Groundwater Seepage into Lined Urban Channels: An Overlooked Source of Nutrients and Trace Elements in the Upper Los Angeles River
Abstract
1. Introduction
1.1. Overview



1.2. Purpose of the Study
2. Methods and Materials
2.1. Study Area
2.2. Geologic Setting
2.3. Field Methods
2.4. Laboratory Methods
2.5. Data Processing and Interpretation
- = measured concentration in surface water,
- = average concentration in groundwater,
- = concentration in the mixed tributary inflow (e.g., composite of Arroyo Calabasas and Bell Creek),
- and = the fraction of groundwater contributing to the river mixture.
3. Results
4. Data Interpretation and Discussion
4.1. Total Dissolved Solids
4.2. Sulfate
4.3. Chloride
4.4. Nitrate-Nitrogen
4.5. Ammonia-Nitrogen
4.6. Orthophosphate
4.7. Selenium
4.8. Tritium in Groundwater
4.9. Summary of Synoptic Data
4.10. Computation of Groundwater Baseflow Through Mixing Analysis
4.11. Limitations of Mixing Analysis
4.12. Sources of Selenium in Groundwater
4.13. Additional Factors of Baseflow in the Upper Los Angeles River
5. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- California State Water Rights Board. Report of Referee: The City of Los Angeles vs. City of San Fernando et al., Final Report Approved and Filed 27 July 1962; Vols. I & II; State Water Rights Board: Sacramento, CA, USA, 1962. [Google Scholar]
- James, M.; Montgomery, Inc. Remedial Investigation of Groundwater Contamination in San Fernando Valley, Remedial Investigation Report; Prepared for City of Los Angeles Department of Water and Power: Los Angeles, CA, USA, 1992. [Google Scholar]
- Gumprecht, B. The Los Angeles River: Its Life, Death, and Possible Rebirth; Johns Hopkins University Press: Baltimore, MD, USA, 1999; 369p. [Google Scholar]
- Harrower, J.; The, L.A. River Project: Resting and raging through histories of containment. Adv. Glob. Health 2024, 3, 2335618. [Google Scholar] [CrossRef]
- Los Angeles Regional Water Quality Control Board. Donald, C. Tillman Water Reclamation Plant, NPDES Permit No. CA0056227, CI-5695: Revised Tentative Requirements. 2017. Available online: https://www.waterboards.ca.gov/rwqcb4/board_decisions/tentative_orders/individual/npdes/donald.c_tillman/DCTWRP%20CA0056227%20REVISED%20TENTATIVE%202-16-2017.pdf (accessed on 6 September 2025).
- Upper Los Angeles River Area Watermaster. Annual Watermaster Report for the Upper Los Angeles River Area, Los Angeles County, Water Year 2019; ULARA Administrative Committee: Los Angeles, CA, USA, 2020; Available online: https://www.ularawatermaster.com/ (accessed on 10 August 2025).
- California Department of Public Works. Bulletin No. 40: Quality of Irrigation Waters; Division of Engineering and Irrigation: Sacramento, CA, USA, 1933. [Google Scholar]
- Los Angeles River Watershed Monitoring Program. 2023 Annual Report; Los Angeles Regional Water Quality Control Board: Los Angeles, CA, USA, 2023. [Google Scholar]
- Reichard, E.G.; Land, M.; Crawford, S.M.; Johnson, T.D.; Everett, R.R.; Kulshan, T.V.; Ponti, D.J.; Halford, K.L.; Johnson, T.A.; Paybins, K.S.; et al. Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California; Water-Resources Investigations Report; Washington, DC, USA, 2003; 196p. [Google Scholar] [CrossRef]
- Setmire, J.G. A Conceptual Ground-Water-Quality Monitoring Network for San Fernando Valley, California; Water-Resources Investigations Report 1985; 84-4128; U.S. Geological Survey: Reston, VA, USA, 1985. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. FINAL Aquatic Life and Aquatic-Dependent Wildlife Selenium Water Quality Criterion for Freshwaters of California; EPA-822-R-24-014; Office of Water, Office of Science and Technology & Region 9 Water Division: Washington, DC, USA, 2024. [Google Scholar]
- City of Los Angeles, U.S. Army Corps of Engineers. Final Integrated Feasibility Report and EIS/EIR, Los Angeles River Ecosystem Restoration Project; City of Los Angeles, U.S. Army Corps of Engineers: Los Angeles, CA, USA, 2016. [Google Scholar]
- Mrozińska, N. Water quality as an indicator of stream restoration effects in the Słupia River (Poland). Water 2018, 10, 1249. [Google Scholar] [CrossRef]
- Senn, S.; Bhattacharyya, S.; Presley, G.; Taylor, A.E.; Stanis, R.; Pangell, K.; Melendez, D.; Ford, J. The community structure of eDNA in the Los Angeles River reveals an altered nitrogen cycle at impervious sites. Diversity 2023, 15, 823. [Google Scholar] [CrossRef]
- Upper Los Angeles River Area Watermaster. Introduction to the ULARA Groundwater Basins Technical Memorandum No. 1 (TM-1) for the Salt Nutrient Management Plan for the Upper Los Angeles River Area, Los Angeles County, California; Prepared for the California Regional Water Quality Control Board, Los Angeles Region: Los Angeles, CA, USA, 2016. [Google Scholar]
- Upper Los Angeles River Watershed Management Group. Semi-Annual Progress Report; Upper Los Angeles River Watershed Management Group: Los Angeles, CA, USA, 2025. [Google Scholar]
- Greater Los Angeles County Integrated Regional Water Management Region Plan. Upper Los Angeles River Subregional Plan, Final Report. Prepared by RMC and Geosyntec; Los Angeles County Public Works: Los Angeles, CA, USA, 2013. [Google Scholar]
- Hamlin, H. Underflow Tests in the Drainage Basin of Los Angeles River. U.S. Geol. Surv. Water-Supply Pap. 1905, 112, 55. [Google Scholar]
- Hibbs, B.; Harrison, M.; Merino, M. Issues of stream–aquifer interactions in grout lined channels in urban watersheds. J. Contemp. Water Res. Educ. 2016, 159, 127–143. [Google Scholar] [CrossRef]
- Langenheim, V.E.; Jachens, R.C.; Chuang, F.C.; Griscom, A. Geophysical framework of the Los Angeles region. Geol. Soc. Am. Spec. Pap. 2011, 493, 529–552. [Google Scholar]
- Yerkes, R.F.; McCulloh, T.H.; Schoellhamer, J.E.; Vedder, J.G. Geology of the Los Angeles Basin, California—An Introduction. U.S. Geological Survey Professional Paper 420-A; U.S. Government Printing Office: Washington, DC, USA, 1965. [Google Scholar]
- Rumelhart, P.E.; Ingersoll, R.V. Provenance of the Upper Miocene Modelo Formation and subsidence analysis of the Los Angeles Basin, southern California: Implications for paleotectonic and paleogeographic reconstructions. Geol. Soc. Am. Bull. 1997, 109, 885–899. [Google Scholar] [CrossRef]
- Pisciotto, K.A.; Garrison, R.E. Lithofacies and depositional environments of the Monterey Formation, California. In The Monterey Formation and Related Siliceous Rocks of California; Garrison, R.E., Douglas, R.G., Eds.; SEPM Pacific Section: Los Angeles, CA, USA, 1981; pp. 97–122. [Google Scholar]
- Regan, L.J. The Geology of a Portion of the Saugus and Red Mountain Quadrangles. Bachelor’s Thesis, California Institute of Technology, Pasadena, CA, USA, 1939. [Google Scholar]
- Quarles, M.W. Geology of the Whittier Hills, Whittier, California. Bachelor’s Thesis, California Institute of Technology, Pasadena, CA, USA, 1940. [Google Scholar]
- Carlson, H.W. Geology of the Elysian Park–Silver Lake District, Los Angeles County, California. Master’s Thesis, California Institute of Technology, Pasadena, CA, USA, 1945. [Google Scholar]
- County Sanitation District of Los Angeles County. Mineral Leaching Study, Calabasas 1168 Landfill; County Sanitation District: Whittier, CA, USA, 1996. [Google Scholar]
- Dibblee, T.W., Jr. Geologic Map of the Los Angeles Quadrangle, Los Angeles County, California; Ehrenspeck, H.E., Ed.; Dibblee Geological Foundation: Santa Barbara, CA, USA, 1989. [Google Scholar]
- Dibblee, T.W., Jr. Geologic Map of the Pasadena Quadrangle, Los Angeles County, California. Ehrenspeck, H.E., Ed.; Dibblee Geological Foundation: Santa Barbara, CA, USA, 1989. [Google Scholar]
- Lamar, D.L. Geology of the Elysian Park–Repetto Hills Area, Los Angeles County, California; California Division of Mines and Geology: Sacramento, CA, USA, 1970. [Google Scholar]
- CH2M HILL. Preliminary Geotechnical Report, SR 710 North Study, Los Angeles County, California; Report Prepared for Metro and Caltrans; EA-07-187900; LA Meteo: Los Angeles, CA, USA, 2014. [Google Scholar]
- Hoots, H.W. Geology of the Eastern Part of the Santa Monica Mountains, Los Angeles County, California. U.S. Geol. Surv. Prof. Pap. 1931, 165-C, 1–134. [Google Scholar]
- Wright, W.G. Oxidation and mobilization of selenium by nitrate in irrigation drainage. J. Environ. Qual. 1999, 28, 1182–1187. [Google Scholar] [CrossRef]
- Rotzien, J.R.; Lowe, D.R.; Schwalbach, J.R. Processes of sedimentation and stratigraphic architecture of deep-water braided lobe complexes: The Pliocene Repetto and Pico Formations, Ventura Basin, USA. J. Sediment. Res. 2014, 84, 759–774. [Google Scholar] [CrossRef]
- Slade, R.C. Associates. Hydrogeologic Assessment of the Saugus Formation in the Santa Clara Valley of Los Angeles County, California (Volumes I & II); Consultant’s Report Prepared for the Santa Clarita Valley Water Purveyors: North Hollywood, CA, USA, 1988. [Google Scholar]
- Impact Sciences, Inc. Impact Sciences, Inc. Hitch Ranch Specific Plan EIR, Section 3.6–Geology and Soils (Environmental Impact Report, p. 3.6-3), Report prepared for the City of Moorpark; Impact Sciences, Inc.: Los Angeles, CA, USA, 2022.
- San, L.T.; Clark, J.; Sharp, J. Geologic Map of the San Fernando Valley; California Geological Survey: Sacramento, CA, USA, 2004. [Google Scholar]
- Hibbs, B.; Merino, M.; Andrus, R.; Hu, W.; Doro-On, A. Groundwater baseflow sourced from Miocene rocks and residuals carries elevated selenium into southern California streams. In Great Rivers; Starrett, S., Ed.; American Society of Civil Engineers: Reston, VA, USA, 2009; pp. 1919–1928. [Google Scholar]
- Buchanan, T.J.; Somers, W.P. Discharge Measurements at Gaging Stations; U.S. Government Printing Office: Washington, DC, USA, 1969; Book 3, Chapter A8; 65p. [Google Scholar]
- Turnipseed, D.P.; Sauer, V.B. Discharge Measurements at Gaging Stations: U.S. Geological Survey Techniques and Methods Book 3, Chap. A8; U.S. Geological Survey: Reston, VA, USA, 2010; 87p. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Method 375.4: Sulfate, turbidimetric. In Methods for Chemical Analysis of Water and Waste; EPA-600/4-79-020; Environmental Monitoring and Support Laboratory: Cincinnati, OH, USA, 1979. [Google Scholar]
- U.S. Environmental Protection Agency. Method 9251: Chloride (Colorimetric, Automated Ferricyanide AAII). In Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; SW-846; U.S. Environmental Protection Agency: Washington, DC, USA, 1986. [Google Scholar]
- U.S. Environmental Protection Agency. Method 353.2: Determination of nitrate–nitrite nitrogen by automated colorimetry. In Methods for the Determination of Inorganic Substances in Environmental Samples; EPA-600/4-79-020; Environmental Monitoring and Support Laboratory: Cincinnati, OH, USA, 1993. [Google Scholar]
- U.S. Environmental Protection Agency. Method 350.1: Determination of ammonia nitrogen by semi-automated colorimetry. In Methods for Chemical Analysis of Water and Wastes; EPA-600/4-79-020; Environmental Monitoring and Support Laboratory: Cincinnati, OH, USA, 1978. [Google Scholar]
- U.S. Environmental Protection Agency. Method 365.1: Determination of phosphorus by semi-automated colorimetry. In Methods for Chemical Analysis of Water and Wastes; EPA-600/4-79-020; Environmental Monitoring and Support Laboratory: Cincinnati, OH, USA, 1978. [Google Scholar]
- U.S. Environmental Protection Agency. Method 200.7: Determination of metals and trace elements in water and wastes by inductively coupled plasma–atomic emission spectrometry. In Methods for the Determination of Metals in Environmental Samples, Supplement I; EPA/600/R-94/111; Environmental Monitoring Systems Laboratory: Cincinnati, OH, USA, 1994. [Google Scholar]
- U.S. Environmental Protection Agency. Method 200.2: Sample preparation procedure for spectrochemical determination of total recoverable elements. In Methods for the Determination of Metals in Environmental Samples, Supplement I; EPA/600/R-94/111; Environmental Monitoring Systems Laboratory: Cincinnati, OH, USA, 1994. [Google Scholar]
- Oblinger-Childress, C.J.; Foreman, W.T.; Connor, B.F.; Maloney, T.J. New Reporting Procedures Based on Long-Term Method Detection Levels and Some Considerations for Interpretations of Water-Quality Data Provided by the U.S. Geological Survey National Water Quality Laboratory; U.S. Geological Survey: Reston, VA, USA, 1999; 19p. [Google Scholar] [CrossRef]
- Hibbs, B.J.; Hu, W.; Ridgway, R. Origin of Stream Flows at the Wildlands–Urban Interface, Santa Monica Mountains, California, USA. Environ. Eng. Geosci. 2012, 18, 51–66. [Google Scholar] [CrossRef]
- County of Los Angeles Department of Public Works. Los Angeles River Master Plan: Existing Water Quality Conditions Summary; 2025. Available online: https://larivermasterplan.org/about/existing-conditions-summary/existing-water-quality/ (accessed on 6 September 2025).
- Yoon, V.K.; Stein, E.D. Natural catchments as sources of background levels of storm-water metals, nutrients, and solids. J. Environ. Eng. 2008, 134, 961–973. [Google Scholar] [CrossRef]
- Boroon, M.; Coo, C. Water Quality Assessment of the Los Angeles River Watershed, California, USA in Wet and Dry Weather Periods. J. Geogr. Environ. Earth Sci. Int. 2015, 3, 1–17. [Google Scholar] [CrossRef]
- Horne, A.J.; Goldman, C.R. Limnology, 2nd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Fenchel, T.; King, G.M.; Blackburn, T.H. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Giblin, A.E.; Tobias, C.R.; Song, B.; Weston, N.; Banta, G.T.; Rivera-Monroy, V.H. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography 2013, 26, 124–131. [Google Scholar] [CrossRef]
- Ingle, J.C., Jr. Cenozoic paleobathymetry and depositional history of selected sequences within the southern California continental borderland. In Studies in Micropaleontology; Sliter, W.V., Ed.; Cushman Foundation Special Publication No. 19; Cushman Foundation for Foraminiferal Research: Falls Church, VA, USA, 1980; pp. 163–195. [Google Scholar]
- Harms, P.A.; Visser, A.; Moran, J.E.; Esser, B.K. Distribution of tritium in precipitation and surface water in California. J. Hydrol. 2016, 534, 63–72. [Google Scholar] [CrossRef]
- Eastoe, C.J.; Osborn, S.G. Comment on Harms, P.A.; Visser, A.; Moran, J.E.; Esser, B.K., 2016, Distribution of tritium in precipitation and surface water in California. J. Hydrol. 2017, 545, 381–382. [Google Scholar] [CrossRef]
- Kent, R.; Belitz, K.; Burton, C.A. Algal Productivity and Nitrate Assimilation in an Effluent-Dominated Concrete-Lined Stream. J. Am. Water Resour. Assoc. 2005, 41, 1109–1128. [Google Scholar] [CrossRef]
- Hibbs, B.J.; Eastoe, C.J.; Merino, M. Issues of bias in groundwater quality data sets in an irrigated floodplain aquifer of variable salinity. Geosciences 2024, 14, 66. [Google Scholar] [CrossRef]
- Isaacs, C.M.; Keller, M.A.; Gennai, V.A.; Stewart, K.C.; Taggart, J.E., Jr. Preliminary evaluation of Miocene lithostratigraphy in the Point Conception COST well OCS-CAL 78-164 No. 1 off Southern California. In Petroleum Generation and Occurrence in the Miocene Monterey Formation, California; Isaacs, C.M., Garrison, R.E., Eds.; SEPM Pacific Section: Los Angeles, CA, USA, 1983; pp. 99–110. [Google Scholar]
- Behl, R.J. The Miocene Monterey Formation of California revisited. In Classic Cordilleran Concepts: A View from California; Moores, E.M., Sloan, D., Stout, D.L., Eds.; Geological Society of America: Boulder, CO, USA, 1999; pp. 301–313. [Google Scholar]
- Woodruff, F.; Savin, S.M. δ13C values of Miocene Pacific benthic foraminifera: Correlations with sea level and biological productivity. Geology 1985, 13, 119–122. [Google Scholar] [CrossRef]
- Garrison, R.E.; Kastner, M. Phosphatic sediments and rocks recovered from the Peru margin during ODP Leg 112. In Proceedings of the Ocean Drilling Program, Scientific Results; Suess, E., von Huene, R., Eds.; Texas A&M University, Ocean Drilling Program: College Station, TX, USA, 1990; Volume 112, pp. 111–134. [Google Scholar]
- Laurent, D.; De Kaenel, E.; Spangenberg, J.E.; Föllmi, K.B. A sedimentological model of organic matter preservation and phosphogenesis in the Miocene Monterey Formation at Haskells Beach, Goleta (central California). Sediment. Geol. 2015, 326, 16–32. [Google Scholar] [CrossRef]
- Isaacs, C.M.; Keller, K.; Bird, K. Potentially hazardous trace elements in the Monterey Formation, California. Environ. Geosci. 2009, 6, 3. [Google Scholar] [CrossRef]
- Martinez, E. Understanding hazardous trace element leaching from phosphatic shales of the Miocene Monterey Formation, California, a case study from Luanda Bay, Los Angeles. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 9–13 December 2019; Abstract #GH23B–1252. [Google Scholar]
- Wright, T.L. Structural Geology and Tectonic Evolution of the Los Angeles Basin, California; Geological Society of America: Boulder, CO, USA, 2001; GSA Special Paper 367; 135p. [Google Scholar]
- Bailey, R.T.; Gates, T.K.; Halvorson, A.D. Simulating variably-saturated reactive transport of selenium and nitrogen in agricultural groundwater systems. J. Contam. Hydrol. 2013, 149, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.T.; Hunter, W.J.; Gates, T.K. The influence of nitrate on selenium in irrigated agricultural groundwater systems. J. Environ. Qual. 2012, 41, 783–792. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Introduction to In Situ Bioremediation of Groundwater; Office of Solid Waste and Emergency Response. Office of Superfund Remediation and Technology Innovation (OSRTI), U.S. Environmental Protection Agency: Washington, DC, USA, 2013; EPA Report 542-R-13-018. [Google Scholar]
- Palmisano, A.; Hazen, T. Bioremediation of Metals and Radionuclides: What It Is and How It Works, 2nd ed.; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2003; Report No. LBNL-42595. [Google Scholar]
- Upper Los Angeles River Area Watermaster. Watermaster Service in the Upper Los Angeles River Area, Los Angeles County, October 1, 1979–September 30, 1980; Upper Los Angeles River Area Watermaster: Los Angeles, CA, USA, 1981; 51p. [Google Scholar]













| (a) | |||||||||||
| Sample | Type | Date | Specific Conductance (µS) | TDS (mg/L) | SO4 (mg/L) | Cl (mg/L) | NO3-N (mg/L) | NH3-N (mg/L) | HPO4 (mg/L) | Se (µg/L) | Tritium (TU) |
| N. Weephole1 | Groundwater | 1 May 2022 | 1595 | 1037 | 290 | 118 | 5.8 | <0.015 | 0.17 | 4.7 | -- |
| N. Weephole2 | Groundwater | 1 May 2022 | 1581 | 1028 | 275 | 118 | 9.8 | <0.015 | <0.15 | 6.5 | -- |
| S. Weephole3 | Groundwater | 1 May 2022 | 1554 | 1010 | 210 | 104 | 6.3 | 0.02 | <0.15 | 4.5 | -- |
| N. Weephole4 | Groundwater | 1 May 2022 | 2031 | 1320 | 540 | 164 | 10.0 | 0.02 | 0.25 | 8.0 | -- |
| N. Weephole5 | Groundwater | 1 May 2022 | 1976 | 1361 | 600 | 156 | 8.6 | 0.02 | 0.21 | 8.6 | -- |
| Above Corbin Ave Plate Weephole 1 South | Groundwater | 6 July 2022 | 2714 | 1764 | 800 | 198 | 6.2 | <0.015 | 0.16 | 12.0 | -- |
| Above Corbin South Side River Channel Collapse Seep | Groundwater | 6 July 2022 | 1891 | 1229 | 440 | 114 | 11.2 | <0.015 | <0.15 | 20.0 | -- |
| Below Corbin S Plate Weephole Sample3 | Groundwater | 6 July 2022 | 2667 | 1734 | 760 | 181 | 9.5 | <0.015 | <0.15 | 24.0 | -- |
| Below Corbin S Collapsed Weephole Sample4 | Groundwater | 6 July 2022 | 2140 | 1391 | 640 | 117 | 11.7 | <0.015 | <0.15 | 24.0 | -- |
| N Weephole Above Corbin Sample | Groundwater | 6 July 2022 | 1719 | 1117 | 350 | 110 | 11.6 | <0.015 | <0.15 | 18.0 | -- |
| N Seep @ Corbin Sample9 | Groundwater | 6 July 2022 | 2203 | 1432 | 600 | 104 | 12.5 | <0.015 | 0.17 | 26.0 | -- |
| S Groundwater seep above Winetka | Groundwater | 21 July 2022 | 1763 | 1146 | 280 | 134 | 12.9 | <0.015 | <0.15 | 16.0 | -- |
| Delco Ave Weephole South #2 | Groundwater | 21 July 2022 | 1687 | 1097 | 270 | 114 | 8.8 | 0.02 | <0.15 | 11.0 | -- |
| Below De Soto South Weephole #4 | Groundwater | 21 July 2022 | 1618 | 1052 | 260 | 114 | 8.0 | <0.015 | 0.56 | 10.0 | -- |
| Above Tampa N Plate Weephole 1 | Groundwater | 3 August 2022 | 2014 | 1309 | 520 | 87 | 9.5 | <0.015 | 0.18 | 40.0 | -- |
| Above Tampa S Plate Weephole 2 | Groundwater | 3 August 2022 | 1856 | 1206 | 530 | 79 | 11.0 | <0.015 | 0.31 | 30.0 | -- |
| Above Tampa N Plate Weephole 3 | Groundwater | 3 August 2022 | 2190 | 1424 | 600 | 84 | 11.1 | <0.015 | 0.15 | 41.0 | -- |
| Pre Sepulveda Weephole 1B | Groundwater | 18 April 2025 | 2305 | 1498 | 620 | 115 | 6.9 | <0.015 | 0.24 | 8.0 | 4.2 |
| Above Tampa N Plate Weephole 1 | Groundwater | 18 April 2025 | 2089 | 1358 | 530 | 95 | 10.0 | 0.02 | 0.20 | 44.0 | 1.1 |
| South Weephole 3 Above DeSoto | Groundwater | 18 April 2025 | 1526 | 992 | 205 | 101 | 7.4 | <0.015 | <0.15 | 7.6 | 5.4 |
| (b) | |||||||||||
| Sample | Type | Date | Specific Conductance (µS) | TDS (mg/L) | SO4 (mg/L) | Cl (mg/L) | NO3-N (mg/L) | NH3-N (mg/L) | HPO4 (mg/L) | Se (µg/L) | Tritium (TU) |
| LA River Channel Flow | LA River Water | 1 May 2022 | 2695 | 1752 | 900 | 260 | 0.8 | 0.04 | <0.15 | 2.9 | -- |
| LA River at Orange Line | LA River Water | 15 June 2022 | 2137 | 1389 | 615 | 159 | 2.2 | 0.16 | 0.15 | 10.0 | -- |
| LA River at Sepulveda Dam | LA River Water | 15 June 2022 | 1033 | 671 | 132 | 114 | 4.4 | 0.09 | <0.15 | 0.5 | -- |
| LA River Main Stem Below Winetka Sample5 | LA River Water | 7 July 2022 | 1948 | 1266 | 520 | 192 | 1.3 | 0.17 | <0.15 | 7.6 | -- |
| LA River Directly Under Tampa Sample6 | LA River Water | 6 July 2022 | 2118 | 1377 | 600 | 210 | 2.8 | 0.35 | <0.15 | 13.0 | -- |
| LA River at Winetka | LA River Water | 21 July 2022 | 2097 | 1363 | 600 | 192 | 2.1 | 0.06 | <0.15 | 8.1 | -- |
| LA River above De Soto River Flow | LA River Water | 3 August 2022 | 2603 | 1692 | 900 | 227 | 1.3 | 0.20 | <0.15 | 7.5 | -- |
| LA River below Winetka | LA River Water | 3 August 2022 | 2471 | 1606 | 720 | 212 | 2.1 | 0.10 | <0.15 | 6.3 | -- |
| (c) | |||||||||||
| Sample | Type | Date | Specific Conductance (µS) | TDS (mg/L) | SO4 (mg/L) | Cl (mg/L) | NO3-N (mg/L) | NH3-N (mg/L) | HPO4 (mg/L) | Se (µg/L) | Tritium (TU) |
| Bell Creek | Upstream Tributary | 1 May 2022 | 2537 | 1649 | 740 | 286 | 0.9 | 0.07 | <0.15 | 2.1 | -- |
| Arroyo Calabasas-5-1-22 | Upstream Tributary | 1 May 2022 | 2599 | 1689 | 980 | 280 | 0.4 | 0.02 | <0.15 | 2.3 | -- |
| (d) | |||||||||||
| Sample | Type | Date | Specific Conductance (µS) | TDS (mg/L) | SO4 (mg/L) | Cl (mg/L) | NO3-N (mg/L) | NH3-N (mg/L) | HPO4 (mg/L) | Se (µg/L) | Tritium (TU) |
| Bull Creek | Wastewater Outfall | 15 June 2022 | 984 | 640 | 120 | 109 | 4.3 | 0.41 | 0.15 | <0.4 | -- |
| Hayvenhurst | Wastewater Outfall | 15 June 2022 | 986 | 641 | 112 | 96 | 3.8 | 0.17 | 0.19 | -- | -- |
| Balboa Lake Discharge | Wastewater Outfall | 15 June 2022 | 985 | 640 | 108 | 118 | 4.9 | 0.36 | <0.15 | <0.4 | -- |
| Haskell Creek | Wastewater Outfall | 15 June 2022 | 981 | 638 | 112 | 109 | 3.0 | 0.24 | 0.26 | <0.4 | -- |
| Sepulveda Dam WW Discharge | Wastewater Outfall | 22 June 2022 | 998 | 649 | 116 | 126 | 5.2 | 0.86 | 0.29 | <0.4 | -- |
| (e) | |||||||||||
| Sample | Type | Date | Specific Conductance (µS) | TDS (mg/L) | SO4 (mg/L) | Cl (mg/L) | NO3-N (mg/L) | NH3-N (mg/L) | HPO4 (mg/L) | Se (µg/L) | Tritium (TU) |
| Tapwater below Delco Ave Southside | Tapwater | 21 July 2022 | 531 | 345 | 60 | 44 | 0.8 | 0.24 | <0.15 | -- | -- |
| Tapwater below Delco | Tapwater | 3 August 2022 | 529 | 344 | 60 | 49 | 0.8 | 0.42 | <0.15 | <0.4 | -- |
| Parameter | Mean | Median | Minimum | Maximum |
|---|---|---|---|---|
| Total Dissolved Solids (mg/L) | 1275 | 1269 | 992 | 1764 |
| Sulfate (mg/L) | 466 | 525 | 205 | 800 |
| Chloride (mg/L) | 120 | 114 | 79 | 198 |
| Nitrate–Nitrogen (mg/L) | 9.4 | 9.6 | 5.8 | 12.9 |
| Ammonia–Nitrogen (mg/L) | 0.011 | 0.0075 | 0.0075 | 0.020 |
| Orthophosphate (mg/L) | 0.16 | 0.16 | 0.075 | 0.56 |
| Selenium (µg/L) | 18.2 | 14.0 | 4.5 | 44.0 |
| Parameter | Mean | Median | Minimum | Maximum |
|---|---|---|---|---|
| Total Dissolved Solids (mg/L) | 1389 | 1383 | 671 | 1752 |
| Sulfate (mg/L) | 623 | 607 | 132 | 900 |
| Chloride (mg/L) | 196 | 201 | 114 | 259 |
| Nitrate–Nitrogen (mg/L) | 2.1 | 2.1 | 0.8 | 4.4 |
| Ammonia–Nitrogen (mg/L) | 0.15 | 0.13 | 0.040 | 0.35 |
| Orthophosphate (mg/L) | 0.084 | 0.075 | 0.075 | 0.15 |
| Selenium (µg/L) | 7.0 | 7.6 | 0.5 | 13.0 |
| Parameter | Mean | Median | Minimum | Maximum |
|---|---|---|---|---|
| Total Dissolved Solids (mg/L) | 641 | 640 | 638 | 649 |
| Sulfate (mg/L) | 114 | 112 | 108 | 120 |
| Chloride (mg/L) | 112 | 109 | 96 | 126 |
| Nitrate–Nitrogen (mg/L) | 4.2 | 4.3 | 3.0 | 5.2 |
| Ammonia–Nitrogen (mg/L) | 0.41 | 0.36 | 0.17 | 0.86 |
| Orthophosphate (mg/L) | 0.19 | 0.19 | 0.075 | 0.29 |
| Selenium (µg/L) | 0.2 | 0.2 | 0.2 | 0.2 |
| Mixing Averages/Parameters | 60% Arroyo Calabasas, 40% Bell Creek Mixing Average | Groundwater Average | Los Angeles River Average Above Sepulveda Basin |
|---|---|---|---|
| Chloride (mg/L) | 282.4 | 120.4 | 207.4 |
| Sulfate (mg/L) | 884.0 | 466.0 | 693.6 |
| Total Dissolved Solids (mg/L) | 1776.2 | 1349.6 | 1583.9 |
| Selenium (µg/L) | 2.2 | 18.2 | 7.9 |
| Nitrate-Nitrogen (mg/L) | 0.59 | 9.43 | 1.80 |
| Two Component Mixing Diagram—Figure 13 | Individual Chloride Mixing Equation | Individual Sulfate Mixing Equation | Individual Total Dissolved Solids Mixing Equation | Individual Selenium Mixing Equation | Individual Nitrate-Nitrogen Mixing Equation | Stream Gaging Between Upstream Tributaries and Tampa Avenue | |
|---|---|---|---|---|---|---|---|
| Contribution of LA River flow from Upstream Tributaries | 55% | 54% | 54% | 55% | 65% | 86% | 59% (41.9 L/s) |
| Contribution of LA River Flow from Groundwater | 45% | 46% | 46% | 45% | 35% | 14% | 41% (28.6 L/s) |
| Total Contribution | 100% | 100% | 100% | 100% | 100% | 100% | 100% (70.5 L/s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hibbs, B.; Camarena, A.; Drummond, M.; Alwood, L.; Peralta, M.; Eastoe, C. Groundwater Seepage into Lined Urban Channels: An Overlooked Source of Nutrients and Trace Elements in the Upper Los Angeles River. Water 2025, 17, 3164. https://doi.org/10.3390/w17213164
Hibbs B, Camarena A, Drummond M, Alwood L, Peralta M, Eastoe C. Groundwater Seepage into Lined Urban Channels: An Overlooked Source of Nutrients and Trace Elements in the Upper Los Angeles River. Water. 2025; 17(21):3164. https://doi.org/10.3390/w17213164
Chicago/Turabian StyleHibbs, Barry, Arianna Camarena, Margaret Drummond, Lillian Alwood, Maria Peralta, and Chris Eastoe. 2025. "Groundwater Seepage into Lined Urban Channels: An Overlooked Source of Nutrients and Trace Elements in the Upper Los Angeles River" Water 17, no. 21: 3164. https://doi.org/10.3390/w17213164
APA StyleHibbs, B., Camarena, A., Drummond, M., Alwood, L., Peralta, M., & Eastoe, C. (2025). Groundwater Seepage into Lined Urban Channels: An Overlooked Source of Nutrients and Trace Elements in the Upper Los Angeles River. Water, 17(21), 3164. https://doi.org/10.3390/w17213164

