Forecasted Yield Responses of Carrot, Celeriac and Red Beet to Sprinkler Irrigation Under Climate Change in a Highly Water-Deficient Area of Central Poland
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grabarczyk, S. Efekty, potrzeby i możliwości nawodnień deszczownianych w różnych regionach kraju [Effects, needs and possibilities of sprinkler irrigation in various regions of the country]. Zesz. Probl. Postęp. Nauk Rol. 1987, 314, 49–64. [Google Scholar]
- Łabędzki, L. Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji [Agricultural droughts. Outline of the issues and methods of monitoring and classification]. Woda. Środowisko. Obsz. Wiej. 2006, 17, 1–107. [Google Scholar]
- Ostrowski, J. Atlas Niedoborów Wodnych Roślin Uprawnych i Użytków Zielonych w Polsce [Atlas of Water Shortages of Crops and Grasslands in Poland]; IMUZ: Falenty, Poland, 2008. [Google Scholar]
- Kowalik, P. Agrohydrologia obliczeniowa [Computational agrohydrology]. Monogr. Kom. Gospod. Wodnej PAN 2010, 33, 1–207. [Google Scholar]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Rolbiecki, R.; Rolbiecki, S. Prognozowanie efektów nawadniania roślin na podstawie wybranych wskaźników suszy meteorologicznej i rolniczej [Forecasting effects of plants irrigation based on selected meteorological and agricultural drought indices]. Annu. Set Environ. Prot. 2013, 15, 2185–2203. [Google Scholar]
- Dzieżyc, J.; Nowak, L. Deszczowanie [Sprinkler irrigation]. In Czynniki Plonotwórcze—Plonowanie Roślin [Yield-Forming Factors—Plant Yield]; Dzieżyc, J., Ed.; PWN: Warszawa-Wrocław, Poland, 1993; pp. 329–352. [Google Scholar]
- Rolbiecki, S.; Żarski, J.; Grabarczyk, S. Yield-irrigation relationships for field vegetable crops grown in Central Poland. Acta Hortic. 2000, 537, 867–870. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C.; Żarski, J. The influence of sprinkler irrigation on yields of some vegetable crops in the region of Bydgoszcz, Poland. Acta Hortic. 2000, 537, 871–877. [Google Scholar] [CrossRef]
- Stachowski, P.; Markiewicz, J. The need of irrigation in central Poland on the example of Kutno county. Annu. Set Environ. Prot. 2011, 13, 1453–1472. [Google Scholar]
- Łabędzki, L. Foreseen climate changes and irrigation development in Poland. Infrastruct. Ecol. Rural Areas 2009, 3, 7–18. [Google Scholar]
- Łabędzki, L. Expected development of irrigation in Poland in the context of climate change. J. Water Land Dev. 2009, 13, 17–29. [Google Scholar] [CrossRef]
- Parry, M.L. Assessment of Potential Effects and Adaptation for Climate Change in Europe: The Europe ACACIA Project; Jackson Environmental Institute, University of East Anglia: Norwich, UK, 2000. [Google Scholar]
- Kundzewicz, Z. Scenariusze zmian klimatu [Climate change scenarios]. In Czy Polsce grożą Katastrofy Klimatyczne? [Is Poland at Risk of Climate Disasters?]; PAN: Warszawa, Poland, 2003; pp. 14–31. [Google Scholar]
- Kundzewicz, Z. Projekcje zmian klimatu—Ekstrema hydrometeorologiczne [Climate change projections—Hydrometeorological extremes]. In Proceedings of the I Polish Conference ADAGIO, Poznań, Poland, 24 April 2007. [Google Scholar]
- Alcamo, J.; Moreno, J.M.; Nováky, B.; Hindi, M.; Corobov, R.; Devoy, R.J.N.; Giannakopoulos, C.; Martin, E.; Olesn, J.E.; Shvidenko, A. Europe Climate Change 2007. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 541–580. [Google Scholar]
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate models and their evaluation. In Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- European Environment Agency (EEA). Climate Change, Impacts and Vulnerability in Europe 2016; An indicator-baseed report; Publications Office of the European Union: Luxembourg, 2017; ISSN 1977-8449. Available online: https://www.eea.europa.eu/en/analysis/publications/climate-change-impacts-and-vulnerability-2016 (accessed on 12 September 2025).
- Bąk, B.; Łabędzki, L. Prediction of precipitation deficit and excess in Bydgoszcz region in view of predicted climate change. J. Water Land Dev. 2014, 23, 11–19. [Google Scholar] [CrossRef]
- Bąk, B.; Łabędzki, L. Thermal conditions in Bydgoszcz region in growing seasons 2011–2050 in view of expected climate change. J. Water Land Dev. 2014, 23, 21–29. [Google Scholar] [CrossRef]
- Wawer, R. Gospodarowanie wodą w rolnictwie w zmieniającym się klimacie. Perspektywa przejścia na rolnictwo nawadniane a sprawiedliwe i zrównoważone korzystanie z wód w świetle rozwiązań hiszpańskich i postępu w informatyce [Water management in agriculture in a changing climate. The prospect of transitioning to irrigated agriculture and equitable and sustainable water use in light of Spanish solutions and advances in information technology]. Pol. J. Agron. 2020, 41, 38–48. [Google Scholar]
- Marszelewski, M.; Piasecki, A. Legal and water management policy during climate warming in Poland. Bull. Geogr. Socio-Econom. Ser. 2021, 54, 63–75. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Jacob, D.; Teichmann, C.; Sobolowski, S.; Katragkou, E.; Anders, I.; Belda, M.; Benestad, R.; Boberg, F.; Buonomo, E.; Cardoso, R.M.; et al. Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Change 2020, 20, 51. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B. Impact of meteorological drought on crop water deficit and crop yield reduction in Polish agriculture. J. Water Land Dev. 2017, 34, 181. [Google Scholar] [CrossRef]
- Karaczun, Z.; Kozyra, J. Wpływ Zmiany Klimatu na Bezpieczeństwo Żywnościowe Polski [The Impact of Climate Change on Poland’s Food Security]; SGGW: Warszawa, Poland, 2020; p. 120. [Google Scholar]
- Heilemann, J.; Nagpal, M.; Werner, S.; Klauer, B.; Gawel, E.; Klassert, C. Scenario projections of future irrigation water demand for field crops in Germany considering farmers’ adaptive land use. Agric. Water Manag. 2025, 318, 109699. [Google Scholar] [CrossRef]
- Aslam, M.F.; Masia, S.; Spano, D.; Mereu, V.; Debolini, M.; Snyder, R.L.; Borgo, A.; Trabucco, A. Modelling crop water demand under climate change: The case of Sardinia region. Irrig. Sci. 2025, 43, 1681–1698. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Durán-Zuazo, V.H. Future of irrigation in agriculture in southern Europe. Agriculture 2022, 12, 820. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Baixauli, C.; Pascual-Seva, N. Deficit irrigation as a sustainable practice in improving irrigation water use efficiency in cauliflower under Mediterranean conditions. Agronomy 2019, 9, 732. [Google Scholar] [CrossRef]
- García-Garizábal, I.; Causapé, J.; Abrahao, R.; Merchan, D. Impact of climate change on Mediterranean irrigation demand: Historical dynamics of climate and future projections. Water Resour. Manag. 2014, 28, 1449–1462. [Google Scholar] [CrossRef]
- Riediger, J.; Breckling, B.; Svoboda, N.; Schröder, W. Modelling regional variability of irrigation requirements due to climate change in Northern Germany. Sci. Total Environ. 2016, 541, 329–340. [Google Scholar] [CrossRef]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvåg, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rötter, R.; Ana Iglesias, A.; Orlandini, S.; et al. Agroclimatic conditions in Europe under climate change. Glob. Change Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Rötter, R.P.; Brázdil, R.; Eitzinger, J.; Jansen, S.; Skjelvåg, A.O.; Peltonen-Sainio, P.; Hlavinka, P.; et al. Changing regional weather crop yield relationships across Europe between 1901 and 2012. Clim. Res. 2016, 70, 195–214. [Google Scholar] [CrossRef]
- Eitzinger, J.; Trnka, M.; Semerádová, D.; Thaler, S.; Svobodová, E.; Hlavinka, P.; Šiška, B.; Takác, J.; Malatinská, L.; Nováková, M.; et al. Regional climate change impacts on agricultural crop production in Central and Eastern Europe–hotspots, regional differences and common trends. J. Agric. Sci. 2012, 151, 787–812. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Niu, H. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Sci. Total Environ. 2019, 656, 373–387. [Google Scholar] [CrossRef]
- Singh, M.; Singh, P.; Singh, S.; Saini, R.K.; Angadi, S.V. A global meta-analysis of yield and water productivity responses of vegetables to deficit irrigation. Sci. Rep. 2021, 11, 22095. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Yang, Y.; Eeswaran, R.; Yang, Z.; Ma, Z.; Sun, F. Irrigation scheduling for potatoes (Solanum tuberosum L.) under drip irrigation in an arid region using AquaCrop model. Front. Plant Sci. 2023, 14, 1242074. [Google Scholar] [CrossRef]
- Grillakis, M.G. Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 2019, 660, 1245–1255. [Google Scholar] [CrossRef]
- Łabędzki, L. Actions and measures for mitigation drought and water scarcity in agriculture. J. Water Land Dev. 2016, 29, 3–10. [Google Scholar] [CrossRef]
- Kozyra, J.; Górski, T. Wpływ zmian klimatycznych na rolnictwo w Polsce [The impact of climate change on agriculture in Poland]. In Zmiany Klimatu, a Rolnictwo i Obszary Wiejskie [Climate Change and Agriculture and Rural Areas]; FDPA: Warszawa, Poland, 2008; pp. 35–40. [Google Scholar]
- Świtoniak, M.; Kabała, C.; Podlasiński, M.; Smreczak, B. Proposal of the correlation between cartographic units on the agricultural soil map and types and subtypes of Polish Soil Classification. Soil Sci. Annu. 2019, 70, 98–114. [Google Scholar] [CrossRef]
- Jadczyszyn, J.; Niedźwiecki, J.; Debaene, G. Analysis of agronomic categories in different soil texture classification systems. Pol. J. Soil Sci. 2017, 49, 61. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Klimada 2.0. Klimat Scenariusze [Climate Scenarios]. Available online: https://klimada2.ios.gov.pl/klimat-scenariusze-portal/ (accessed on 12 September 2025).
- Tabaszewski, J. Elementy Inżynierii Wodnej [Elements of Water Engineering]; AR-T: Olsztyn, Poland, 1980; pp. 1–189. [Google Scholar]
- Żakowicz, S.; Hewelke, P.; Gnatowski, T. Podstawy Infrastruktury Technicznej w Przestrzeni Produkcyjnej [Basics of Technical Infrastructure in the Production Space]; SGGW: Warszawa, Poland, 2009; pp. 1–192. [Google Scholar]
- Grabarczyk, S.; Rytelewski, J.; Kasinska, D.; Rybak, A. Efekty deszczowania niektórych roślin w warunkach Żuław [Irrigation effects of certain farm crops under Żuławy conditions]. Zesz. Probl. Postęp. Nauk Rol. 1986, 268, 525–533. [Google Scholar]
- Platt, C. Probability Theory and Mathematical Statistics; PWN: Warszawa, Poland, 1978. [Google Scholar]
- Rolbiecki, R.; Rolbiecki, S. Effects of micro-irrigation systems on lettuce and radish production. Acta Hortic. 2007, 729, 331–335. [Google Scholar] [CrossRef]
- Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Figas, A.; Ptach, W. Effect of sprinkler irrigation on yield increasing of carrot roots obtained in cultivation on light soil in different regions of Poland. Eng. Rural Dev. 2019, 18, 1135–1139. [Google Scholar]
- Kaniszewski, S.; Knaflewski, M. The results of studies on water requirement and effectiveness of the irrigation of vegetable crops in Poland. In Proceedings of the Poland–Israel Conference on “Water Requirements and Irrigation Effects of Plants Cultivated in Arid and Semiarid Climates”, Tel Aviv, Israel, 5–16 December 1997; Volume 2, pp. 103–110. [Google Scholar]
- Grabarczyk, S.; Peszek, J.; Rzekanowski, C.; Zarski, J. Rejonizacja potrzeb deszczowania w Krainie Wielkich Dolin [Regionalization of sprinkler irrigation requirements in the zone of Big Valleys]. Zesz. Probl. Postęp. Nauk Rol. 1990, 387, 73–87. [Google Scholar]
- Kaca, E. Methodology of assessing the relative environmental validity of developing drainage and irrigation on a regional scale. J. Water Land Dev. 2017, 35, 101–112. [Google Scholar] [CrossRef]
- Kaca, E.; Rek-Kaca, G. Relative nature of the development of irrigation in the scale of provinces in Poland. In Proceedings of the Symposium on Plant Irrigation “Irrigation of Plants in the Light of Sustainable Rural Development—Natural, Production and Technical and Infrastructural Aspects”, Bydgoszcz-Fojutowo, Poland, 11–14 June 2019; pp. 33–35. [Google Scholar]
- Rolbiecki, R.; Rolbiecki, S.; Piszczek, P.; Figas, A.; Jagosz, B.; Ptach, W.; Prus, P.; Kazula, M.J. Impact of nitrogen fertigation on watermelon yield grown on the very light soil in Poland. Agronomy 2020, 10, 213. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Prus, P.; Stachowski, P.; Kazula, M.J.; Szczepanek, M.; Ptach, W.; Pal-Fam, F.; et al. Response of chosen American Asparagus officinalis L. cultivars to drip irrigation on the sandy soil in central Europe: Growth, yield, and water productivity. Agronomy 2021, 11, 864. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Sadan, H.; Rolbiecki, S.; Jagosz, B.; Szczepanek, M.; Figas, A.; Atilgan, A.; Pal-Fam, F.; Pańka, D. Effect of subsurface drip fertigation with nitrogen on the yield of asparagus grown for the green spears on a light soil in central Poland. Agronomy 2022, 12, 241. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Kuśmierek-Tomaszewska, R.; Żarski, J.; Jagosz, B.; Kasperska-Wołowicz, W.; Sadan, H.; Łangowski, A. Influence of forecast climate changes on water needs of Jerusalem artichoke grown in the Kuyavia region in Poland. Energies 2023, 16, 533. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Jagosz, B.; Rolbiecki, R.; Kuśmierek-Tomaszewska, R. Climate-Induced Water Management Challenges for Cabbage and Carrot in Southern Poland. Sustainability 2025, 17, 6975. [Google Scholar] [CrossRef]
- Żarski, J.; Kuśmierek-Tomaszewska, R.; Dudek, S. Impact of irrigation and fertigation on the yield and quality of sugar beet in a moderate climate. Agronomy 2020, 10, 166. [Google Scholar] [CrossRef]
- Duffková, R.; Holub, J.; Fučík, P.; Rožnovský, J.; Novotný, I. Long-term water balance of selected field crops in different agricultural regions of the Czech Republic using FAO-56 and soil hydrological approaches. Sustainability 2019, 11, 5243. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 2011, 109, 33. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 2011, 109, 77. [Google Scholar] [CrossRef]
- Mantel, S.; Dondeyne, S.; Deckers, S. World reference base for soil resources (WRB). Encl. Soils Environ. 2023, 4, 206–217. [Google Scholar]
- Ahmad, Q.U.A.; Moors, E.; Biemans, H.; Shaheen, N.; Masih, I.; ur Rahman Hashmi, M.Z. Climate-induced shifts in irrigation water demand and supply during sensitive crop growth phases in South Asia. Clim. Change 2023, 176, 150. [Google Scholar] [CrossRef]
- Schmidt, N.; Zinkernagel, J. Crop coefficients and irrigation demand in response to climate-change-induced alterations in phenology and growing season of vegetable crops. Climate 2024, 12, 161. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; Irrigation and Drainage Paper 33; FAO: Rome, Italy, 1979; p. 257. [Google Scholar]
- Reid, J.B.; Gillespie, R.N. Yield and quality responses of carrots (Daucus carota L.) to water deficits. N. Z. J. Crop Hortic. Sci. 2017, 45, 299–312. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; FAO: Rome, Italy, 2012; Volume 1028, p. 99. [Google Scholar]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Brief history of agricultural systems modeling. Agric. Syst. 2017, 155, 240–254. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Hajirad, I.; Ahmadaali, K.; Liaghat, A. Crop yield and water productivity modeling using nonlinear growth functions. Sci. Rep. 2025, 15, 30087. [Google Scholar] [CrossRef]
- Shawon, S.M.; Ema, F.B.; Mahi, A.K.; Niha, F.L.; Zubair, H.T. Crop yield prediction using machine learning: An extensive and systematic literature review. Smart Agric. Technol. 2024, 10, 100718. [Google Scholar] [CrossRef]
- Garofalo, P.; Riccardi, M.; Di Tommasi, P.; Tedeschi, A.; Rinaldi, M.; De Lorenzi, F. Aquacrop model to optimize water supply for a sustainable processing tomato cultivation in the Mediterranean Area: A multi-objective approach. Agric. Syst. 2025, 223, 104198. [Google Scholar] [CrossRef]
- Dang, C.; Zhang, H.; Yao, C.; Mu, D.; Lyu, F.; Zhang, Y.; Zhang, S. IWRAM: A hybrid model for irrigation water demand forecasting to quantify the impacts of climate change. Agric. Water Manag. 2024, 291, 108643. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Piniewski, M.; Okruszko, T. Towards sustainable agricultural water management in Poland–How to meet water demand for supplemental irrigation? Agric. Water Manag. 2024, 306, 109214. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.R.; Liu, D.L.; Macadam, I.; Kelly, G. Adapting agriculture to climate change: A review. Theor. Appl. Climatol. 2013, 113, 225–245. [Google Scholar] [CrossRef]
- Ignaciuk, A.; Mason-D’Croz, D. Modelling Adaptation to Climate Change in Agriculture; OECD Food, Agriculture and Fisheries Papers 70; OECD Publishing: Paris, France, 2014. [Google Scholar]
- Niles, M.T.; Lubell, M.; Brown, M. How limiting factors drive agricultural adaptation to climate change. Agric. Ecosyst. Environ. 2015, 200, 178–185. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change 2017, 140, 33–45. [Google Scholar] [CrossRef]
- Masud, M.M.; Azam, M.N.; Mohiuddin, M.; Banna, H.; Akhtar, R.; Alam, A.F.; Begum, H. Adaptation barriers and strategies towards climate change: Challenges in the agricultural sector. J. Clean. Prod. 2017, 156, 698–706. [Google Scholar] [CrossRef]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]


| Species | Critical Water Demand Period | Regression Equation |
|---|---|---|
| Carrot | 1 May–31 July (V–VII) | Q = 294 (242 − PV–VII) |
| Celeriac | 1 July–31 August (VII–VIII) | Q = 177 (190 − PVII–VIII) |
| Red Beet | 1 July–31 August (VII–VIII) | Q = 81 (225 − PVII–VIII) |
| Statistical Description | County | |||||||
|---|---|---|---|---|---|---|---|---|
| Gniezno | Słupca | Wągrowiec | Września | |||||
| RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | |
| Carrot | ||||||||
| Minimum (t ha−1) | 1.9 | −2.3 | −1.7 | −4.1 | 3.5 | −1.7 | 5.0 | −0.7 |
| Maximum (t ha−1) | 9.4 | 7.6 | 5.9 | 5.9 | 10.3 | 8.1 | 11.7 | 9.6 |
| Mean (t ha−1) | 6.1 | 3.6 | 3.3 | 1.8 | 7.0 | 4.0 | 8.5 | 5.4 |
| Median (t ha−1) | 6.0 | 3.2 | 3.2 | 1.6 | 6.9 | 3.6 | 8.7 | 5.5 |
| Standard Deviation (t ha−1) | 2.422 | 3.204 | 2.535 | 3.325 | 2.467 | 3.031 | 2.407 | 3.095 |
| Variability Coefficient (%) | 39.9 | 89.0 | 76.8 | 186.2 | 35.3 | 76.3 | 28.4 | 56.9 |
| Celeriac | ||||||||
| Minimum (t ha−1) | 6.4 | 5.8 | 5.9 | 5.7 | 6.6 | 5.7 | 6.8 | 5.9 |
| Maximum (t ha−1) | 7.2 | 6.9 | 6.8 | 6.9 | 7.5 | 6.9 | 7.7 | 7.2 |
| Mean (t ha−1) | 6.8 | 6.5 | 6.3 | 6.3 | 7.0 | 6.4 | 7.2 | 6.7 |
| Median (t ha−1) | 6.8 | 6.5 | 6.2 | 6.3 | 7.0 | 6.5 | 7.2 | 6.8 |
| Standard Deviation (t ha−1) | 0.250 | 0.451 | 0.307 | 0.397 | 0.261 | 0.482 | 0.294 | 0.465 |
| Variability Coefficient (%) | 3.7 | 7.0 | 4.9 | 6.3 | 3.7 | 7.5 | 4.1 | 7.0 |
| Red Beet | ||||||||
| Minimum (t ha−1) | 7.8 | 6.5 | 6.6 | 6.3 | 8.3 | 6.2 | 8.6 | 6.8 |
| Maximum (t ha−1) | 9.6 | 9.0 | 8.7 | 8.9 | 10.2 | 8.9 | 10.7 | 9.6 |
| Mean (t ha−1) | 8.6 | 7.9 | 7.5 | 7.5 | 9.1 | 7.9 | 9.5 | 8.4 |
| Median (t ha−1) | 8.6 | 8.1 | 7.3 | 7.6 | 9.1 | 8.0 | 9.5 | 8.7 |
| Standard Deviation (t ha−1) | 0.547 | 0.985 | 0.672 | 0.868 | 0.570 | 1.053 | 0.642 | 1.017 |
| Variability Coefficient (%) | 6.4 | 12.4 | 8.9 | 11.6 | 6.3 | 13.4 | 6.7 | 12.1 |
| Year Category | Probability of Precipitation Occurrence (p) | Climate Change Scenario | |||
|---|---|---|---|---|---|
| RCP 4.5 | RCP 8.5 | ||||
| Gniezno County | |||||
| Normal | 50% | 6.1 | 100% | 3.6 | 100% |
| Medium Dry | 25% | 19.1 | 313% | 17.1 | 475% |
| Very Dry | 10% | 25.6 | 420% | 23.9 | 664% |
| Słupca County | |||||
| Normal | 50% | 8.5 | 100% | 5.4 | 100% |
| Medium Dry | 25% | 21.0 | 247% | 18.6 | 344% |
| Very Dry | 10% | 27.3 | 321% | 25.1 | 465% |
| Wągrowiec County | |||||
| Normal | 50% | 3.3 | 100% | 1.8 | 100% |
| Medium Dry | 25% | 16.9 | 512% | 15.7 | 872% |
| Very Dry | 10% | 23.7 | 718% | 22.6 | 1255% |
| Września County | |||||
| Normal | 50% | 7.0 | 100% | 4.0 | 100% |
| Medium Dry | 25% | 19.8 | 283% | 17.4 | 435% |
| Very Dry | 10% | 26.2 | 374% | 24.1 | 602% |
| Year Category | Probability of Precipitation Occurrence (p) | Climate Change Scenario | |||
|---|---|---|---|---|---|
| RCP 4.5 | RCP 8.5 | ||||
| Gniezno County | |||||
| Normal | 50% | 6.8 | 100% | 6.5 | 100% |
| Medium Dry | 25% | 9.1 | 134% | 8.8 | 135% |
| Very Dry | 10% | 10.2 | 150% | 10.0 | 154% |
| Słupca County | |||||
| Normal | 50% | 7.2 | 100% | 6.7 | 100% |
| Medium Dry | 25% | 9.4 | 131% | 9.0 | 134% |
| Very Dry | 10% | 10.5 | 146% | 10.1 | 151% |
| Wągrowiec County | |||||
| Normal | 50% | 6.3 | 100% | 6.3 | 100% |
| Medium Dry | 25% | 8.7 | 138% | 8.7 | 138% |
| Very Dry | 10% | 9.9 | 157% | 9.9 | 157% |
| Września County | |||||
| Normal | 50% | 7.0 | 100% | 6.4 | 100% |
| Medium Dry | 25% | 9.2 | 131% | 8.8 | 138% |
| Very Dry | 10% | 10.4 | 149% | 10.0 | 156% |
| Year Category | Probability of Precipitation Occurrence (p) | Climate Change Scenario | |||
|---|---|---|---|---|---|
| RCP 4.5 | RCP 8.5 | ||||
| Gniezno County | |||||
| Normal | 50% | 8.6 | 100% | 7.9 | 100% |
| Medium Dry | 25% | 13.6 | 158% | 13.1 | 166% |
| Very Dry | 10% | 16.1 | 187% | 15.6 | 197% |
| Słupca County | |||||
| Normal | 50% | 9.5 | 100% | 8.4 | 100% |
| Medium Dry | 25% | 14.3 | 151% | 13.5 | 161% |
| Very Dry | 10% | 16.8 | 177% | 16.0 | 190% |
| Wągrowiec County | |||||
| Normal | 50% | 7.5 | 100% | 7.5 | 100% |
| Medium Dry | 25% | 12.7 | 169% | 12.7 | 169% |
| Very Dry | 10% | 15.4 | 205% | 15.3 | 204% |
| Września County | |||||
| Normal | 50% | 9.1 | 100% | 7.9 | 100% |
| Medium Dry | 25% | 14.0 | 154% | 13.0 | 164% |
| Very Dry | 10% | 16.5 | 181% | 15.6 | 197% |
| Species | Climate Change Scenario | |||
|---|---|---|---|---|
| RCP 4.5 | RCP 8.5 | |||
| Gniezno County | ||||
| Carrot | y = −0.2342x + 7.1211 | ↓ | y = −1.1046x + 8.5722 | ↓ |
| Celeriac | y = −0.01x + 6.8147 | ↓ | y = −0.0722x + 6.7858 | ↓ |
| Red Beet | y = −0.0219x + 8.6964 | ↓ | y = −0.1578x + 8.6332 | ↓ |
| Słupca County | ||||
| Carrot | y = −0.4483x + 10.481 | ↓ | y = −1.0658x + 10.231 | ↓ |
| Celeriac | y = −0.0781x + 7.5423 | ↓ | y = −0.0827x + 7.0609 | ↓ |
| Red Beet | y = −0.1707x + 10.286 | ↓ | y = −0.1707x + 10.286 | ↓ |
| Wągrowiec County | ||||
| Carrot | y = −0.0798x + 3.6593 | ↓ | y = −1.1452x + 6.9395 | ↓ |
| Celeriac | y = 0.0156x + 6.2072 | ↑ | y = −0.0964x + 6.6993 | ↓ |
| Red Beet | y = 0.0341x + 7.3689 | ↑ | y = −0.2107x + 8.4442 | ↓ |
| Września County | ||||
| Carrot | y = −0.4186x + 8.8736 | ↓ | y = −1.0749x + 8.8095 | ↓ |
| Celeriac | y = −0.0628x + 7.2839 | ↓ | y = −0.0938x + 6.8546 | ↓ |
| Red Beet | y = −0.1372x + 9.7217 | ↓ | y = −0.205x + 8.7836 | ↓ |
| Species | Climate Change Scenario | |
|---|---|---|
| RCP 4.5 | RCP 8.5 | |
| Gniezno County | ||
| Carrot | 0.237 | 0.845 ** |
| Celeriac | 0.098 | 0.393 |
| Red Beet | 0.098 | 0.393 |
| Słupca County | ||
| Carrot | 0.456 | 0.843 ** |
| Celeriac | 0.651 * | 0.435 |
| Red Beet | 0.651 * | 0.651 |
| Wągrowiec County | ||
| Carrot | 0.077 | 0.844 ** |
| Celeriac | 0.124 | 0.595 |
| Red Beet | 0.124 | 0.595 |
| Września County | ||
| Carrot | 0.416 | 0.869 ** |
| Celeriac | 0.589 | 0.477 |
| Red Beet | 0.589 | 0.477 |
| Species | County | |||||||
|---|---|---|---|---|---|---|---|---|
| Gniezno | Słupca | Wągrowiec | Września | |||||
| RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | |
| Carrot | 20.6–87.0 | 12.3–81.2 | 28.8–92.8 | 18.5–85.5 | 11.2–80.5 | 6.1–76.9 | 23.8–89.2 | 13.5–82.1 |
| Celeriac | 48.6–91.0 | 44.8–88.3 | 53.8–94.6 | 47.6–90.3 | 42.5–86.8 | 42.4–86.6 | 51.4–93.0 | 44.4–88.1 |
| Red Beet | 83.6–126.0 | 79.8–123.3 | 88.8–129.6 | 82.6–125.3 | 77.5–121.8 | 77.4–121.6 | 86.4–128.0 | 79.4–123.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolbiecki, S.; Kuśmierek-Tomaszewska, R.; Żarski, J.; Jagosz, B.; Rolbiecki, R. Forecasted Yield Responses of Carrot, Celeriac and Red Beet to Sprinkler Irrigation Under Climate Change in a Highly Water-Deficient Area of Central Poland. Water 2025, 17, 3239. https://doi.org/10.3390/w17223239
Rolbiecki S, Kuśmierek-Tomaszewska R, Żarski J, Jagosz B, Rolbiecki R. Forecasted Yield Responses of Carrot, Celeriac and Red Beet to Sprinkler Irrigation Under Climate Change in a Highly Water-Deficient Area of Central Poland. Water. 2025; 17(22):3239. https://doi.org/10.3390/w17223239
Chicago/Turabian StyleRolbiecki, Stanisław, Renata Kuśmierek-Tomaszewska, Jacek Żarski, Barbara Jagosz, and Roman Rolbiecki. 2025. "Forecasted Yield Responses of Carrot, Celeriac and Red Beet to Sprinkler Irrigation Under Climate Change in a Highly Water-Deficient Area of Central Poland" Water 17, no. 22: 3239. https://doi.org/10.3390/w17223239
APA StyleRolbiecki, S., Kuśmierek-Tomaszewska, R., Żarski, J., Jagosz, B., & Rolbiecki, R. (2025). Forecasted Yield Responses of Carrot, Celeriac and Red Beet to Sprinkler Irrigation Under Climate Change in a Highly Water-Deficient Area of Central Poland. Water, 17(22), 3239. https://doi.org/10.3390/w17223239

