The Impact of Climate Change on Water Quality: A Critical Analysis
Abstract
1. Introduction
- (1)
- How does climate change influence the quality and availability of surface-water resources?
- (2)
- What are the main pathways through which these changes affect human health?
- (3)
- How are water supply infrastructures adapting to the challenges posed by climate variability?
2. Methodology
2.1. Systematic Review of Literature
2.2. Bibliometric Analysis Using the VOSviewer Program
3. Results and Discussion
3.1. The Impact of Climate Change on Water Quality Indicators
3.1.1. Temperature
3.1.2. Nutrient Dynamics and Biogeochemical Processes
3.1.3. Dissolved Organic Matter (DOM) and Carbon Cycling
3.1.4. Organics and Inorganics Micropollutants
3.1.5. Microbiological Contaminants and Pathogen Dynamics
3.2. Implications for Drinking Water Production
3.3. Impacts on Water Supply Infrastructure
3.4. Implications for Human Health
3.5. Future Research Directions
4. Conclusions
- Technological innovation through the adoption of advanced treatment processes (membrane filtration, advanced oxidation, and adsorption), continuous monitoring of water quality, and adaptation of operating parameters to variable climatic conditions.
- Ecosystem measures through the restoration of wetlands, protection of riparian strips, and exploitation of natural nutrients and sediment retention processes.
- Strengthening governance through collaboration between authorities, operators, and researchers so that adaptation policies are integrated and consistent with European directives and national legislation.
- Developing complex models that correlate hydrological, chemical, and biological processes under the influence of climate change;
- Expanding long-term monitoring programs, especially for emerging pollutants and pathogenic microorganisms;
- Assessing the socio-economic impact of water quality degradation and risks to public health.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| IPCC | Report on Intergovernmental Panel on Climate Change | 
| GDP | Gross domestic product | 
| RCP | Representative Concentration Pathways | 
| SGDs | Sustainable Development Goals | 
| PRISMA | Preferred Reporting Items for Systematic reviews and Meta-Analyses | 
| DO | Dissolved oxygen | 
| CO2 | Carbon dioxide | 
| TSS | Total suspended solids | 
| N | Nitrogen | 
| P | Phosphorus | 
| C | Carbon | 
| DOM | Dissolved organic matter | 
| CDM | Chromophoric dissolved organic matter | 
| DOC | Dissolved organic carbon | 
| NOM | Natural organic matter | 
| DBPs | Disinfection by-products | 
| POPs | Persistent organic pollutants | 
| THM | Trihalomethane | 
| PFAS | Per- and polyfluoroalkyl substances | 
| PVC | Polyvinyl chloride | 
| PE | Polyethylene | 
References
- Muniandy, J.M. The Impact of Climate Change on Water Quality: A Bibliometric Review (2010–2024). Malays. J. Civ. Eng. 2025, 37, 45–50. [Google Scholar] [CrossRef]
- Hesse, C.; Krysanova, V.; Li, Y.; Urban, M.A. Modeling Climate and Management Change Impacts on Water Quality and In-Stream Processes in the Elbe River Basin. Water 2016, 8, 40. [Google Scholar] [CrossRef]
- Priya, A.K.; Muruganandam, M.; Rajamanickam, S.; Sivarethinamohan, S.; Gaddam, M.K.R.; Velusamy, P.; R, G.; Ravindiran, G.; Gurugubelli, T.R.; Muniasamy, S.K. Impact of Climate Change and Anthropogenic Activities on Aquatic Ecosystem—A Review. Environ. Res 2023, 238, 117233. [Google Scholar] [CrossRef]
- Parmesan, C.; Morecroft, M.D.; Trisurat, Y.; Mezzi, D.; Langsdorf, S.; Löschke, S.; Möller, V.; Okem, A.; Officer, S.; Rama, B.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Żywiec, J.; Szpak, D.; Wartalska, K.; Grzegorzek, M. The Impact of Climate Change on the Failure of Water Supply Infrastructure: A Bibliometric Analysis of the Current State of Knowledge. Water 2024, 16, 1043. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, Z.; Leng, G.; Xie, H.; Hou, X.; Wei, G. Impacts of Climate Change on Watershed Systems and Potential Adaptation through BMPs in a Drinking Water Source Area. J. Hydrol. 2019, 573, 123–135. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.V.; Baures, E.; Clement, M.; Thomas, O. Impacts of Climate Change on Surface Water Quality in Relation to Drinking Water Production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Sukanya, S.; Joseph, S. Climate Change Impacts on Water Resources: An Overview. In Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence; Elsevier: Amsterdam, The Netherlands, 2023; pp. 55–76. [Google Scholar] [CrossRef]
- Guevara-Ochoa, C.; Medina-Sierra, A.; Vives, L. Spatio-Temporal Effect of Climate Change on Water Balance and Interactions between Groundwater and Surface Water in Plains. Sci. Total Environ. 2020, 722, 137886. [Google Scholar] [CrossRef]
- United Nations—Climate Reports. Available online: https://www.un.org/en/climatechange/reports (accessed on 10 August 2025).
- Wilby, R.L.; Whitehead, P.G.; Wade, A.J.; Butterfield, D.; Davis, R.J.; Watts, G. Integrated Modelling of Climate Change Impacts on Water Resources and Quality in a Lowland Catchment: River Kennet, UK. J. Hydrol. 2006, 330, 204–220. [Google Scholar] [CrossRef]
- European Climate Risk Assessment: EEA Report 01/2024. Available online: https://www.eea.europa.eu/en/analysis/publications/european-climate-risk-assessment (accessed on 4 August 2025).
- Johnson, T.; Butcher, J.; Santell, S.; Schwartz, S.; Julius, S.; Leduc, S. A Review of Climate Change Effects on Practices for Mitigating Water Quality Impacts. J. Water Clim. Change 2022, 13, 1684–1705. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Shen, Z.; Xie, H. Drought Impacts on Hydrology and Water Quality under Climate Change. Sci. Total Environ. 2023, 858, 159854. [Google Scholar] [CrossRef]
- Cha, E.J.; Knutson, T.R.; Lee, T.C.; Ying, M.; Nakaegawa, T. Third Assessment on Impacts of Climate Change on Tropical Cyclones in the Typhoon Committee Region—Part II: Future Projections. Trop. Cyclone Res. Rev. 2020, 9, 75–86. [Google Scholar] [CrossRef]
- McMahon, K.; Gray, C. Climate Change, Social Vulnerability and Child Nutrition in South Asia. Glob. Environ. Change 2021, 71, 102414. [Google Scholar] [CrossRef] [PubMed]
- Maiolo, M.; Mendicino, G.; Pantusa, D.; Senatore, A. Optimization of Drinking Water Distribution Systems in Relation to the Effects of Climate Change. Water 2017, 9, 803. [Google Scholar] [CrossRef]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of Climate Change on the Fate of Contaminants through Extreme Weather Events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef] [PubMed]
- The Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/ (accessed on 4 August 2025).
- United Nations Sustainable Development Goal 6 Water and Sanitation. Available online: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 10 August 2025).
- Lam, Q.D.; Meon, G.; Pätsch, M. Coupled Modelling Approach to Assess Effects of Climate Change on a Coastal Groundwater System. Groundw. Sustain. Dev. 2021, 14, 100633. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Winn, J.P.; Hogan, E.; Killick, R.E.; Dunn, R.J.H.; Osborn, T.J.; Jones, P.D.; Simpson, I.R. An Updated Assessment of Near-Surface Temperature Change From 1850: The HadCRUT5 Data Set. J. Geophys. Res. Atmos. 2021, 126, e2019JD032361. [Google Scholar] [CrossRef]
- Dumitrescu, A.; Micu, D.; Guijarro, J.; Manea, A.; Cheval, S. Long-Term Homogenized Air Temperature and Precipitation Datasets in Romania, 1901–2023. Sci. Data 2025, 12, 1116. [Google Scholar] [CrossRef]
- Luo, Y.; Ficklin, D.L.; Liu, X.; Zhang, M. Assessment of Climate Change Impacts on Hydrology and Water Quality with a Watershed Modeling Approach. Sci. Total Environ. 2013, 450–451, 72–82. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A Review of the Potential Impacts of Climate Change on Surface Water Quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Banerjee, C.; Sharma, A.; Kumar D, N. Decline in Terrestrial Water Recharge with Increasing Global Temperatures. Sci. Total Environ. 2021, 764, 142913. [Google Scholar] [CrossRef]
- Carere, M.; Miniero, R.; Cicero, M.R. Potential Effects of Climate Change on the Chemical Quality of Aquatic Biota. TrAC Trends Anal. Chem. 2011, 30, 1214–1221. [Google Scholar] [CrossRef]
- Leščešen, I.; Gnjato, S.; Vujačić, D.; Petrović, A.M.; Radevski, I. Seasonal Variability Changes and Trends in Minimum Discharge for Western Balkan Rivers. J. Hydrol. Reg. Stud. 2025, 60, 102529. [Google Scholar] [CrossRef]
- Cool, G.; Delpla, I.; Gagnon, P.; Lebel, A.; Sadiq, R.; Rodriguez, M.J. Climate change and drinking water quality: Predicting high trihalomethane occurrence in water utilities supplied by surface water. Environ. Model. Softw. 2019, 120, 104479. [Google Scholar] [CrossRef]
- Yazdandoost, F.; Noruzi, M.M.; Yazdani, S.A. Sustainability Assessment Approaches Based on Water-Energy Nexus: Fictions and Nonfictions about Non-Conventional Water Resources. Sci. Total Environ. 2021, 758, 143703. [Google Scholar] [CrossRef]
- Lewis, W.M.; McCutchan, J.H.; Roberson, J. Effects of Climatic Change on Temperature and Thermal Structure of a Mountain Reservoir. Water Resour. Res. 2019, 55, 1988–1999. [Google Scholar] [CrossRef]
- Firoozi, F.; Roozbahani, A.; Massah Bavani, A.R. Developing a Framework for Assessment of Climate Change Impact on Thermal Stratification of Dam Reservoirs. Int. J. Environ. Sci. Technol. 2020, 17, 2295–2310. [Google Scholar] [CrossRef]
- Rozemeijer, J.; Noordhuis, R.; Ouwerkerk, K.; Dionisio Pires, M.; Blauw, A.; Hooijboer, A.; van Oldenborgh, G.J. Climate Variability Effects on Eutrophication of Groundwater, Lakes, Rivers, and Coastal Waters in the Netherlands. Sci. Total Environ. 2021, 771, 145366. [Google Scholar] [CrossRef]
- Meerhoff, M.; Audet, J.; Davidson, T.A.; De Meester, L.; Hilt, S.; Kosten, S.; Liu, Z.; Mazzeo, N.; Paerl, H.; Scheffer, M.; et al. Feedback between Climate Change and Eutrophication: Revisiting the Allied Attack Concept and How to Strike Back. Inland Waters 2022, 12, 187–204. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Döll, P.; Kabat, P.; Jiménez, B.; Miller, K.A.; Oki, T.; Sen, Z.; Shiklomanov, I.A. Freshwater resources and their management. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK; pp. 173–210.
- Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloglu, I.; et al. Record-Setting Algal Bloom in Lake Erie Caused by Agricultural and Meteorological Trends Consistent with Expected Future Conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6448–6452. [Google Scholar] [CrossRef]
- United Nations Framework Convention Climate Change United Nations. Available online: https://unfccc.int/process-and-meetings/what-is-the-united-nations-framework-convention-on-climate-change (accessed on 10 August 2025).
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. Climate Change 2023: Synthesis Report; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Ahmad, T.; Shaban, I.A.; Zayed, T. A Review of Climatic Impacts on Water Main Deterioration. Urban Clim. 2023, 49, 101552. [Google Scholar] [CrossRef]
- Brignardello-Petersen, R.; Santesso, N.; Guyatt, G.H. Systematic Reviews of the Literature: An Introduction to Current Methods. Am. J. Epidemiol. 2025, 194, 536–542. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L.; Dekker, R.; van den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. JASIST 2010, 61, 12. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- van Eck, N.J.; Waltman, L. Citation-Based Clustering of Publications Using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [PubMed]
- Brkić, Ž. Increasing Water Temperature of the Largest Freshwater Lake on the Mediterranean Islands as an Indicator of Global Warming. Heliyon 2023, 9, e19248. [Google Scholar] [CrossRef]
- Gude, V.G. Desalination and Water Reuse to Address Global Water Scarcity. Rev. Environ. Sci. Biotechnol. 2017, 16, 591–609. [Google Scholar] [CrossRef]
- Šarović, K.; Klaić, Z.B. Effect of Climate Change on Water Temperature and Stratification of a Small, Temperate, Karstic Lake (Lake Kozjak, Croatia). Environ. Process. 2023, 10, 49. [Google Scholar] [CrossRef]
- Sequeira, M.D.; Castilho, A.; Tavares, A.O.; Dinis, P. The Rural Fires of 2017 and Their Influences on Water Quality: An Assessment of Causes and Effects. Int. J. Environ. Res. Public Health 2023, 20, 32. [Google Scholar] [CrossRef]
- Ali, A.A.; Iorhemen, O.T.; Thring, R.W. Climate Adaptation and Resilience of Biofiltration as a Low-Cost Technological Solution for Water Treatment—A Critical Review. Clean. Water 2025, 3, 100062. [Google Scholar] [CrossRef]
- Han, Y.; Bu, H. The Impact of Climate Change on the Water Quality of Baiyangdian Lake (China) in the Past 30 Years (1991–2020). Sci. Total Environ. 2023, 870, 161957. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsäläinen, M. Removal of Natural Organic Matter in Drinking Water Treatment by Coagulation: A Comprehensive Review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef]
- Couture, S.; Houle, D.; Gagnon, C. Increases of Dissolved Organic Carbon in Temperate and Boreal Lakes in Quebec, Canada. Environ. Sci. Pollut. Res. 2012, 19, 361–371. [Google Scholar] [CrossRef]
- Noyes, P.D.; McElwee, M.K.; Miller, H.D.; Clark, B.W.; Van Tiem, L.A.; Walcott, K.C.; Erwin, K.N.; Levin, E.D. The Toxicology of Climate Change: Environmental Contaminants in a Warming World. Environ. Int. 2009, 35, 971–986. [Google Scholar] [CrossRef]
- Ebi, K.L.; Mills, D.M.; Smith, J.B.; Grambsch, A. Climate Change and Human Health Impacts in the United States: An Update on the Results of the U.S. National Assessment. Environ. Health Perspect. 2006, 114, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.A.; Wayne, P.M.; Macklin, E.A.; Muilenberg, M.L.; Wagner, C.J.; Epstein, P.R.; Bazzaz, F.A. Interaction of the Onset of Spring and Elevated Atmospheric CO2 on Ragweed (Ambrosia artemisiifolia L.) Pollen Production. Environ. Health Perspect. 2006, 114, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modelling Blue and Green Water Resources Availability in Iran. Hydrol. Process. 2009, 23, 486–501. [Google Scholar] [CrossRef]
- Dory, F.; Nava, V.; Spreafico, M.; Orlandi, V.; Soler, V.; Leoni, B. Interaction between Temperature and Nutrients: How Does the Phytoplankton Community Cope with Climate Change? Sci. Total Environ. 2024, 906, 167566. [Google Scholar] [CrossRef]
- Yaghouti, M.; Heidarzadeh, N.; Ulloa, H.N.; Nakhaei, N. The Impacts of Climate Change on Thermal Stratification and Dissolved Oxygen in the Temperate, Dimictic Mississippi Lake, Ontario. Ecol. Inf. 2023, 75, 102087. [Google Scholar] [CrossRef]
- Müller, B.; Steinsberger, T.; Schwefel, R.; Gächter, R.; Sturm, M.; Wüest, A. Oxygen Consumption in Seasonally Stratified Lakes Decreases Only below a Marginal Phosphorus Threshold. Sci. Rep. 2019, 9, 18054. [Google Scholar] [CrossRef]
- Anderson, L.E.; Krkošek, W.H.; Stoddart, A.K.; Trueman, B.F.; Gagnon, G.A. Lake Recovery Through Reduced Sulfate Deposition: A New Paradigm for Drinking Water Treatment. Environ. Sci. Technol. 2017, 51, 1414–1422. [Google Scholar] [CrossRef]
- Kaushal, S.S. Increased Salinization Decreases Safe Drinking Water. Environ. Sci. Technol. 2016, 50, 2765–2766. [Google Scholar] [CrossRef]
- Leveque, B.; Burnet, J.B.; Dorner, S.; Bichai, F. Impact of Climate Change on the Vulnerability of Drinking Water Intakes in a Northern Region. Sustain. Cities Soc. 2021, 66, 102656. [Google Scholar] [CrossRef]
- Komatsu, E.; Fukushima, T.; Harasawa, H. A Modeling Approach to Forecast the Effect of Long-Term Climate Change on Lake Water Quality. Ecol. Model. 2007, 209, 351–366. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, Y.; Critto, A.; Wu, J.; Fan, J.; Zheng, Z.; Zhang, Y. The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China. Sustainability 2016, 8, 229. [Google Scholar] [CrossRef]
- Paul, M.J.; LeDuc, S.D.; Lassiter, M.G.; Moorhead, L.C.; Noyes, P.D.; Leibowitz, S.G. Wildfire Induces Changes in Receiving Waters: A Review with Considerations for Water Quality Management. Water Resour. Res. 2022, 58, e2021WR030699. [Google Scholar] [CrossRef]
- Böning, C.W.; Dispert, A.; Visbeck, M.; Rintoul, S.R.; Schwarzkopf, F.U. The Response of the Antarctic Circumpolar Current to Recent Climate Change. Nat. Geosci. 2008, 1, 864–869. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and Highly Variable Warming of Lake Surface Waters around the Globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef]
- Su, J.Q.; Wang, X.; Yang, Z.F. Lake Eutrophication Modeling in Considering Climatic Factors Change: A Review. Ying Yong Sheng Tai Xue Bao 2012, 23, 3197–3206. [Google Scholar]
- Pilla, R.M.; Williamson, C.E.; Adamovich, B.V.; Adrian, R.; Anneville, O.; Chandra, S.; Colom-Montero, W.; Devlin, S.P.; Dix, M.A.; Dokulil, M.T.; et al. Deeper Waters Are Changing Less Consistently than Surface Waters in a Global Analysis of 102 Lakes. Sci. Rep. 2020, 10, 20514. [Google Scholar] [CrossRef] [PubMed]
- Menberg, K.; Blum, P.; Kurylyk, B.L.; Bayer, P. Observed Groundwater Temperature Response to Recent Climate Change. Hydrol. Earth Syst. Sci. 2014, 18, 4453–4466. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Q.; Liu, M.; Guo, J.; Xia, J.; Wang, J.; Qiu, Y.; Zou, J.; He, W.; Jiang, F. Treatment and Remediation of Metal-Contaminated Water and Groundwater in Mining Areas by Biological Sulfidogenic Processes: A Review. J. Hazard. Mater. 2023, 443, 130377. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Lyu, H.; Xu, G.; Chi, G.; Su, X. Hydrogeochemical Changes during Artificial Groundwater Well Recharge. Sci. Total Environ. 2023, 900, 165778. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, S.; Liu, W.; Su, Q.; Tong, H.; Xu, X.; Gao, Z.; Liu, J. Hydrochemical Characteristics and Irrigation Suitability Evaluation of Groundwater with Different Degrees of Seawater Intrusion. Water 2020, 12, 3460. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef]
- Zakaria, N.; Anornu, G.; Adomako, D.; Owusu-Nimo, F.; Gibrilla, A. Evolution of Groundwater Hydrogeochemistry and Assessment of Groundwater Quality in the Anayari Catchment. Groundw. Sustain. Dev. 2021, 12, 100489. [Google Scholar] [CrossRef]
- Antão, L.H.; Bates, A.E.; Blowes, S.A.; Waldock, C.; Supp, S.R.; Magurran, A.E.; Dornelas, M.; Schipper, A.M. Temperature-Related Biodiversity Change across Temperate Marine and Terrestrial Systems. Nat. Ecol. Evol. 2020, 4, 927–933. [Google Scholar] [CrossRef]
- Khaliq, I.; Chollet Ramampiandra, E.; Vorburger, C.; Narwani, A.; Schuwirth, N. The Effect of Water Temperature Changes on Biological Water Quality Assessment. Ecol. Indic. 2024, 159, 111652. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.A.A.N.; Scholz, M. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef]
- Leal Filho, W.; Azeiteiro, U.M.; Balogun, A.L.; Setti, A.F.F.; Mucova, S.A.R.; Ayal, D.; Totin, E.; Lydia, A.M.; Kalaba, F.K.; Oguge, N.O. The Influence of Ecosystems Services Depletion to Climate Change Adaptation Efforts in Africa. Sci. Total Environ. 2021, 779, 146414. [Google Scholar] [CrossRef]
- Zeleke, T.T.; Zakaria Wani Lukwasa, A.; Ture Beketie, K.; Yayeh Ayal, D. Analysis of Spatio-Temporal Precipitation and Temperature Variability and Trend over Sudd-Wetland, Republic of South Sudan. Clim. Serv. 2024, 34, 100451. [Google Scholar] [CrossRef]
- Heddam, S.; Ptak, M.; Zhu, S. Modelling of Daily Lake Surface Water Temperature from Air Temperature: Extremely Randomized Trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN. J. Hydrol. 2020, 588, 125130. [Google Scholar] [CrossRef]
- Jane, S.F.; Hansen, G.J.A.; Kraemer, B.M.; Leavitt, P.R.; Mincer, J.L.; North, R.L.; Pilla, R.M.; Stetler, J.T.; Williamson, C.E.; Woolway, R.I.; et al. Widespread Deoxygenation of Temperate Lakes. Nature 2021, 594, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Gaitán, E.; Monjo, R.; Pórtoles, J.; Pino-Otín, M.R. Projection of Temperatures and Heat and Cold Waves for Aragón (Spain) Using a Two-Step Statistical Downscaling of CMIP5 Model Outputs. Sci. Total Environ. 2019, 650, 2778–2795. [Google Scholar] [CrossRef]
- Kraemer, B.M.; Anneville, O.; Chandra, S.; Dix, M.; Kuusisto, E.; Livingstone, D.M.; Rimmer, A.; Schladow, S.G.; Silow, E.; Sitoki, L.M.; et al. Morphometry and Average Temperature Affect Lake Stratification Responses to Climate Change. Geophys. Res. Lett. 2015, 42, 4981–4988. [Google Scholar] [CrossRef]
- Compaoré, S.M.C.; Delpla, I.; Behmel, S.; Rodriguez, M.J. Perceptions and Attitudes of Drinking Water Supply Systems Staff Towards Climate Change Adaptation for Drinking Water Quality Management. Environ. Process. 2025, 12, 8. [Google Scholar] [CrossRef]
- Reynolds, C. The Ecology of Phytoplankton; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Farrell, K.J.; Ward, N.K.; Krinos, A.I.; Hanson, P.C.; Daneshmand, V.; Figueiredo, R.J.; Carey, C.C. Ecosystem-Scale Nutrient Cycling Responses to Increasing Air Temperatures Vary with Lake Trophic State. Ecol. Model. 2020, 430, 109134. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, M. Variation of Dissolved Oxygen in the Experiments of Occurrence & Disappearance for Microcystis Bloom. Procedia Environ. Sci. 2013, 18, 559–566. [Google Scholar] [CrossRef]
- Salmaso, N.; Tolotti, M. Phytoplankton and Anthropogenic Changes in Pelagic Environments. Hydrobiologia 2021, 848, 251–284. [Google Scholar] [CrossRef]
- Alkhadher, S.A.A.; Sidek, L.M.; Khan, M.S.J.; Al-Habshi, M.M.A.; Kurniawan, T.A. Seasonal Variations in Water Quality and Hydrological Dynamics in a Tropical Reservoir Driven by Rainfall, Runoff, and Anthropogenic Activities. Sci. Rep. 2025, 15, 35589. [Google Scholar] [CrossRef]
- Puchlik, M.; Piekutin, J.; Dyczewska, K. Analysis of the Impact of Climate Change on Surface Water Quality in North-Eastern Poland. Energies 2021, 15, 164. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.S.; Somridhivej, B. Alkalinity and Hardness: Critical but Elusive Concepts in Aquaculture. J. World Aquac. Soc. 2016, 47, 6–41. [Google Scholar] [CrossRef]
- Yuan, D.; Li, S.; Ye, C.; Liu, W.; Xu, J. Dissolved Organic Matter (DOM) Rather than Warming and Eutrophication Directly Affects Partial Pressure of CO2 (PCO2) in Mesocosm Systems. Water Res. 2024, 267, 122448. [Google Scholar] [CrossRef]
- Evans, C.D.; Monteith, D.T.; Cooper, D.M. Long-Term Increases in Surface Water Dissolved Organic Carbon: Observations, Possible Causes and Environmental Impacts. Environ. Pollut. 2005, 137, 55–71. [Google Scholar] [CrossRef]
- Butman, D.; Raymond, P.A. Significant Efflux of Carbon Dioxide from Streams and Rivers in the United States. Nat. Geosci. 2011, 4, 839–842. [Google Scholar] [CrossRef]
- Liu, S.; Hou, J.; Suo, C.; Chen, J.; Liu, X.; Fu, R.; Wu, F. Molecular-Level Composition of Dissolved Organic Matter in Distinct Trophic States in Chinese Lakes: Implications for Eutrophic Lake Management and the Global Carbon Cycle. Water Res. 2022, 217, 118438. [Google Scholar] [CrossRef] [PubMed]
- Massicotte, P.; Asmala, E.; Stedmon, C.; Markager, S. Global Distribution of Dissolved Organic Matter along the Aquatic Continuum: Across Rivers, Lakes and Oceans. Sci. Total Environ. 2017, 609, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Ritson, J.P.; Graham, N.J.D.; Templeton, M.R.; Clark, J.M.; Gough, R.; Freeman, C. The Impact of Climate Change on the Treatability of Dissolved Organic Matter (DOM) in Upland Water Supplies: A UK Perspective. Sci. Total Environ. 2014, 473–474, 714–730. [Google Scholar] [CrossRef]
- Ryberg, K.R.; Chanat, J.G. Climate Extremes as Drivers of Surface-Water-Quality Trends in the United States. Sci. Total Environ. 2022, 809, 152165. [Google Scholar] [CrossRef]
- Wologo, E.; Shakil, S.; Zolkos, S.; Textor, S.; Ewing, S.; Klassen, J.; Spencer, R.G.M.; Podgorski, D.C.; Tank, S.E.; Baker, M.A.; et al. Stream Dissolved Organic Matter in Permafrost Regions Shows Surprising Compositional Similarities but Negative Priming and Nutrient Effects. Glob. Biogeochem. Cycles 2021, 35, e2020GB006719. [Google Scholar] [CrossRef]
- Lepane, V.; Depret, L.; Väli, A.L.; Suursööt, K. Impact of Seasonal Climate Change on Optical and Molecular Properties of River Water Dissolved Organic Matter by HPLC-SEC and UV-Vis Spectroscopy. Chem. Biol. Technol. Agric. 2015, 2, 14. [Google Scholar] [CrossRef]
- Teodosiu, C.; Gilca, A.F.; Barjoveanu, G.; Fiore, S. Emerging Pollutants Removal through Advanced Drinking Water Treatment: A Review on Processes and Environmental Performances Assessment. J. Clean. Prod. 2018, 197, 1210–1221. [Google Scholar] [CrossRef]
- Valdivia-Garcia, M.; Weir, P.; Graham, D.W.; Werner, D. Predicted Impact of Climate Change on Trihalomethanes Formation in Drinking Water Treatment. Sci. Rep. 2019, 9, 9967. [Google Scholar] [CrossRef]
- Zhang, H.; Huo, S.; Yeager, K.M.; Xi, B.; Zhang, J.; He, Z.; Ma, C.; Wu, F. Accumulation of Arsenic, Mercury and Heavy Metals in Lacustrine Sediment in Relation to Eutrophication: Impacts of Sources and Climate Change. Ecol. Indic. 2018, 93, 771–780. [Google Scholar] [CrossRef]
- Punia, A. Role of Temperature, Wind, and Precipitation in Heavy Metal Contamination at Copper Mines: A Review. Environ. Sci. Pollut. Res. 2021, 28, 4056–4072. [Google Scholar] [CrossRef]
- Osorio, V.; Marcé, R.; Pérez, S.; Ginebreda, A.; Cortina, J.L.; Barceló, D. Occurrence and modeling of pharmaceuticals on a sewage-impacted Mediterranean river and their dynamics under different hydrological conditions. Sci. Total Environ. 2012, 440, 3–13. [Google Scholar] [CrossRef]
- Ripszam, M.; Gallampois, C.M.J.; Berglund, A.; Larsson, H.; Andersson, A.; Tysklind, M.; Haglund, P. Effects of Predicted Climatic Changes on Distribution of Organic Contaminants in Brackish Water Mesocosms. Sci. Total Environ. 2015, 517, 10–21. [Google Scholar] [CrossRef]
- Petrovic, M.; Ginebreda, A.; Acuña, V.; Batalla, R.J.; Elosegi, A.; Guasch, H.; de Alda, M.L.; Marcé, R.; Muñoz, I.; Navarro-Ortega, A.; et al. Combined Scenarios of Chemical and Ecological Quality under Water Scarcity in Mediterranean Rivers. TrAC Trends Anal. Chem. 2011, 30, 1269–1278. [Google Scholar] [CrossRef]
- Welden, N.A.C.; Lusher, A.L. Impacts of Changing Ocean Circulation on the Distribution of Marine Microplastic Litter. Integr. Environ. Assess Manag. 2017, 13, 483–487. [Google Scholar] [CrossRef]
- Lenka, S.P.; Kah, M.; Padhye, L.P. Occurrence and Fate of Poly- and Perfluoroalkyl Substances (PFAS) in Urban Waters of New Zealand. J. Hazard. Mater. 2022, 428, 128257. [Google Scholar] [CrossRef] [PubMed]
- Stanichny, S.; Ratner, Y.; Shokurov, M.; Stanychna, R.; Soloviev, D.; Burdyugov, V. Wind Impact on the Black Sea Ecosystem. EGUGA 2010, 12, 2168. [Google Scholar]
- Wu, Q.; Xia, X.; Mou, X.; Zhu, B.; Zhao, P.; Dong, H. Effects of Seasonal Climatic Variability on Several Toxic Contaminants in Urban Lakes: Implications for the Impacts of Climate Change. J. Environ. Sci. 2014, 26, 2369–2378. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Q.; Wang, X.; Ji, H.; Quigley, E.J.; Sharbatmaleki, M.; Li, S.; Xi, B.; Sun, B.; Li, C. Effects of Hydrological and Climatic Variables on Cyanobacterial Blooms in Four Large Shallow Lakes Fed by the Yangtze River. Environ. Sci. Ecotechnol. 2021, 5, 100069. [Google Scholar] [CrossRef]
- Su, Y.; Huang, F.; Dai, Z.; Wang, A.J.; Gao, S.H. Environmental Ecology and Health Risk Assessment of Pathogens in the Environment. In Water Security: Big Data-Driven Risk Identification, Assessment and Control of Emerging Contaminants; Elsevier: Amsterdam, The Netherlands, 2024; pp. 99–121. ISBN 9780443141706. [Google Scholar]
- Trinanes, J.; Martinez-Urtaza, J. Future Scenarios of Risk of Vibrio Infections in a Warming Planet: A Global Mapping Study. Lancet Planet Health 2021, 5, e426–e435. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, J.; Liang, J.; Sun, H.; Zhang, X.H. Spatiotemporal Dynamics of the Total and Active Vibrio spp. Populations throughout the Changjiang Estuary in China. Environ. Microbiol. 2020, 22, 4438–4455. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Oliver, J.D.; Alam, M.; Ali, A.; Waldor, M.K.; Qadri, F.; Martinez-Urtaza, J. Vibrio spp. Infections. Nat. Rev. Dis. Primers 2018, 4, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Jöhnk, K.D.; Huisman, J.; Sharples, J.; Sommeijer, B.; Visser, P.M.; Stroom, J.M. Summer Heatwaves Promote Blooms of Harmful Cyanobacteria. Glob. Chang Biol. 2008, 14, 495–512. [Google Scholar] [CrossRef]
- Ma, B.; Hu, C.; Zhang, J.; Ulbricht, M.; Panglisch, S. Impact of Climate Change on Drinking Water Safety. ACS EST Water 2022, 2, 259–261. [Google Scholar] [CrossRef]
- Jiang, J.Q. The Role of Coagulation in Water Treatment. Curr. Opin. Chem. Eng. 2015, 8, 36–44. [Google Scholar] [CrossRef]
- Fitzpatrick, C.S.B.; Fradin, E.; Gregory, J. Temperature Effects on Flocculation, Using Different Coagulants. Water Sci. Technol. 2004, 50, 171–175. [Google Scholar] [CrossRef]
- Teksoy, A.; Alkan, U.; Başkaya, H.S. Influence of the Treatment Process Combinations on the Formation of THM Species in Water. Sep. Purif. Technol. 2008, 61, 447–454. [Google Scholar] [CrossRef]
- Shah, M.; Mazhar, M.A.; Ahmed, S.; Lew, B.; Khalil, N. Recent Trends in Controlling the Disinfection By-Products Before Their Formation in Drinking Water: A Review. In Drinking Water Disinfection By-Products: Sources, Fate and Remediation; Springer: Cham, Switzerland, 2024; pp. 177–192. [Google Scholar] [CrossRef]
- Yang, X.; Shang, C.; Westerhoff, P. Factors Affecting Formation of Haloacetonitriles, Haloketones, Chloropicrin and Cyanogen Halides during Chloramination. Water Res. 2007, 41, 1193–1200. [Google Scholar] [CrossRef]
- Valdivia-Garcia, M.; Weir, P.; Frogbrook, Z.; Graham, D.W.; Werner, D. Climatic, Geographic and Operational Determinants of Trihalomethanes (THMs) in Drinking Water Systems. Sci. Rep. 2016, 6, 35027. [Google Scholar] [CrossRef] [PubMed]
- Ferdowsi, A.; Piadeh, F.; Behzadian, K.; Mousavi, S.F.; Ehteram, M. Urban Water Infrastructure: A Critical Review on Climate Change Impacts and Adaptation Strategies. Urban Clim. 2024, 58, 102132. [Google Scholar] [CrossRef]
- Borgomeo, E.; Kingdom, B.; Plummer-Braeckman, J.; Yu, W. Water Infrastructure in Asia: Financing and Policy Options. Int. J. Water Resour. Dev. 2023, 39, 895–914. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, X.; Yu, A.; Speitel, M.; Yu, X. Assessment of the Impacts of Climat Change on Water Supply System Pipe Failures. Sci. Rep. 2023, 13, 7349. [Google Scholar] [CrossRef]
- Barton, N.A.; Farewell, T.S.; Hallett, S.H.; Acland, T.F. Improving Pipe Failure Predictions: Factors Affecting Pipe Failure in Drinking Water Networks. Water Res. 2019, 164, 114926. [Google Scholar] [CrossRef] [PubMed]
- Lyle, Z.J.; VanBriesen, J.M.; Samaras, C. Drinking Water Utility-Level Understanding of Climate Change Effects to System Reliability. ACS EST Water 2023, 3, 2395–2406. [Google Scholar] [CrossRef]
- Gould, S.J.F.; Boulaire, F.A.; Burn, S.; Zhao, X.L.; Kodikara, J.K. Seasonal Factors Influencing the Failure of Buried Water Reticulation Pipes. Water Sci. Technol. 2011, 63, 2692–2699. [Google Scholar] [CrossRef]
- Wols, B.A.; Vogelaar, A.; Moerman, A.; Raterman, B. Effects of Weather Conditions on Drinking Water Distribution Pipe Failures in the Netherlands. Water Supply 2019, 19, 404–416. [Google Scholar] [CrossRef]
- Fuchs-Hanusch, D.; Friedl, F.; Scheucher, R.; Kogseder, B.; Muschalla, D. Effect of Seasonal Climatic Variance on Water Main Failure Frequencies in Moderate Climate Regions. Water Supply 2013, 13, 435–446. [Google Scholar] [CrossRef]
- Rezaei, H.; Ryan, B.; Stoianov, I. Pipe Failure Analysis and Impact of Dynamic Hydraulic Conditions in Water Supply Networks. Procedia Eng. 2015, 119, 253–262. [Google Scholar] [CrossRef]
- Wols, B.A.; van Thienen, P. Impact of Climate on Pipe Failure: Predictions of Failures for Drinking Water Distribution Systems. Eur. J. Transp. Infrastruct. Res. 2016, 16, 240–253. [Google Scholar] [CrossRef]
- Levy, K.; Smith, S.M.; Carlton, E.J. Climate Change Impacts on Waterborne Diseases: Moving Toward Designing Interventions. Curr. Environ. Health Rep. 2018, 5, 272. [Google Scholar] [CrossRef]
- Kozari, A.; Voutsa, D. Impact of Climate Change on Formation of Nitrogenous Disinfection by Products. Part I: Sea Level Rise and Flooding Events. Sci. Total Environ. 2023, 901, 166041. [Google Scholar] [CrossRef] [PubMed]
- Troeger, C.; Blacker, B.F.; Khalil, I.A.; Rao, P.C.; Cao, S.; Zimsen, S.R.; Albertson, S.B.; Stanaway, J.D.; Deshpande, A.; Abebe, Z.; et al. Estimates of the Global, Regional, and National Morbidity, Mortality, and Aetiologies of Diarrhoea in 195 Countries: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1211–1228. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; Woodward, A.; Campbell-Lendrum, D.; Chadee, D.D.; Honda, Y.; Liu, Q.; Olwoch, J.M.; Revich, B.; Sauerborn, R.; Rocklov, J.; et al. Human Health: Impacts, Adaptation, and Co-Benefits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Ibáñez, A.; Garrido-Chamorro, S.; Barreiro, C. Microorganisms and Climate Change: A Not So Invisible Effect. Microbiol. Res. 2023, 14, 918–947. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Available online: https://www.who.int/ (accessed on 27 September 2025).
- Abedin, M.A.; Collins, A.E.; Habiba, U.; Shaw, R. Climate Change, Water Scarcity, and Health Adaptation in Southwestern Coastal Bangladesh. Int. J. Disaster Risk Sci. 2019, 10, 28–42. [Google Scholar] [CrossRef]
- Xiao, X.; Fu, J.; Yu, X. Impacts of Extreme Weather on Microbiological Risks of Drinking Water in Coastal Cities: A Review. Curr. Pollut. Rep. 2023, 9, 259–271. [Google Scholar] [CrossRef]
- Bhandari, D.; Bi, P.; Sherchand, J.B.; Dhimal, M.; Hanson-Easey, S. Assessing the Effect of Climate Factors on Childhood Diarrhoea Burden in Kathmandu, Nepal. Int. J. Hyg. Environ. Health 2020, 223, 199–206. [Google Scholar] [CrossRef]
- Bich, T.H.; Quang, L.N.; Ha, L.T.T.; Hanh, T.T.D.; Guha-Sapir, D. Impacts of Flood on Health: Epidemiologic Evidence from Hanoi, Vietnam. Glob. Health Action 2011, 4, 6356. [Google Scholar] [CrossRef]
- Sun, R.; An, D.; Lu, W.; Shi, Y.; Wang, L.; Zhang, C.; Zhang, P.; Qi, H.; Wang, Q. Impacts of a Flash Flood on Drinking Water Quality: Case Study of Areas Most Affected by the 2012 Beijing Flood. Heliyon 2016, 2, e00071. [Google Scholar] [CrossRef]
- Babuji, P.; Thirumalaisamy, S.; Duraisamy, K.; Periyasamy, G. Human Health Risks Due to Exposure to Water Pollution: A Review. Water 2023, 15, 2532. [Google Scholar] [CrossRef]
- Fabian, P.S.; Kwon, H.H.; Vithanage, M.; Lee, J.H. Modeling, Challenges, and Strategies for Understanding Impacts of Climate Extremes (Droughts and Floods) on Water Quality in Asia: A Review. Environ. Res. 2023, 225, 115617. [Google Scholar] [CrossRef]
- Mishra, A.; Alnahit, A.; Campbell, B. Impact of Land Uses, Drought, Flood, Wildfire, and Cascading Events on Water Quality and Microbial Communities: A Review and Analysis. J. Hydrol. 2021, 596, 125707. [Google Scholar] [CrossRef]
- Chang, C.J.; Huang, C.P.; Chen, C.Y.; Wang, G.S. Assessing the Potential Effect of Extreme Weather on Water Quality and Disinfection By-Product Formation Using Laboratory Simulation. Water Res. 2020, 170, 115296. [Google Scholar] [CrossRef]
- Dao, P.U.; Heuzard, A.G.; Le, T.X.H.; Zhao, J.; Yin, R.; Shang, C.; Fan, C. The Impacts of Climate Change on Groundwater Quality: A Review. Sci. Total Environ. 2024, 912, 169241. [Google Scholar] [CrossRef]
- Zitoun, R.; Marcinek, S.; Hatje, V.; Sander, S.G.; Völker, C.; Sarin, M.; Omanović, D. Climate Change Driven Effects on Transport, Fate and Biogeochemistry of Trace Element Contaminants in Coastal Marine Ecosystems. Commun. Earth Environ. 2024, 5, 560. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Asfaha, T.G.; Frankl, A.; Haile, M.; Zenebe, A.; Nyssen, J. Determinants of Peak Discharge in Steep Mountain Catchments—Case of the Rift Valley Escarpment of Northern Ethiopia. J. Hydrol. 2015, 529, 1725–1739. [Google Scholar] [CrossRef]
- Nag, S.; Roy, M.B.; Roy, P.K. Integrated Hydrological Modeling and Water Resource Assessment in the Mayurakshi River Basin: A Comprehensive Study from Historical Data to Future Predictions. Geosyst. Geoenviron. 2024, 3, 100308. [Google Scholar] [CrossRef]







| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abalasei, M.E.; Toma, D.; Dorus, M.; Teodosiu, C. The Impact of Climate Change on Water Quality: A Critical Analysis. Water 2025, 17, 3108. https://doi.org/10.3390/w17213108
Abalasei ME, Toma D, Dorus M, Teodosiu C. The Impact of Climate Change on Water Quality: A Critical Analysis. Water. 2025; 17(21):3108. https://doi.org/10.3390/w17213108
Chicago/Turabian StyleAbalasei, Madalina Elena, Daniel Toma, Mihail Dorus, and Carmen Teodosiu. 2025. "The Impact of Climate Change on Water Quality: A Critical Analysis" Water 17, no. 21: 3108. https://doi.org/10.3390/w17213108
APA StyleAbalasei, M. E., Toma, D., Dorus, M., & Teodosiu, C. (2025). The Impact of Climate Change on Water Quality: A Critical Analysis. Water, 17(21), 3108. https://doi.org/10.3390/w17213108
 
        



