraction of Annual Erosion Rates for Arctic Permafrost Coasts Using Sentinel-1, Deep Learning, and Change Vector Analysis. Remote Sens. 2022, 14, 3656. [Google Scholar] [CrossRef]
- Teodoro, A.C.; Veloso-Gomes, F.; Gonçalves, H. Statistical Techniques for Correlating Total Suspended Matter Concentration with Seawater Reflectance Using Multispectral Satellite Data. J. Coast. Res. 2008, 4, 40–49. [Google Scholar] [CrossRef]
- McCall, R.T.; Masselink, G.; Poate, T.G.; Roelvink, J.A.; Almeida, L.P.; Davidson, M.; Russell, P.E. Modelling Storm Hydrodynamics on Gravel Beaches with XBeach-G. Coast. Eng. 2014, 91, 231–250. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward Reconstruction of 3D Surfaces and Topography with a Camera: Accuracy and Geoscience Application. J. Geophys. Res. 2012, 117, 2011JF002289. [Google Scholar] [CrossRef]
- Del Río, L.; Posanski, D.; Gracia, F.J.; Pérez-Romero, A.M. A Comparative Approach of Monitoring Techniques to Assess Erosion Processes on Soft Cliffs. Bull. Eng. Geol. Environ. 2020, 79, 1797–1814. [Google Scholar] [CrossRef]
- Cullen, N.D.; Verma, A.K.; Bourke, M.C. A Comparison of Structure from Motion Photogrammetry and the Traversing Micro-Erosion Meter for Measuring Erosion on Shore Platforms. Earth Surf. Dynam. 2018, 6, 1023–1039. [Google Scholar] [CrossRef]
- Flindt, M.R.; Rasmussen, E.K.; Valdemarsen, T.; Erichsen, A.; Kaas, H.; Canal-Vergés, P. Using a GIS-Tool to Evaluate Potential Eelgrass Reestablishment in Estuaries. Ecol. Model. 2016, 338, 122–134. [Google Scholar] [CrossRef]
- Bellafiore, D.; Umgiesser, G. Hydrodynamic Coastal Processes in the North Adriatic Investigated with a 3D Finite Element Model. Ocean Dyn. 2010, 60, 255–273. [Google Scholar] [CrossRef]
- Tuck, M.E.; Ford, M.R.; Masselink, G.; Kench, P.S. Physical Modelling of Reef Platform Hydrodynamics. J. Coast. Res. 2018, 85, 491–495. [Google Scholar] [CrossRef]
- Sunamura, T. A Fundamental Equation for Describing the Rate of Bedrock Erosion by Sediment-laden Fluid Flows in Fluvial, Coastal, and Aeolian Environments. Earth Surf. Process. Landf. 2018, 43, 3022–3041. [Google Scholar] [CrossRef]
- Wang, J.; You, Z.-J.; Liang, B. Laboratory Investigation of Coastal Beach Erosion Processes under Storm Waves of Slowly Varying Height. Mar. Geol. 2020, 430, 106321. [Google Scholar] [CrossRef]
- Wei, Z.; Davison, A. A Convolutional Neural Network Based Model to Predict Nearshore Waves and Hydrodynamics. Coast. Eng. 2022, 171, 104044. [Google Scholar] [CrossRef]
- Grasso, F.; Carlier, A.; Cugier, P.; Verney, R.; Marzloff, M. Influence of Crepidula Fornicata on Suspended Particle Dynamics in Coastal Systems: A Mesocosm Experimental Study. J. Ecohydraulics 2023, 8, 26–37. [Google Scholar] [CrossRef]
- Southwell, M.W.; Kieber, R.J.; Mead, R.N.; Brooks Avery, G.; Skrabal, S.A. Effects of Sunlight on the Production of Dissolved Organic and Inorganic Nutrients from Resuspended Sediments. Biogeochemistry 2010, 98, 115–126. [Google Scholar] [CrossRef]
- Oliveira, J.N.C.; Oliveira, F.S.B.F.; Neves, M.G.; Clavero, M.; Trigo-Teixeira, A.A. Modeling Wave Overtopping on a Seawall with XBeach, IH2VOF, and Mase Formulas. Water 2020, 12, 2526. [Google Scholar] [CrossRef]
- Weber De Melo, W.; Pinho, J.L.S.; Iglesias, I. Emulating the Estuarine Morphology Evolution Using a Deep Convolutional Neural Network Emulator Based on Hydrodynamic Results of a Numerical Model. J. Hydroinform. 2022, 24, 1254–1268. [Google Scholar] [CrossRef]
- Falcieri, F.M.; Benetazzo, A.; Sclavo, M.; Russo, A.; Carniel, S. Po River Plume Pattern Variability Investigated from Model Data. Cont. Shelf Res. 2014, 87, 84–95. [Google Scholar] [CrossRef]
- Papadimitriou, A.; Chondros, M.; Metallinos, A.; Tsoukala, V. Accelerating Predictions of Morphological Bed Evolution by Combining Numerical Modelling and Artificial Neural Networks. J. Mar. Sci. Eng. 2022, 10, 1621. [Google Scholar] [CrossRef]
- Rajindas, K.P.; Shashikala, A.P. Development of Hybrid Wave Transformation Methodology and Its Application on Kerala Coast, India. J. Earth Syst. Sci. 2021, 130, 103. [Google Scholar] [CrossRef]
- Nair, L.S.; Sundar, V.; Kurian, N.P. Longshore Sediment Transport along the Coast of Kerala in Southwest India. Procedia Eng. 2015, 116, 40–46. [Google Scholar] [CrossRef]
- Bolle, A.; Das Neves, L.; Smets, S.; Mollaert, J.; Buitrago, S. An Impact-Oriented Early Warning and Bayesian-Based Decision Support System for Flood Risks in Zeebrugge Harbour. Coast. Eng. 2018, 134, 191–202. [Google Scholar] [CrossRef]
- Xue, P.; Chen, C.; Qi, J.; Beardsley, R.C.; Tian, R.; Zhao, L.; Lin, H. Mechanism Studies of Seasonal Variability of Dissolved Oxygen in Mass Bay: A Multi-Scale FVCOM/UG-RCA Application. J. Mar. Syst. 2014, 131, 102–119. [Google Scholar] [CrossRef]
- Zhang, Y.; Chai, F.; Zhang, J.; Ding, Y.; Bao, M.; Yan, Y.; Li, H.; Yu, W.; Chang, L. Numerical Investigation of the Control Factors Driving Zhe-Min Coastal Current. Acta Oceanol. Sin. 2022, 41, 127–138. [Google Scholar] [CrossRef]
- Tian, R.; Cai, X.; Testa, J.M.; Brady, D.C.; Cerco, C.F.; Linker, L.C. Simulation of High-Frequency Dissolved Oxygen Dynamics in a Shallow Estuary, the Corsica River, Chesapeake Bay. Front. Mar. Sci. 2022, 9, 1058839. [Google Scholar] [CrossRef]
- Auguste, C.; Nader, J.-R.; Marsh, P.; Cossu, R.; Penesis, I. Variability of Sediment Processes around a Tidal Farm in a Theoretical Channel. Renew. Energy 2021, 171, 606–620. [Google Scholar] [CrossRef]
- Santos, V.M.; Wahl, T.; Long, J.W.; Passeri, D.L.; Plant, N.G. Combining Numerical and Statistical Models to Predict Storm-Induced Dune Erosion. J. Geophys. Res. Earth Surf. 2019, 124, 1817–1834. [Google Scholar] [CrossRef]
- Athanasiou, P.; Van Dongeren, A.; Giardino, A.; Vousdoukas, M.; Antolinez, J.A.A.; Ranasinghe, R. Estimating Dune Erosion at the Regional Scale Using a Meta-Model Based on Neural Networks. Nat. Hazards Earth Syst. Sci. 2022, 22, 3897–3915. [Google Scholar] [CrossRef]
- Masria, A.; Negm, A.; Iskander, M.; And, O.C.; Bek, M.A. Long-Term Numerical Simulation for Stability within the River Mouth; Case Study: Rosetta Promontory, Egypt. In Proceedings of the International Environmental Modelling and Software Society (iEMSs) 7th International Congress on Environmental Modelling and Software, San Diego, CA, USA, 15–19 January 2014. [Google Scholar] [CrossRef]
- Rijnsdorp, D.P.; Zijlema, M. Simulating Waves and Their Interactions with a Restrained Ship Using a Non-Hydrostatic Wave-Flow Model. Coast. Eng. 2016, 114, 119–136. [Google Scholar] [CrossRef]
- Franklin, G.L.; Torres-Freyermuth, A. On the Runup Parameterisation for Reef-Lined Coasts. Ocean Model. 2022, 169, 101929. [Google Scholar] [CrossRef]
- Ruiz Xomchuk, V.; Hetland, R.D.; Qu, L. Small-Scale Variability of Bottom Oxygen in the Northern Gulf of Mexico. J. Geophys. Res. Oceans 2021, 126, e2020JC016279. [Google Scholar] [CrossRef]
- Zhang, Z.; Lowe, R.; Falter, J.; Ivey, G. A Numerical Model of Wave- and Current-Driven Nutrient Uptake by Coral Reef Communities. Ecol. Model. 2011, 222, 1456–1470. [Google Scholar] [CrossRef]
- Liu, Q.; Anderson, E.J.; Zhang, Y.; Weinke, A.D.; Knapp, K.L.; Biddanda, B.A. Modeling Reveals the Role of Coastal Upwelling and Hydrologic Inputs on Biologically Distinct Water Exchanges in a Great Lakes Estuary. Estuar. Coast. Shelf Sci. 2018, 209, 41–55. [Google Scholar] [CrossRef]
- Deb, S.; Guyondet, T.; Coffin, M.R.S.; Barrell, J.; Comeau, L.A.; Clements, J.C. Effect of Inlet Morphodynamics on Estuarine Circulation and Implications for Sustainable Oyster Aquaculture. Estuar. Coast. Shelf Sci. 2022, 269, 107816. [Google Scholar] [CrossRef]
- Kowalewska-Kalkowska, H.; Kowalewski, M. Hydrological Forecasting in the Oder Estuary Using a Three-Dimensional Hydrodynamic Model. Hydrobiologia 2006, 554, 47–55. [Google Scholar] [CrossRef]
- Fei, K.; Du, H.; Gao, L. Accurate Water Level Predictions in a Tidal Reach: Integration of Physics-Based and Machine Learning Approaches. J. Hydrol. 2023, 622, 129705. [Google Scholar] [CrossRef]
- Primo De Siqueira, B.V.; Paiva, A.D.M. Using Neural Network to Improve Sea Level Prediction along the Southeastern Brazilian Coast. Ocean Model. 2021, 168, 101898. [Google Scholar] [CrossRef]
- Siegel, H.; Seifert, T.; Schernewski, G.; Gerth, M.; Ohde, T.; Reißmann, J.; Podsetchine, V. Discharge and Transport Processes along the German Baltic Sea Coast. Ocean Dyn. 2005, 55, 47–66. [Google Scholar] [CrossRef]
- Marinov, D.; Norro, A.; Zaldívar, J.-M. Application of COHERENS Model for Hydrodynamic Investigation of Sacca Di Goro Coastal Lagoon (Italian Adriatic Sea Shore). Ecol. Model. 2006, 193, 52–68. [Google Scholar] [CrossRef]
- Wenneker, I.; Van Dongeren, A.; Lescinski, J.; Roelvink, D.; Borsboom, M. A Boussinesq-Type Wave Driver for a Morphodynamical Model to Predict Short-Term Morphology. Coast. Eng. 2011, 58, 66–84. [Google Scholar] [CrossRef]
- Petton, S.; Garnier, V.; Caillaud, M.; Debreu, L.; Dumas, F. Using the Two-Way Nesting Technique AGRIF with MARS3D V11.2 to Improve Hydrodynamics and Estimate Environmental Indicators. Geosci. Model Dev. 2023, 16, 1191–1211. [Google Scholar] [CrossRef]
- Faure, V.; Pinazo, C.; Torréton, J.-P.; Douillet, P. Modelling the Spatial and Temporal Variability of the SW Lagoon of New Caledonia II: Realistic 3D Simulations Compared with in Situ Data. Mar. Pollut. Bull. 2010, 61, 480–502. [Google Scholar] [CrossRef] [PubMed]
- Blauw, A.N.; Los, H.F.J.; Bokhorst, M.; Erftemeijer, P.L.A. GEM: A Generic Ecological Model for Estuaries and Coastal Waters. Hydrobiologia 2009, 618, 175. [Google Scholar] [CrossRef]
- Deng, T.; Chau, K.-W.; Duan, H.-F. Machine Learning Based Marine Water Quality Prediction for Coastal Hydro-Environment Management. J. Environ. Manag. 2021, 284, 112051. [Google Scholar] [CrossRef] [PubMed]
- Derot, J.; Yajima, H.; Schmitt, F.G. Benefits of Machine Learning and Sampling Frequency on Phytoplankton Bloom Forecasts in Coastal Areas. Ecol. Inform. 2020, 60, 101174. [Google Scholar] [CrossRef]
- Virro, H.; Kmoch, A.; Vainu, M.; Uuemaa, E. Random Forest-Based Modeling of Stream Nutrients at National Level in a Data-Scarce Region. Sci. Total. Environ. 2022, 840, 156613. [Google Scholar] [CrossRef] [PubMed]
- Quang, N.H.; Dinh, N.T.; Dien, N.T.; Son, L.T. Calibration of Sentinel-2 Surface Reflectance for Water Quality Modelling in Binh Dinh’s Coastal Zone of Vietnam. Sustainability 2023, 15, 1410. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Q.; Song, Y.; Liu, J.; Yin, Y.; Hall, N.S. Temporal Prediction of Coastal Water Quality Based on Environmental Factors with Machine Learning. J. Mar. Sci. Eng. 2023, 11, 1608. [Google Scholar] [CrossRef]
- Lin, B.; Syed, M.; Falconer, R.A. Predicting Faecal Indicator Levels in Estuarine Receiving Waters—An Integrated Hydrodynamic and ANN Modelling Approach. Environ. Model. Softw. 2008, 23, 729–740. [Google Scholar] [CrossRef]
- Palani, S.; Liong, S.-Y.; Tkalich, P. An ANN Application for Water Quality Forecasting. Mar. Pollut. Bull. 2008, 56, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- Ghayas, S.; Sagheer Siddiquie, J.; Safdar, S.; Mansoor, A. Neural Network Implementations on the Coastal Water Quality of Manora Channel for the Years 1996 to 2014. Int. J. Circuits Syst. Signal Process. 2020, 14, 996–1004. [Google Scholar] [CrossRef]
- Kwong, I.H.Y.; Wong, F.K.K.; Fung, T. Automatic Mapping and Monitoring of Marine Water Quality Parameters in Hong Kong Using Sentinel-2 Image Time-Series and Google Earth Engine Cloud Computing. Front. Mar. Sci. 2022, 9, 871470. [Google Scholar] [CrossRef]
- Rostam, N.A.P.; Malim, N.H.A.H.; Abdullah, R.; Ahmad, A.L.; Ooi, B.S.; Chan, D.J.C. A Complete Proposed Framework for Coastal Water Quality Monitoring System With Algae Predictive Model. IEEE Access 2021, 9, 108249–108265. [Google Scholar] [CrossRef]
- Ahmadi, R.A.; Varasteh, T.; Silveira, C.B.; Walter, J.; Siegle, E.; Omachi, C.; De Rezende, C.E.; Francini-Filho, R.B.; Thompson, C.; Tschoeke, D.; et al. Machine Learning Sheds Light on Physical-Chemical and Biological Parameters Leading to Abrolhos Coral Reef Microbialization. Sci. Total. Environ. 2023, 891, 164465. [Google Scholar] [CrossRef]
- Liu, H.; Xu, K.; Li, B.; Han, Y.; Li, G. Sediment Identification Using Machine Learning Classifiers in a Mixed-Texture Dredge Pit of Louisiana Shelf for Coastal Restoration. Water 2019, 11, 1257. [Google Scholar] [CrossRef]
- Mu, D.; Yuan, D.; Feng, H.; Xing, F.; Teo, F.Y.; Li, S. Nutrient Fluxes across Sediment-Water Interface in Bohai Bay Coastal Zone, China. Mar. Pollut. Bull. 2017, 114, 705–714. [Google Scholar] [CrossRef]
- Elsner, P.; Dornbusch, U.; Thomas, I.; Amos, D.; Bovington, J.; Horn, D. Coincident Beach Surveys Using UAS, Vehicle Mounted and Airborne Laser Scanner: Point Cloud Inter-Comparison and Effects of Surface Type Heterogeneity on Elevation Accuracies. Remote Sens. Environ. 2018, 208, 15–26. [Google Scholar] [CrossRef]
- Wu, Y.; Falconer, R.; Lin, B. Modelling Trace Metal Concentration Distributions in Estuarine Waters. Estuar. Coast. Shelf Sci. 2005, 64, 699–709. [Google Scholar] [CrossRef]
- Ahmadian, R.; Falconer, R.A.; Bockelmann-Evans, B. Comparison of Hydro-Environmental Impacts for Ebb-Only and Two-Way Generation for a Severn Barrage. Comput. Geosci. 2014, 71, 11–19. [Google Scholar] [CrossRef]
- Gao, G.; Falconer, R.A.; Lin, B. Modelling the Fate and Transport of Faecal Bacteria in Estuarine and Coastal Waters. Mar. Pollut. Bull. 2015, 100, 162–168. [Google Scholar] [CrossRef]
- Huang, G.; Falconer, R.A.; Lin, B. Integrated Hydro-Bacterial Modelling for Predicting Bathing Water Quality. Estuar. Coast. Shelf Sci. 2017, 188, 145–155. [Google Scholar] [CrossRef]
- Lv, X.; Liu, B.; Yuan, D.; Feng, H.; Teo, F.-Y. Random Walk Method for Modeling Water Exchange: An Application to Coastal Zone Environmental Management. J. Hydro-Environ. Res. 2016, 13, 66–75. [Google Scholar] [CrossRef]







| Research Attribute | Description | Category |
|---|---|---|
| Year | Publication year of the studied papers | 2003–2008 |
| 2009–2013 | ||
| 2014–2018 | ||
| 2019–2023 | ||
| Country of Scientific Production | Total number of scientific publications produced by each country based on the institutional affiliations of all co-authors | 38 countries |
| Coastal Processes | Coastal hydro-environmental processes of the studied papers | Hydrodynamic |
| Sediment Transport | ||
| Biogeochemical Processes | ||
| Research Focus | Assessment method of the coastal hydro-environmental processes in the studied papers | Meteorological and Hydrodynamic Data Collection |
| Morphological Data Collection | ||
| Physical Model/Experiment | ||
| Numerical Model | ||
| Artificial Intelligence |
| Aspect | Conventional Methods | Modern Technologies |
|---|---|---|
| Data Collection | Manual field measurements (e.g., tide gauges) | Remote sensing (UAS, satellite, LiDAR), real-time sensors |
| Scale of Assessment | Local, small-scale | Regional to global scale through satellite data |
| Resolution | Low resolution, limited to surface observations | High-resolution (3D data, detailed bathymetry) |
| Computation | Simple empirical models or equations | Advanced numerical simulations, AI, machine learning-based forecasting |
| Accuracy | Moderate, prone to human Error and environmental limitations | High-accuracy, automated systems reduce uncertainties and support dynamic environments |
| Predictive Capabilities | Short-term predictions, localised focus | Long-term, multi-scenario modelling with real-time adaptability |
| Cost and Time | Labour-intensive, expensive, time-consuming | Efficient, automated, scalable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Q.X.; Teo, F.Y.; Selvarajoo, A.; Lim, S.P.; Goh, H.B.; Falconer, R.A. A Review of Assessment Methods for Coastal Hydro-Environmental Processes: Research Trends and Challenges. Water 2025, 17, 3278. https://doi.org/10.3390/w17223278
Lee QX, Teo FY, Selvarajoo A, Lim SP, Goh HB, Falconer RA. A Review of Assessment Methods for Coastal Hydro-Environmental Processes: Research Trends and Challenges. Water. 2025; 17(22):3278. https://doi.org/10.3390/w17223278
Chicago/Turabian StyleLee, Qian Xuan, Fang Yenn Teo, Anurita Selvarajoo, Sin Poh Lim, Hooi Bein Goh, and Roger A. Falconer. 2025. "A Review of Assessment Methods for Coastal Hydro-Environmental Processes: Research Trends and Challenges" Water 17, no. 22: 3278. https://doi.org/10.3390/w17223278
APA StyleLee, Q. X., Teo, F. Y., Selvarajoo, A., Lim, S. P., Goh, H. B., & Falconer, R. A. (2025). A Review of Assessment Methods for Coastal Hydro-Environmental Processes: Research Trends and Challenges. Water, 17(22), 3278. https://doi.org/10.3390/w17223278

