Insights from Hydro-Economic Modeling for Climate Resilience in the Nazas–Aguanaval Watershed in Mexico
Abstract
1. Introduction
2. Methods
2.1. Study Area and Comparative Context
2.2. Hydro-Economic Model
2.3. Blaney–Criddle Computation
2.4. Positive Mathematical Programming (PMP)
3. Results
3.1. Scenario 1: Only Water and Land Restrictions (WL)
3.2. Scenario 2: 2021 Observed Forage Production (WLF)
3.3. Scenario 3: Increasing Forage Production (WLFF_200, WLFF_225, WLFF_250, WLFF_275, WLFF_300)
3.4. Scenario 4: Fixing Nut Production (WLFN)
3.5. Scenario 5: Fixing Nut and Alfalfa Production (WLFNA)
3.6. Scenario 6: Increasing Efficiency of the Water District (WLFNAE_60, WLFNAE_65, WLFNAE_70)
3.7. Scenario 7: Increasing Crop Yield (WLFNAY_5, WLFNAY_10, WLFNAY_15, WLFNAY_20)
4. Discussion
Limitations and Further Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mojid, M.A.; Mainuddin, M. Water-saving agricultural technologies: Regional hydrology outcomes and knowledge gaps in the Eastern Gangetic Plains—A review. Water 2021, 13, 636. [Google Scholar] [CrossRef]
- Viana, F.J.; Cunha, F.F.D.; Rocha, M.O.; Oliveira, J.T. Water rationalization in Brazilian irrigated agriculture. Agron. Sci. Biotechnol. 2022, 8, 1–15. [Google Scholar] [CrossRef]
- Tsagkoudis, D.; Zafeiriou, E.; Spinthiropoulos, K. Spatial and economic-based clustering of Greek irrigation water organizations: A data-driven framework for sustainable water pricing and policy reform. Water 2025, 17, 2242. [Google Scholar] [CrossRef]
- Mu, L.; Wang, Y.; Xue, B. The impacts of agricultural water pricing on sustainable agricultural production. Water Resour. Manag. 2024. [Google Scholar] [CrossRef]
- Medellín-Azuara, J.; Harou, J.J.; Howitt, R.E. Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation. Sci. Total Environ. 2010, 408, 5639–5648. [Google Scholar] [CrossRef] [PubMed]
- Chand, P.; Singh, J.M.; Sachdeva, J.; Singh, J.; Agarwal, P.; Jain, R.; Rao, S.; Kaur, B. Irrigation water policies for sustainable groundwater management in irrigated northwestern plains of India. Curr. Sci. 2022, 123, 1225. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Y.; Wu, F. Can water price improve water productivity? A water-economic-model-based study in Heihe River Basin, China. Sustainability 2022, 14, 6224. [Google Scholar] [CrossRef]
- Yao, J.; Berbel, J.; Yang, Z.; Wang, H.; Martínez-Dalmau, J. Application of positive mathematical programming (PMP) in sustainable water resource management: A case study of Hetao Irrigation District, China. Water 2025, 17, 2598. [Google Scholar] [CrossRef]
- Li, G.; Ma, D. Can a tiered water price policy improve the technical efficiency of crop irrigation for maize in the Heihe River Basin in Northwest China? Agric. Water Manag. 2025, 309, 109350. [Google Scholar] [CrossRef]
- Nikbakhsh, F.; Sabuhi Sabuni, M. Effects of trade liberalization policies on water resource management through the concept of water shadow price: Application of the DCGE model. Water Supply 2025, 25, 1001–1015. [Google Scholar] [CrossRef]
- Yang, X.; Hou, M.; Zhang, W.; Ju, Y.; Wang, Z. Optimization of agricultural water price setting strategy and government subsidy mechanisms based on game analysis. Agric. Water Manag. 2025, 319, 109814. [Google Scholar] [CrossRef]
- Dorjderem, B.; Torres-Martínez, J.A.; Mahlknecht, J. Intensive long-term pumping in the Principal-Lagunera Region aquifer (Mexico) causing heavy impact on groundwater quality. Energy Rep. 2020, 6, 862–867. [Google Scholar] [CrossRef]
- DWR. California’s Groundwater Update 2020. 2021. Available online: https://cawaterlibrary.net/wp-content/uploads/2021/05/calgw2020_chapters1_6.pdf (accessed on 28 October 2025).
- Mahlknecht, J.; Aguilar-Barajas, I.A.; Farias, P.; Knappett, P.S.K.; Torres-Martínez, J.A.; Hoogesteger, J.; Lara, R.H.; Ramírez-Mendoza, R.A.; Mora, A. Hydrochemical controls on arsenic contamination and its health risks in the Comarca Lagunera region (Mexico): Implications of the scientific evidence for public health policy. Sci. Total Environ. 2023, 857, 159347. [Google Scholar] [CrossRef]
- Smith, R.; Knight, R.; Fendorf, S. Overpumping leads to California groundwater arsenic threat. Nat. Commun. 2018, 9, 2089. [Google Scholar] [CrossRef] [PubMed]
- Matthews, W.A.; Sumner, D.A. Contributions of the California Dairy Industry to the California Economy in 2018. 2019. Available online: https://cail.ucdavis.edu/wp-content/uploads/2019/07/CMAB-Economic-Impact-Report_final.pdf (accessed on 28 October 2025).
- Ramírez-Barraza, B.A.; González-Estrada, A.; Valdivia-Alcalá, R.; Salas-González, J.M.; García-Salazar, J.A. Efficient rates for water for agricultural use in the Comarca Lagunera. Rev. Mex. Cienc. Agríc. 2019, 10, 3. [Google Scholar]
- Liu, H.; Jin, Y.; Roche, L.M.; O’Geen, A.T.; Dahlgren, R.A. Understanding spatial variability of forage production in California grasslands: Delineating climate, topography and soil controls. Environ. Res. Lett. 2021, 16, 014043. [Google Scholar] [CrossRef]
- Gutiérrez-Ojeda, C.; Escolero-Fuentes, O.A. Groundwater resources of Mexico. In Water Resources of Mexico; Springer: Cham, Switzerland, 2020. [Google Scholar]
- He, C.; Harden, C.P.; Liu, Y. Comparison of water resources management between China and the United States. Geogr. Sustain. 2020, 1, 98–108. [Google Scholar] [CrossRef]
- Gutiérrez-Ojeda, C.; Ortíz-Flores, G. Proyectos de recarga MAR en el acuífero principal de la región lagunera. In Manejo de la Recarga de Acuíferos: Un Enfoque Hacia Latinoamérica; IMTA-UNAM: Jiutepec, Mexico, 2017; pp. 139–157. [Google Scholar]
- Cruz-Ayala, M.B.; Megdal, S.B. An overview of managed aquifer recharge in Mexico and its legal framework. Water 2020, 12, 474. [Google Scholar] [CrossRef]
- Torres-Moreno, M.; Mora-Flores, J.S.; García-Salazar, J.A.; Rubiños-Panta, E.; Arana-Coronado, O.A.; Arjona-Suarez, E. Factores determinantes de la adopción de riego tecnificado en La Laguna, México. Tecnol. Cienc. Agua 2023, 14, 122–157. [Google Scholar] [CrossRef]
- Pedroza Gonzalez, E. Manejo y Distribución del Agua en Distritos de Riego: Breve Introducción Didáctica; IMTA: Jiutepec, Mexico, 2014. [Google Scholar]
- Abdelraouf, R.E.; El-Shawadfy, M.A.; Bakry, A.B.; Abdelaal, H.K.; El-Shirbeny, M.A.; Ragab, R.; Belopukhov, S.L. Estimating ETO and scheduling crop irrigation using Blaney–Criddle equation when only air-temperature data are available and solving the issue of missing meteorological data in Egypt. BIO Web Conf. 2024, 82, 02020. [Google Scholar] [CrossRef]
- Aparicio-Mijares, F.J. Fundamentos de Hidrología de Superficie; Limusa: Mexico City, Mexico, 1989. [Google Scholar]
- FAO. Evapotranspiración del Cultivo: Guías Para la Determinación de los Requerimientos de Agua de los Cultivos; FAO: Rome, Italy, 2006. [Google Scholar]
- Bravo Lozano, Á.G.; Galindo Gonzalez, G.; Amador Ramírez, M.D. Tecnología de Producción de Chile Seco; INIFAP: Mexico City, Mexico, 2006. [Google Scholar]
- Mata Vazquez, H. Cálculo de Volúmenes de Agua de Riego en el Cultivo de Chile. Método del Evaporímetro; INIFAP: Mexico City, Mexico, 2005. [Google Scholar]
- Palacios-Velez, E. Strategies to Improve Water Management in Mexican Irrigation Districts. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1976. [Google Scholar]
- Florencio-Cruz, V.; Valdivia-Alcalá, R.; Scott, C.A. Water productivity in the Alto Río Lerma (011) irrigation district. Agrocencia 2002, 36, 483–493. [Google Scholar]
- Medellín-Azuara, J.; Howitt, R.E.; Waller-Barrera, C.; Mendoza-Espinosa, L.G.; Lund, J.R.; Taylor, J.E. A calibrated agricultural water demand model for three regions in northern Baja California. Agrociencia 2009, 43, 83–96. [Google Scholar]
- Rodríguez-Flores, J.M.; Medellín-Azuara, J.; Valdivia-Alcalá, R.; Arana-Coronado, O.A.; García-Sánchez, R.C. Insights from a calibrated optimization model for irrigated agriculture under drought in an irrigation district on the Central Mexican High Plains. Water 2019, 11, 858. [Google Scholar] [CrossRef]
- Howitt, R.E.; Medellín-Azuara, J.; MacEwan, D.; Lund, J.R. Calibrating disaggregate economic models of agricultural production and water management. Environ. Model. 2012, 38, 244–258. [Google Scholar] [CrossRef]
- Moulogianni, C. Comparison of selected mathematical programming models used for sustainable land and farm management. Land 2022, 11, 1293. [Google Scholar] [CrossRef]
- Sapino, F.; Pérez-Blanco, C.D.; Gutiérrez-Martín, C.; Frontuto, V. An ensemble experiment of mathematical programming models to assess socio-economic effects of agricultural water pricing reform in the Piedmont Region, Italy. J. Environ. Manag. 2020, 267, 110645. [Google Scholar] [CrossRef]
- Trail, S.M.; Ward, F.A. Uniting agricultural water management, economics, and policy for climate adaptation through a new assessment of water markets for arid regions. Agric. Water Manag. 2024, 305, 109101. [Google Scholar] [CrossRef]
- Fei, C.J.; McCarl, B.A. The role and use of mathematical programming in agricultural, natural resource, and climate change analysis. Annu. Rev. Resour. Econ. 2023, 15, 383–406. [Google Scholar] [CrossRef]
- Djaman, K.; Smeal, D.; Koudahe, K.; Allen, S. Hay yield and water use efficiency of alfalfa under different irrigation and fungicide regimes in a semiarid climate. Water 2020, 12, 1721. [Google Scholar] [CrossRef]
- Boser, A.; Caylor, K.; Larsen, A.; Pascolini-Campbell, M.; Reager, J.T.; Carleton, T. Field-scale crop water consumption estimates reveal potential water savings in California agriculture. Nat. Commun. 2024, 15, 2366. [Google Scholar] [CrossRef]
- Mehla, M.K.; Kothari, M.; Singh, P.K.; Bhakar, S.R.; Yadav, K.K. Optimization of virtual water flows in agriculture by changing cropping patterns using an integrated approach. Heliyon 2023, 9, e22603. [Google Scholar] [CrossRef]
- Huang, H.; Xie, P.; Duan, Y.; Wu, P.; Zhuo, L. Cropping pattern optimization considering water shadow price and virtual water flows: A case study of Yellow River Basin in China. Agric. Water Manag. 2023, 284, 108339. [Google Scholar] [CrossRef]
- Bierkens, M.F.P.; Reinhard, S.; De Bruijn, J.A.; Veninga, W.; Wada, Y. The shadow price of irrigation water in major groundwaterdepleting countries. Water Resour. Res. 2019, 55, 4266–4287. [Google Scholar] [CrossRef]
- Kolapo, A.; Ojo, T.O.; Khumalo, N.Z.; Elhindi, K.M.; Kassem, H.S.; Filusi, O.J. Enhancing land nutrient through rhizobia biofertilization: Modeling the joint effects of rhizobium inoculants and improved soybean varieties on soybean productivity in North Central, Nigeria. Front. Sustain. Food Syst. 2025, 9, 1509230. [Google Scholar] [CrossRef]
- Rahman, M.M.; Connor, J.D. The effect of high-yielding variety on rice yield, farm income and household nutrition: Evidence from rural Bangladesh. Agric. Food Secur. 2022, 11, 35. [Google Scholar] [CrossRef]
- Klümper, W.; Qaim, M. A meta-analysis of the impacts of genetically modified crops. PLoS ONE 2014, 9, e111629. [Google Scholar] [CrossRef] [PubMed]
- Brookes, G. Farm income and production impacts from the use of genetically modified (GM) crop technology 1996–2020. GM Crops Food 2022, 13, 171–195. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, Z.; Liu, D. Impact of agricultural mechanization on agricultural production, income, and mechanism: Evidence from Hubei Province, China. Front. Environ. Sci. 2022, 10, 838686. [Google Scholar] [CrossRef]
- Garbelini, L.G.; Debiasi, H.; Junior, A.A.B.; Franchini, J.C.; Coelho, A.E.; Telles, T.S. Diversified crop rotations increase the yield and economic efficiency of grain production systems. Eur. J. Agron. 2022, 137, 126528. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, K.S.; Dasila, H.; Kumar, R.; Devi, K.; Bisht, Y.S.; Yadav, M.; Kothiyal, S.; Chilwal, A.; Maithani, D.; et al. Sustainable intensification of cropping systems under conservation agriculture practices: Impact on yield, productivity and profitability of wheat. Sustainability 2023, 15, 7468. [Google Scholar] [CrossRef]
- Akter, A.; Geng, X.H.; Mwalupaso, G.E.; Lu, H.; Hoque, F.; Ndungu, M.K.; Abbas, Q. Income and yield effects of climate-smart agriculture (CSA) adoption in flood prone areas of Bangladesh: Farm level evidence. Clim. Risk Manag. 2022, 37, 100455. [Google Scholar] [CrossRef]
- Pathak, S.; Adusumilli, N.C.; Wang, H.; Almas, L.K. Irrigation water demand and elasticities: A case study of the High Plains aquifer. Irrig. Sci. 2022, 40, 941–954. [Google Scholar] [CrossRef]
- Bruno, E.M.; Jessoe, K. Missing markets: Evidence on agricultural groundwater demand from volumetric pricing. J. Public Econ. 2021, 196, 104374. [Google Scholar] [CrossRef]
- Fortis Hernández, M.; Alhers, R. Naturaleza y extensión del mercado del agua en el DR017 de la Comarca Lagunera, Mexico. In IWMI, Serie Latinoamericana; Instituto Internacional del Manejo del Agua: Mexico City, Mexico, 1999; Volume 10. [Google Scholar]
- Valle-García, Á.; Gutiérrez-Martín, C.; Montilla-López, N.M. Water pricing and quotas: A quantitative analysis from a private and social perspective. Water Resour. Manag. 2024, 38, 4287–4306. [Google Scholar] [CrossRef]
- Xiqin, W.; Xinyue, Z.; Hao, C.; Ying, C. “Overuse-charge” agricultural water price mechanism in groundwater overdraft areas. Water Policy 2022, 24, 132–144. [Google Scholar] [CrossRef]
- Ren, Y.; Wei, S.; Cheng, K.; Fu, Q. Valuation and pricing of agricultural irrigation water based on macro and micro scales. Water 2018, 10, 1044. [Google Scholar] [CrossRef]
- Vanderzalm, J.; Page, D.; Dillon, P.; Gonzalez, D.; Petheram, C. Assessing the costs of managed aquifer recharge options to support agricultural development. Agric. Water Manag. 2022, 263, 107437. [Google Scholar] [CrossRef]









| Category of Project | 0–1 Years | 1–5 Years |
|---|---|---|
| Conjunctive use | None | Groundwater recharge |
| Groundwater banking | ||
| Intentional irrigation field flooding | ||
| Surface water | Fully utilize surface water allocation | Direct use of flood and storm water |
| Internal surface water trading | Import new surface water supplies | |
| Take or pay pricing structure | Develop conveyance capacity | |
| Low surface water pricing | ||
| Land management | Crop conversion | Agricultural land conversion |
| Expand districts | ||
| Deficit irrigation | Subsidies | |
| Disclaimer for property purchases | ||
| Urban land use regulations | Prohibition of land development | |
| Groundwater use restrictions | Prohibit groundwater exports | |
| Groundwater metering and pumping restrictions | ||
| Additional well permit requirements | ||
| Prohibition of composite wells | ||
| Domestic well mitigation program | ||
| Water conservation | Water use restrictions in droughts | Industrial water recycling |
| Agricultural water conservation | ||
| Urban water conservation | ||
| Water conservation credits | Agricultural water recycling | |
| Tiered pricing | ||
| Groundwater pumping fees | ||
| Wellhead fees | ||
| Others | Groundwater credits | Water desalination |
| Blend poor and good quality water | ||
| Public education | Use produced water | |
| Rainwater harvesting |
| Crop | Scientific Name | Price (USD/Ton) | Yield (Ton/ha) | Revenue (USD/ha) | Cost (USD/ha) | Irrigated Crop Area (ha) | Raw Irrigation Depth (cm) |
|---|---|---|---|---|---|---|---|
| Alfalfa | Medicago sativa L. | USD 212 | 83 | USD 17,576 | USD 16,689 | 5157 | 299 |
| Cotton | Gossypium hirstium L. | USD 2056 | 5 | USD 10,279 | USD 5817 | 11,256 | 118 |
| Peanut | Arachis hypogaea | USD 882 | 2 | USD 1765 | USD 719 | 200 | 128 |
| Green chili | Capsicum annuum L. | USD 212 | 16 | USD 3388 | USD 2484 | 133 | 119 |
| Forage maize | Zea mays L. | USD 39 | 45 | USD 1774 | USD 1408 | 13,985 | 197 |
| Grain maize | Zea mays L. | USD 247 | 6 | USD 1482 | USD 1051 | 531 | 197 |
| Melon | Cucumis melo | USD 206 | 30 | USD 6176 | USD 3943 | 888 | 108 |
| Nuts | Juglans regia | USD 4412 | 1 | USD 4412 | USD 3578 | 7726 | 169 |
| Broom sorghum | Sorghum vulgare | USD 562 | 4 | USD 2249 | USD 1454 | 159 | 127 |
| Forage sorghum | Sorghum vulgare | USD 40 | 46 | USD 1840 | USD 1619 | 16,307 | 127 |
| Tomato | Solanum lycopersicum | USD 824 | 60 | USD 49,412 | USD 30,296 | 50 | 174 |
| Scenario ID | Description |
|---|---|
| Baseline Scenario 1 (WL) | Full water (927 hm3) and land availability (56,392 ha) |
| Scenario 2 (WLF) | Scenario 1 + forage production of minimum 1.8 million tons |
| Scenario 3 (WLFF_200, WLFF_225, WLFF_250, WLFF_275, WLFF_300) | Scenario 1 + Increasing forage production minimum (2.0, 2.25, 2.50, 2.75, and 3.00 million tons) |
| Scenario 4 (WLFN) | Scenario 2 + Minimum nut production of 7000 ha |
| Scenario 5 (WLFNA) | Scenario 4 + Minimum alfalfa production of 5000 ha |
| Scenario 6 (WLFNAE_60, WLFNAE_65, WLFNAE_70) | Scenario 5 + Different values of efficiency of the water district (0.60, 0.65, and 0.70) |
| Scenario 7 (WLFNAY_5, WLFNAY_10, WLFNAY_15, WLFNAY_20) | Scenario 5 + Increases in crop yields (0.05, 0.10, 0.15, and 0.20) |
| Policy Scenario | Baseline | P6 | P14 | P21 |
|---|---|---|---|---|
| Water price (USD/dam3) | 6 | 6 | 14 | 21 |
| Alfalfa | USD 94 | USD 171 | USD 422 | USD 616 |
| Cotton | USD 94 | USD 67 | USD 166 | USD 242 |
| Peanut | USD 94 | USD 73 | USD 181 | USD 264 |
| Green chili | USD 94 | USD 68 | USD 168 | USD 245 |
| Forage maize | USD 94 | USD 113 | USD 279 | USD 406 |
| Grain maize | USD 94 | USD 113 | USD 279 | USD 406 |
| Melon | USD 94 | USD 62 | USD 152 | USD 222 |
| Nuts | USD 94 | USD 96 | USD 238 | USD 347 |
| Broom sorghum | USD 94 | USD 73 | USD 180 | USD 262 |
| Forage sorghum | USD 94 | USD 73 | USD 180 | USD 262 |
| Tomato | USD 94.12 | USD 99.59 | USD 245.76 | USD 358.41 |
| Water Availability | 100% | 95% | 90% | 85% | 80% | 75% | 70% |
|---|---|---|---|---|---|---|---|
| Alfalfa | USD 171 | USD 171 | USD 419 | USD 1350 | USD 6496 | USD 12,228 | USD 18,601 |
| Cotton | USD 67 | USD 67 | USD 165 | USD 530 | USD 2551 | USD 4802 | USD 7305 |
| Peanut | USD 73 | USD 73 | USD 180 | USD 579 | USD 2787 | USD 5245 | USD 7978 |
| Green chili | USD 68 | USD 68 | USD 167 | USD 536 | USD 2582 | USD 4860 | USD 7392 |
| Forage maize | USD 113 | USD 113 | USD 277 | USD 891 | USD 4286 | USD 8067 | USD 12,271 |
| Grain maize | USD 113 | USD 113 | USD 277 | USD 891 | USD 4286 | USD 8067 | USD 12,271 |
| Melon | USD 62 | USD 62 | USD 151 | USD 486 | USD 2340 | USD 4406 | USD 6702 |
| Nuts | USD 96 | USD 96 | USD 236 | USD 760 | USD 3660 | USD 6888 | USD 10,477 |
| Broom sorghum | USD 73 | USD 73 | USD 179 | USD 575 | USD 2768 | USD 5209 | USD 7924 |
| Forage sorghum | USD 73 | USD 73 | USD 179 | USD 575 | USD 2768 | USD 5209 | USD 7924 |
| Tomato | USD 100 | USD 100 | USD 244 | USD 785 | USD 3779 | USD 7113 | USD 10,819 |
| Water Availability | 100% | 95% | 90% | 85% | 80% | 75% | 70% |
|---|---|---|---|---|---|---|---|
| Alfalfa | USD 176 | USD 176 | USD 422 | USD 1356 | USD 1356 | USD 1356 | USD 1356 |
| Cotton | USD 69 | USD 69 | USD 166 | USD 532 | USD 532 | USD 532 | USD 532 |
| Peanut | USD 76 | USD 76 | USD 181 | USD 581 | USD 581 | USD 581 | USD 581 |
| Green chili | USD 70 | USD 70 | USD 168 | USD 539 | USD 539 | USD 539 | USD 539 |
| Forage maize | USD 116 | USD 116 | USD 279 | USD 894 | USD 894 | USD 894 | USD 894 |
| Grain maize | USD 116 | USD 116 | USD 279 | USD 894 | USD 894 | USD 894 | USD 894 |
| Melon | USD 63 | USD 63 | USD 152 | USD 488 | USD 488 | USD 488 | USD 488 |
| Nuts | USD 99 | USD 99 | USD 238 | USD 764 | USD 764 | USD 764 | USD 764 |
| Broom sorghum | USD 75 | USD 75 | USD 180 | USD 577 | USD 577 | USD 577 | USD 577 |
| Forage sorghum | USD 75 | USD 75 | USD 180 | USD 577 | USD 577 | USD 577 | USD 577 |
| Tomato | USD 102 | USD 102 | USD 246 | USD 788 | USD 788 | USD 788 | USD 788 |
| Elasticity | 100% | 95% | 90% | 85% | 80% | 75% | 70% | 65% |
|---|---|---|---|---|---|---|---|---|
| Scenario 1 | −0.37 | |||||||
| WLF | −0.12 | −0.12 | −0.19 | −0.21 | −0.30 | |||
| WLFF_250 | −0.13 | −0.19 | −0.19 | −0.20 | −0.12 | |||
| WLFN | −0.05 | −0.12 | −0.10 | −0.10 | −0.17 | |||
| WLFNA | −0.06 | −0.09 | −0.08 | −0.14 | −0.21 | |||
| WLFNAE_60 | −0.06 | −0.08 | −0.11 | −0.19 | ||||
| WLFNAY_5 | −0.06 | −0.07 | −0.08 | −0.10 | −0.17 | |||
| Average | −0.09 | −0.10 | −0.16 | −0.11 | −0.12 | −0.17 | −0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guevara-Polo, D.-E.; Patiño-Gomez, C.; Medellin-Azuara, J.; Corona-Vasquez, B. Insights from Hydro-Economic Modeling for Climate Resilience in the Nazas–Aguanaval Watershed in Mexico. Water 2025, 17, 3183. https://doi.org/10.3390/w17213183
Guevara-Polo D-E, Patiño-Gomez C, Medellin-Azuara J, Corona-Vasquez B. Insights from Hydro-Economic Modeling for Climate Resilience in the Nazas–Aguanaval Watershed in Mexico. Water. 2025; 17(21):3183. https://doi.org/10.3390/w17213183
Chicago/Turabian StyleGuevara-Polo, David-Eduardo, Carlos Patiño-Gomez, Josué Medellin-Azuara, and Benito Corona-Vasquez. 2025. "Insights from Hydro-Economic Modeling for Climate Resilience in the Nazas–Aguanaval Watershed in Mexico" Water 17, no. 21: 3183. https://doi.org/10.3390/w17213183
APA StyleGuevara-Polo, D.-E., Patiño-Gomez, C., Medellin-Azuara, J., & Corona-Vasquez, B. (2025). Insights from Hydro-Economic Modeling for Climate Resilience in the Nazas–Aguanaval Watershed in Mexico. Water, 17(21), 3183. https://doi.org/10.3390/w17213183

