Estimating River Discharge from Remotely Sensed River Widths in Arid Regions of the Northern Slope of Kunlun Mountain
Abstract
1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Date and Preprocessing
2.3. Methods
2.3.1. River Width Extraction
2.3.2. At a Station Hydraulic Geometry (AHG)
2.3.3. Genetic Algorithm Technique for River Discharge Estimation
2.3.4. Manning Equation for River Discharge Estimation
2.3.5. Model Accuracy Evaluation
3. Results
3.1. AHG Characteristics and Discharge Estimation Results
3.1.1. Temporal Variation Characteristics of AHG
3.1.2. Estimation Results of the AHG Model
3.2. Estimation Results of the Width AMHG Model
- 1.
- Strict AMHG constraints: = (theoretical expected value), with all and values strictly constrained by the AMHG relationship.
- 2.
- Relaxed AMHG constraints: Allowing to deviate from and expanding the optimization range of parameter (solved via Equation (9)) by ±50%, enabling the AHG exponent solutions to approach the true optimal values even if deviating from .
3.3. Estimation Results of the Manning-Strickle Equation
3.4. Sensitivity Analysis
4. Discussion
4.1. Reach Selection for Runoff Retrieval
4.2. Analysis of the Primary Sources of Error in Runoff Retrieval Accuracy
4.3. Model Seasonal Variations and Regionalization Potential
4.4. Limitations and Future Improvement Pathways
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef]
- Deng, X.; Ye, A.; Tong, H. The Study of Measurement and Calculation Method on River Discharge. China Rural Water Hydropower 2015, 6, 18. (In Chinese) [Google Scholar]
- Zhao, C.; Pan, X.; Yang, S.; Liu, C.; Chen, X.; Zhang, H.; Pan, T. Measuring Streamflow with Low-Altitude UAV Imagery. Acta Geogr. Sin. 2019, 74, 1392–1408. (In Chinese) [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring Surface Water from Space. Rev. Geophys. 2007, 45, RG2002. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, H.; Lorenzo, A.; Li, X.; Kimball, J.S.; Chen, X. Review of Regionalization and Remote Sensing Based Method for Hydrological Model Parameters Calibration in Ungauged Basins. Acta Sci. Nat. Univ. Pekin. 2020, 56, 1152–1164. [Google Scholar]
- Hannah, D.M.; Demuth, S.; van Lanen, H.A.J.; Looser, U.; Prudhomme, C.; Rees, G.; Stahl, K.; Tallaksen, L.M. Large-Scale River Flow Archives: Importance, Current Status and Future Needs. Hydrol. Process. 2011, 25, 5341–5352. [Google Scholar] [CrossRef]
- Dinar, S. The Geographical Dimensions of Hydro-Politics: International Freshwater in the Middle East, North Africa, and Central Asia. Eurasian Geogr. Econ. 2012, 53, 115–142. [Google Scholar] [CrossRef]
- Sun, W.; Wang, X.; Xu, Z. Estimating Streamflow Using Remote Sensing: Progress and Prospects. Acta Geogr. Sin. 2024, 79, 565–583. (In Chinese) [Google Scholar] [CrossRef]
- Elmi, O.; Tourian, M.J.; Sneeuw, N. River discharge estimation using channel width from satellite imagery. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 727–730. [Google Scholar] [CrossRef]
- Du, B.; Jin, T.; Liu, D.; Wang, Y.; Wu, X. Accurate Discharge Estimation Based on River Widths of SWOT and Constrained At-Many-Stations Hydraulic Geometry. Remote Sens. 2023, 15, 1672. [Google Scholar] [CrossRef]
- Wongchuig-Correa, S.; Paiva, R.C.D.D.; Biancamaria, S.; Collischonn, W. Assimilation of Future SWOT-Based River Elevations, Surface Extent Observations and Discharge Estimations into Uncertain Global Hydrological Models. J. Hydrol. 2020, 590, 125473. [Google Scholar] [CrossRef]
- Domeneghetti, A.; Ceola, S.; Pugliese, A.; Persiano, S.; Palazzoli, I.; Castellarin, A.; Marinelli, A.; Brath, A. Potential Legacy of SWOT Mission for the Estimation of Flow-Duration Curves. Remote Sens. 2024, 16, 2607. [Google Scholar] [CrossRef]
- Cui, B.; Gui, D.; Liu, Q.; Abd-Elmabod, S.K.; Liu, Y.; Lu, B. Distribution and Growth Drivers of Oases at a Global Scale. Earth’s Future 2024, 12, e2023EF004086. [Google Scholar] [CrossRef]
- Gleason, C.J.; Durand, M.T. Remote Sensing of River Discharge: A Review and a Framing for the Discipline. Remote Sens. 2020, 12, 1107. [Google Scholar] [CrossRef]
- Gleason, C.J.; Smith, L.C.; Lee, J. Retrieval of River Discharge Solely from Satellite Imagery and At-Many-Stations Hydraulic Geometry: Sensitivity to River Form and Optimization Parameters. Water Resour. Res. 2014, 50, 9614–9639. [Google Scholar] [CrossRef]
- Hagemann, M.W.; Gleason, C.J.; Durand, M.T. BAM: Bayesian AMHG-Manning Inference of Discharge Using Remotely Sensed Stream Width, Slope, and Height. Water Resour. Res. 2017, 53, 9692–9707. [Google Scholar] [CrossRef]
- Ran, L.; Wang, S.; Lu, X.X. Hydraulic Geometry Change of a Large River: A Case Study of the Upper Yellow River. Environ. Earth Sci. 2012, 66, 1247–1257. [Google Scholar] [CrossRef]
- Sichangi, A.W.; Wang, L.; Yang, K.; Chen, D.; Wang, Z.; Li, X.; Zhou, J.; Liu, W.; Kuria, D. Estimating Continental River Basin Discharges Using Multiple Remote Sensing Data Sets. Remote Sens. Environ. 2016, 179, 36–53. [Google Scholar] [CrossRef]
- Sichangi, A.W.; Wang, L.; Hu, Z. Estimation of River Discharge Solely from Remote-Sensing Derived Data: An Initial Study over the Yangtze River. Remote Sens. 2018, 10, 1385. [Google Scholar] [CrossRef]
- Allen, G.H.; Pavelsky, T.M. Global Extent of Rivers and Streams. Science 2018, 361, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chen, Y.; Chen, J.; Zhao, Y.; Tuoliewubieke, D.; Li, J.; Yang, L.; Mao, W. Intensification of Extreme Precipitation in Arid Central Asia. J. Hydrol. 2021, 598, 125760. [Google Scholar] [CrossRef]
- Chen, Y.; Li, B.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Water Resource Formation and Conversion and Water Security in Arid Region of Northwest China. J. Geogr. Sci. 2016, 26, 939–952. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and Prospects of Climate Change Impacts on Hydrology in the Arid Region of Northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef]
- Chen, Y. Water Resources Research in Northwest China; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent Climate and Hydrological Changes in a Mountain-Basin System in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Zhao, Y.; Guan, X.; Mao, W.; Yang, L. Climatic and Associated Atmospheric Water Cycle Changes over the Xinjiang, China. J. Hydrol. 2020, 585, 124823. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, C.; Li, Z.; Fa, G. High-quality development in the northern slope of the Kunlun Mountains: Issues, opportunities and challenges (in Chinese). Arid. Land Geogr. 2024, 47, 733–740. [Google Scholar] [CrossRef]
- Li, Z.; Feng, Q.; Li, Z.; Yuan, R.; Gui, J. Climate Background, Fact and Hydrological Effect of Multiphase Water Transformation in Cold Regions of the Western China: A Review. Earth-Sci. Rev. 2019, 190, 33–57. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, Y.; Zhang, M.; Che, Y.; Sun, M.; Zhao, R.; Liu, Y. Preliminary Report on Scientific Investigation of Water Resources in the Northern Slope of Kunlun Mountains. Arid. Land Geogr. 2024, 47, 1097–1105. (In Chinese) [Google Scholar]
- Han, X.; Chen, X. Analysis of Erosion and Deposition Characteristics of Hotan River Channel. Yellow River 2024, 46 (Suppl. S1), 26–28. (In Chinese) [Google Scholar]
- Lanaras, C.; Bioucas-Dias, J.; Baltsavias, E.; Schindler, K. Super-Resolution of Multispectral Multiresolution Images from a Single Sensor. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1505–1513. [Google Scholar] [CrossRef]
- Ghimire, P.; Deng, L.; Nie, J. Effect of Image Fusion on Vegetation Index Quality—A Comparative Study from Gaofen-1, Gaofen-2, Gaofen-4, Landsat-8 OLI and MODIS Imagery. Remote Sens. 2020, 12, 1550. [Google Scholar] [CrossRef]
- Al-Doski, J.; Hassan, F.M.; Norman, M.; Najim, A.A. Interaction of Image Fusion Techniques and Atmospheric Correction for Improve SVM Accuracy. Earth Sci. Inform. 2022, 15, 2673–2687. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Yan, B.; Yue, L.; Wang, L. Global DEMs Vary from One to Another: An Evaluation of Newly Released Copernicus, NASA and AW3D30 DEM on Selected Terrains of China Using ICESat-2 Altimetry Data. Int. J. Digit. Earth 2022, 15, 1149–1168. [Google Scholar] [CrossRef]
- Riggs, R.M.; Allen, G.H.; David, C.H.; Lin, P.; Pan, M.; Yang, X.; Gleason, C. RODEO: An Algorithm and Google Earth Engine Application for River Discharge Retrieval from Landsat. Environ. Model. Softw. 2022, 148, 105254. [Google Scholar] [CrossRef]
- Li, D.; Wu, B.; Chen, B.; Xue, Y.; Zhang, Y. Review of Water Body Information Extraction Based on Satellite Remote Sensing. J. Tsinghua Univ. (Sci. Technol.) 2020, 60, 147–161. (In Chinese) [Google Scholar] [CrossRef]
- Leopold, L.B.; Maddock, T., Jr. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications; U.S. Geological Survey Professional Paper 252; U.S. Government Printing Office: Washington, DC, USA, 1953; p. 57. [CrossRef]
- Alvarez Perez, A.B.; Grison, F.; Silva de Souza, K.I.; Borges Chaffe, P.L. Hydroclimatic Drivers of At-a-Station Hydraulic Geometry of Brazilian Rivers. J. Hydrol. 2024, 640, 131594. [Google Scholar] [CrossRef]
- Sun, W.; Fan, J.; Wang, G.; Ishidaira, H.; Bastola, S.; Yu, J.; Fu, Y.H.; Kiem, A.S.; Zuo, D.; Xu, Z. Calibrating a Hydrological Model in a Regional River of the Qinghai–Tibet Plateau Using River Water Width Determined from High Spatial Resolution Satellite Images. Remote Sens. Environ. 2018, 214, 100–114. [Google Scholar] [CrossRef]
- Gleason, C.J.; Wang, J. Theoretical Basis for At-Many-Stations Hydraulic Geometry. Geophys. Res. Lett. 2015, 42, 10327–10335. [Google Scholar] [CrossRef]
- Gleason, C.J.; Smith, L.C. Toward Global Mapping of River Discharge Using Satellite Images and At-Many-Stations Hydraulic Geometry. Proc. Natl. Acad. Sci. USA 2014, 111, 4788–4791. [Google Scholar] [CrossRef] [PubMed]
- Durga Rao, K.H.V.; Shravya, A.; Dadhwal, V.K. A Novel Method of Satellite-Based River Discharge Estimation Using River Hydraulic Geometry Through Genetic Algorithm Technique. J. Hydrol. 2020, 589, 125361. [Google Scholar] [CrossRef]
- Bonnema, M.G.; Sikder, S.; Hossain, F.; Durand, M.; Gleason, C.J.; Bjerklie, D.M. Benchmarking Wide Swath Altimetry-Based River Discharge Estimation Algorithms for the Ganges River System. Water Resour. Res. 2016, 52, 8381–8397. [Google Scholar] [CrossRef]
- McDowell, D.M. A General Formula for Estimation of the Rate of Transport of Non-Cohesive Bed-Load. J. Hydraul. Res. 1989, 27, 355–361. [Google Scholar] [CrossRef]
- Lou, H.; Wang, P.; Yang, S.; Hao, F.; Ren, X.; Wang, Y.; Shi, L.; Wang, J.; Gong, T. Combining and comparing an unmanned aerial vehicle and multiple remote sensing satellites to calculate long-term river discharge in an ungauged water source region on the Tibetan Plateau. Remote Sens. 2020, 12, 2155. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.-G.; Zheng, J.-H.; Wang, H.-G.; Wang, G.; Zhang, J.-S. Reconstruction of Stage-Discharge Relationships and Analysis of Hydraulic Geometry Variations: The Case Study of the Pearl River Delta, China. Glob. Planet. Change 2015, 125, 60–70. [Google Scholar] [CrossRef]
- Qin, C.; Wu, B.; Wang, Y.; Fu, X.; Xue, Y.; Li, D.; Li, M.; Zhang, Y. Dynamic Variability of At-a-Station Hydraulic-Geometry for Mountain Rivers in the Southeast Qinghai-Tibet Plateau: The Cases of Yalong River and Upper Jinsha River. CATENA 2020, 194, 104723. [Google Scholar] [CrossRef]
- Hao, Z.; Xiang, N.; Cai, X.; Zhong, M.; Jin, J.; Du, Y.; Ling, F. Remote Sensing of River Discharge from Medium-Resolution Satellite Imagery Based on Deep Learning. Water Resour. Res. 2024, 60, e2023WR036880. [Google Scholar] [CrossRef]
- Barber, C.A.; Gleason, C.J. Verifying the Prevalence, Properties, and Congruent Hydraulics of At-Many-Stations Hydraulic Geometry (AMHG) for Rivers in the Continental United States. J. Hydrol. 2018, 556, 625–633. [Google Scholar] [CrossRef]
- Zhao, C.S.; Pan, X.; Yang, S.; Liu, C.; Chen, X.; Zhang, H.; Pan, T. Streamflow Calculation for Medium-to-Small Rivers in Data Scarce Inland Areas. Sci. Total Environ. 2019, 693, 133571. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Feng, D.; Gleason, C.J.; Pan, M.; Brinkerhoff, C.B.; Yang, X.; Beck, H.E.; Frasson, R.P.D.M. Inversion of River Discharge from Remotely Sensed River Widths: A Critical Assessment at Three-Thousand Global River Gauges. Remote Sens. Environ. 2023, 287, 113489. [Google Scholar] [CrossRef]
- Kebede, M.G.; Wang, L.; Yang, K.; Chen, D.; Li, X.; Zeng, T.; Hu, Z. Discharge Estimates for Ungauged Rivers Flowing Over Complex High-Mountainous Regions Based Solely on Remote Sensing-Derived Datasets. Remote Sens. 2020, 12, 1064. [Google Scholar] [CrossRef]
- Frasson, R.P.D.M.; Turmon, M.J.; Durand, M.T.; David, C.H. Estimating the Relative Impact of Measurement, Parameter, and Flow Law Errors on Discharge from the Surface Water and Ocean Topography Mission. J. Hydrometeorol. 2023, 24, 425–443. [Google Scholar] [CrossRef]
- Bjerklie, D.M.; Durand, M.; Lenoir, J.; Dudley, R.W.; Birkett, C.M.; Jones, J.W.; Harlan, M. Satellite Remote Sensing of River Discharge: A Framework for Assessing the Accuracy of Discharge Estimates Made from Satellite Remote Sensing Observations. J. Appl. Remote Sens. 2023, 17, 014520. [Google Scholar] [CrossRef]
- Ferguson, R. Flow Resistance Equations for Gravel- and Boulder-Bed Streams. Water Resour. Res. 2007, 43, W05427. [Google Scholar] [CrossRef]






| Date Source | Selected Band | Spatial Resolution | Enhanced Resolution | Fusion Method | Temporal Resolution | Selected Time Period | 
|---|---|---|---|---|---|---|
| Sentinel-2 | Visible (B2 B3 B4) NIR (B8) SWIR (B11) | 10/20 m | 10 m | RS (Super- Resolution) | 5/10 d | 2016–2024 | 
| Landat-8 | Visible (B2 B3 B4) NIR (B5) SWIR (B6 B7) PAN (B8) | 15/30 m | 15 m | GS (Gram- Schmidt) | 16 d | 2014 | 
| GF1 | Visible (B1 B2 B3) NIR (B4) | 16 m | 4 d | 2015/2017 | 
| Parameter Category | Parameter Name | Value | 
|---|---|---|
| Genetic Algorithm | Population Size | 20 | 
| Maximum Generations | 60 | |
| Crossover Rate | 0.8 | |
| Mutation Rate | 0.1 | |
| Tournament Size | 3 | |
| Boundary Constraints | (coefficient) | [0.01, 100] | 
| (coefficient) | [0.01, 1] | |
| Validation Threshold | 50% | |
| Initial Q Range | [10, 600] m3/s | |
| Q Validation Threshold | 50% | 
| River | Indicators | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 
|---|---|---|---|---|---|---|---|---|---|---|
| Yurungkash | Num image | - | - | 12 | 20 | 35 | 43 | 48 | 43 | 45 | 
| RMSE (m3/s) | - | - | 35.10 | 47.38 | 48.02 | 55.63 | 39.26 | 43.57 | 35.70 | |
| RRMSE (%) | - | - | 41.69 | 56.27 | 57.03 | 66.07 | 46.63 | 51.75 | 42.40 | |
| NSE | - | - | 0.93 | 0.87 | 0.87 | 0.82 | 0.91 | 0.89 | 0.93 | |
| Karakash | Num Image | 26 | 21 | 14 | 31 | 28 | 43 | 44 | 40 | 41 | 
| RMSE (m3/s) | 29.08 | 28.88 | 23.90 | 27.44 | 31.91 | 24.57 | 27.25 | 26.72 | 36.25 | |
| RRMSE (%) | 36.62 | 36.36 | 30.09 | 34.55 | 40.18 | 30.93 | 34.31 | 33.65 | 45.64 | |
| NSE | 0.90 | 0.90 | 0.93 | 0.91 | 0.88 | 0.93 | 0.91 | 0.92 | 0.85 | 
| River | Method | RMSE (m3/s) | RRMSE (%) | NSE | 
|---|---|---|---|---|
| Karakashi | Qrel mean | 52.50 | 53.58 | 0.83 | 
| Qrel mid | 35.05 | 35.78 | 0.93 | |
| Qstr mean | 90.34 | 92.21 | 0.51 | |
| Qstr mid | 92.38 | 94.29 | 0.49 | |
| Yurungkash | Qrel mean | 73.64 | 79.36 | 0.56 | 
| Qrel mid | 71.91 | 77.50 | 0.58 | |
| Qstr mean | 103.17 | 111.19 | 0.13 | |
| Qstr mid | 98.15 | 105.77 | 0.21 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Chen, Y.; Fang, G.; Wang, Y.; Li, Y.; Liu, C.; Qian, J. Estimating River Discharge from Remotely Sensed River Widths in Arid Regions of the Northern Slope of Kunlun Mountain. Water 2025, 17, 3105. https://doi.org/10.3390/w17213105
Wei Z, Chen Y, Fang G, Wang Y, Li Y, Liu C, Qian J. Estimating River Discharge from Remotely Sensed River Widths in Arid Regions of the Northern Slope of Kunlun Mountain. Water. 2025; 17(21):3105. https://doi.org/10.3390/w17213105
Chicago/Turabian StyleWei, Zhixiong, Yaning Chen, Gonghuan Fang, Yonghui Wang, Yupeng Li, Chuanxiu Liu, and Jiaorong Qian. 2025. "Estimating River Discharge from Remotely Sensed River Widths in Arid Regions of the Northern Slope of Kunlun Mountain" Water 17, no. 21: 3105. https://doi.org/10.3390/w17213105
APA StyleWei, Z., Chen, Y., Fang, G., Wang, Y., Li, Y., Liu, C., & Qian, J. (2025). Estimating River Discharge from Remotely Sensed River Widths in Arid Regions of the Northern Slope of Kunlun Mountain. Water, 17(21), 3105. https://doi.org/10.3390/w17213105
 
        






 
       