GRU-Based Reservoir Operation with Data Integration for Real-Time Flood Control
Abstract
1. Introduction
2. Site and Materials
3. Methodology
3.1. Reservoir Operation Optimization Model
3.2. GRU-Based Reservoir Operation Model
3.3. Scenarios
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoo, C.; Jun, C.; Zhu, J.; Na, W. Evaluation of dam water-supply capacity in Korea using the water-shortage index. Water 2021, 13, 956. [Google Scholar] [CrossRef]
- Zhang, D.; Peng, Q.; Lin, J.; Wang, D.; Liu, X.; Zhuang, J. Simulating reservoir operation using a recurrent neural network algorithm. Water 2019, 11, 865. [Google Scholar] [CrossRef]
- MyWater. Available online: https://www.water.or.kr/ (accessed on 21 March 2025).
- Udall, S.L. Design of Small Dams United States Department of the Interior; Bureau of Reclamation: Washington, DC, USA, 1961.
- Labadie, J.W. Optimal operation of multireservoir systems: State-of-the-art review. J. Water Resour. Plan. Manag. 2004, 130, 93–111. [Google Scholar] [CrossRef]
- Zhu, F.; Zhong, P.-A.; Sun, Y.; Yeh, W.W.G. Real-time optimal flood control decision making and risk propagation under multiple Uncertainties. Water Resour. Res. 2017, 53, 10635–10654. [Google Scholar] [CrossRef]
- Ding, W.; Wei, G.; Zhou, H. Improving flood resilience through optimal reservoir operation. J. Hydrol. 2023, 620, 129494. [Google Scholar] [CrossRef]
- Yakowitz, S. Dynamic programming applications in water resources. Water Resour. Res. 1982, 18, 673–696. [Google Scholar] [CrossRef]
- Malekmohammadi, B.; Zahraie, B.; Kerachian, R. A real-time operation optimization model for flood management in river-reservoir systems. Nat. Hazards 2010, 53, 459–482. [Google Scholar] [CrossRef]
- Haddeland, I.; Skaugen, T.; Lettenmaier, D.P. Anthropogenic impacts on continental surface water fluxes. Geophys. Res. Lett. 2006, 33, L08406. [Google Scholar] [CrossRef]
- Mohanty, A.; Sahoo, B.; Kale, R.V. A coupled optimized hedging rule-based reservoir operation and hydrodynamic model framework for riverine flood risk management. Water Res. 2025, 279, 123443. [Google Scholar] [CrossRef]
- Chen, R.; Wang, D.; Mei, Y.; Lin, Y.; Lin, Z.; Zhang, Z.; Zhuang, S.; Zhu, J.; Kam, J.; Wu, Y.; et al. A knowledge-guided LSTM reservoir outflow model and its application to streamflow simulation in reservoir-regulated basins. J. Hydrol. 2025, 658, 133164. [Google Scholar] [CrossRef]
- Sigvaldson, O.T. A simulation model for operating a multipurpose multireservoir system. Water Resour. Res. 1976, 12, 263–278. [Google Scholar] [CrossRef]
- Uyasal, G.; Sensoy, A.; Sorman, A.A.; Akgun, T.; Gezgin, T. Basin/reservoir system integration for real time reservoir operation. Water Resour. Manag. 2016, 30, 1653–1668. [Google Scholar] [CrossRef]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21-A demand-, priority-, and preference-driven water planning model: Part 1: Model characteristics. Water Int. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- Klipsch, J.D.; Hurst, M.B. HEC-ResSim Reservoir System Simulation User’s Manual, Version 3.0; USACE: Davis, CA, USA, 2007; p. 512. [Google Scholar]
- Zhang, D.; Lin, J.; Peng, Q.; Wang, D.; Yang, T.; Sorooshian, S.; Liu, X.; Zhuang, J. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. J. Hydrol. 2018, 565, 720–736. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Chen, J.; Zhao, B. Real-time reservoir operation using recurrent neural networks and inflow forecast from a distributed hydrological model. J. Hydrol. 2019, 579, 124229. [Google Scholar] [CrossRef]
- Saavedra Valeriano, O.C.; Koike, T.; Yang, K.; Graf, T.; Li, X.; Wang, L.; Han, X. Decision support for dam release during floods using a distributed biosphere hydrological model driven by quantitative precipitation forecasts. Water Resour. Res. 2010, 46, W10544. [Google Scholar] [CrossRef]
- Allwi, M.F.; Jaafar, O.; Hamzah, F.M.; Abdullah, S.M.S.; El-shafie, A. Review on application of artificial intelligence methods for dam and reservoir-hydro-environment models. Environ. Sci. Pollut. Res. 2018, 25, 13446–13469. [Google Scholar] [CrossRef]
- Soria-Lopez, A.; Sobrido-Pouso, C.; Mejuto, J.C.; Astray, G. Assessment of different machine learning methods for reservoir outflow forecasting. Water 2023, 15, 3380. [Google Scholar] [CrossRef]
- Yassin, F.; Razavi, S.; Elshamy, M.; Davison, B.; Sapriza-Azuri, G.; Wheater, H. Representation and improved parameterization of reservoir operation in hydrological and land-surface models. Hydrol. Earth Syst. Sci. 2019, 23, 3735–3764. [Google Scholar] [CrossRef]
- Wannasin, C.; Brauer, C.C.; Uijlenhoet, R.; Torfs, P.J.J.F.; Weerts, A.H. Machine learning for real-time reservoir operation simulation: Comparing input variables and algorithms for the Sirikit Reservoir, Thailand. J. Hydroinform. 2024, 26, 3151. [Google Scholar] [CrossRef]
- Niu, W.-J.; Feng, Z.-K.; Feng, B.-F.; Min, Y.-W.; Cheng, C.-T.; Zhou, J.-Z. Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir. Water 2019, 11, 88. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, L.; Kim, T.; Hong, Y.; Zhang, D.; Peng, Q. A large-scale comparison of artificial intelligence and data mining (AI&DM) techniques in simulating reservoir releases over the Upper Colorado Region. J. Hydrol. 2021, 602, 126723. [Google Scholar]
- Chen, Y.; Li, D.; Zhao, Q.; Cai, X. Developing a generic data-driven reservoir operation model. Adv. Water Resour. 2022, 167, 104274. [Google Scholar] [CrossRef]
- Qie, G.; Zhang, Z.; Getahun, E.; Mamer, E.A. Comparison of machine learning models performance on simulating reservoir outflow: A case study of two reservoir in Illinois, USA. J. Am. Water Resour. Assoc. 2022, 12, JAWR-21-0019-P. [Google Scholar] [CrossRef]
- Zarei, M.; Bozorg-Haddad, O.; Baghban, S.; Delpasand, M.; Goharian, E.; Loaiciga, H.A. Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages. Sci. Rep. 2021, 11, 24295. [Google Scholar] [CrossRef]
- Wannasin, C.; Brauer, C.; Uijlenhoet, R.; Weerts, A. Modelling and reforecasting real-time reservoir operation and outflow with neural networks: Case study of the multi-purpose Sirikit reservoir in Thailand. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar]
- Feng, D.; Fang, K.; Shen, C. Enhancing streamflow forecast and extracting insights using Long-Short Term Memory networks with data integration at continental scales. Water Resour. Res. 2020, 56, e2019WR026793. [Google Scholar] [CrossRef]
- Nearing, G.S.; Klotz, D.; Frame, J.M.; Gauch, M.; Gilon, O.; Kratzert, F.; Sampson, A.K.; Shalev, G.; Sella, N. Technical note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks. Hydrol. Earth Syst. Sci. 2022, 26, 5493–5513. [Google Scholar] [CrossRef]
- Song, Y.; Tsai, W.-P.; Gluck, J.; Rhoades, A.; Zarzycki, C.; McCrary, R.; Lawson, K.; Shen, C. LSTM-based data integration to improve snow water equivalent prediction and diagnose error sources. J. Hydrometeorol. 2024, 25, 223–237. [Google Scholar] [CrossRef]
- Jung, W.; Park, N.; Lee, S. Current status of conflicts in the downstream area of Namgang Dam and solutions for resolution. Water Future 2021, 54, 46–54. [Google Scholar]
- Chong, S.; Lee, H.; An, K.-G. Predicting taste and odor compounds in a shallow reservoir using a three-dimensional hydrodynamic ecological model. Water 2018, 10, 1396. [Google Scholar] [CrossRef]
- Rye, Y.; Moon, H.; Kim, J.; Kim, T.-J.; Boo, K.-O.; Guan, B.; Kamae, Y.; Mei, W.; Park, C.; Son, S.-W.; et al. A multi-inventory ensemble analysis of the effects of atmospheric rivers on precipitation and streamflow in the Namgang-Dam basin in Korea. Water Resour. Res. 2021, 57, e2021WR030058. [Google Scholar] [CrossRef]
- Guo, Y. Hydrologic design of urban flood control detention ponds. J. Hydrol. Eng. 2001, 6, 472–479. [Google Scholar] [CrossRef]
- Guo, Y.; Baetz, B.W. Sizing of rainwater storage units for green building applications. J. Hydrol. Eng. 2007, 12, 197–205. [Google Scholar] [CrossRef]
- Gustafsson, O.; Vigerske, S.; COIN-OR Foundation I. Interior Point Optimizer (IPOPT). 2024. Available online: https://github.com/coin-or/Ipopt (accessed on 2 April 2025).
- Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter lin-search algorithm for large-scale nonlinear programming. Math. Program. 2006, 106, 25–27. [Google Scholar] [CrossRef]
- Kyriakidis, L.; Mendez, M.A.; Bähr, M. A hybrid algorithm based on Bayesian optimization and Interior Point OPTimizer for optimal operation of energy conversion systems. Energy 2024, 312, 133416. [Google Scholar] [CrossRef]
- Biegler, L.T.; Zavala, V.M. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization. Comput. Chem. Eng. 2009, 33, 575–582. [Google Scholar] [CrossRef]
- Hart, W.E.; Watson, J.-P.; Woodruff, D.L. Pyomo: Modeling and solving mathematical programs in Python. Math. Program. Comput. 2011, 3, 219–260. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. 2014. Available online: https://arxiv.org/abs/1409.1259 (accessed on 25 April 2025).
- Ranjbarzadeh, R.; Caputo, A.; Tirkolaee, E.B.; Ghoushchi, S.J.; Bendechache, M. Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools. Comput. Biol. Med. 2023, 152, 106405. [Google Scholar] [CrossRef]
- Gao, S.; Huang, Y.; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. J. Hydrol. 2020, 589, 125188. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, C.; Wang, D.; Liu, H. A novel deep learning model integrating CNN and GRU to predict particulate matter concentrations. Process Saf. Environ. Prot. 2023, 173, 604–613. [Google Scholar] [CrossRef]
- Ji, L.; Fu, C.; Ju, Z.; Shi, Y.; Wu, S.; Tao, L. Short-term canyon wind speed prediction based on CNN-GRU transfer learning. Atmosphere 2022, 13, 813. [Google Scholar] [CrossRef]
- Liu, C.; Yang, X.; Peng, S.; Zhang, Y.; Peng, L.; Zhong, R.Y. Spark analysis based on the CNN-GRU model for WEDM process. Micromachines 2021, 12, 702. [Google Scholar] [CrossRef]
- Jain, A.; Patel, H.; Nagalapatti, L.; Gupta, N.; Mehta, S.; Guttula, S.; Mujumdar, S.; Afzal, S.; Sharma Mittal, R.; Munigala, V. Overview and importance of data quality for machine learning tasks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, NY, USA, 6–10 July 2020; pp. 3561–3562. [Google Scholar]
- Khatun, A.; Nisha, M.N.; Chatterjee, S.; Sridhar, V. A novel insight on input variable and time lag selection in daily streamflow forecasting using deep learning models. Environ. Model. Softw. 2024, 179, 106126. [Google Scholar] [CrossRef]
- Anghileri, D.; Voisin, N.; Castelletti, A.; Pianosi, F.; Nijssen, B.; Lettenmaier, D.P. Value of long-term streamflow forecasts to reservoir operations for water supply in snow-dominated river catchments. Water Resour. Res. 2016, 52, 4209–4225. [Google Scholar] [CrossRef]
- Yao, H.; Georgakakos, A. Assessment of Folsom Lake response to historical and potential future climate scenarios: 2. Reservoir management. J. Hydrol. 2001, 249, 176–196. [Google Scholar] [CrossRef]
Event | Period | Duration (hrs) | Max | Initial | |
---|---|---|---|---|---|
1 | 13 July 2000 10:00 | 17 July 2000 22:00 | 109 | 6524 | 99.36 |
2 | 3 August 2000 14:00 | 5 August 2000 23:00 | 58 | 4149 | 78.56 |
3 | 12 September 2000 07:00 | 19 September 2000 17:00 | 179 | 3258 | 70.41 |
4 | 24 June 2001 00:00 | 26 June 2001 23:00 | 72 | 3009 | 78.92 |
5 | 5 July 2001 07:00 | 7 July 2001 08:00 | 50 | 3364 | 106.36 |
6 | 5 July 2002 04:00 | 7 July 2002 15:00 | 60 | 5792 | 31.59 |
7 | 6 August 2002 16:00 | 9 August 2002 23:00 | 80 | 5442 | 79.47 |
8 | 29 August 2002 09:00 | 2 September 2002 23:00 | 111 | 14,818 | 149.45 |
9 | 11 September 2003 04:00 | 15 September 2003 17:00 | 110 | 12,082 | 58.12 |
10 | 17 August 2004 10:00 | 21 August 2004 13:00 | 100 | 6070 | 77.09 |
11 | 21 August 2004 19:00 | 25 August 2004 12:00 | 90 | 3641 | 75.69 |
12 | 8 July 2006 19:00 | 13 July 2006 05:00 | 107 | 12,214 | 82.15 |
13 | 7 August 2007 00:00 | 11 August 2007 03:00 | 100 | 3534 | 45.49 |
14 | 14 September 2007 09:00 | 18 September 2007 22:00 | 110 | 8792 | 162.11 |
15 | 14 July 2009 14:00 | 19 July 2009 11:00 | 118 | 4211 | 90.88 |
16 | 10 July 2010 21:00 | 15 July 2010 00:00 | 100 | 3543 | 80.77 |
17 | 15 July 2010 20:00 | 20 July 2010 12:00 | 113 | 3005 | 157.65 |
18 | 10 August 2010 03:00 | 13 August 2010 23:00 | 93 | 5846 | 119.69 |
19 | 16 August 2010 16:00 | 19 August 2010 14:00 | 71 | 4918 | 155.85 |
20 | 1 September 2010 12:00 | 4 September 2010 01:00 | 62 | 3857 | 107.79 |
21 | 25 June 2011 08:00 | 29 June 2011 15:00 | 104 | 5711 | 78.30 |
22 | 8 July 2011 10:00 | 12 July 2011 13:00 | 100 | 7095 | 123.76 |
23 | 7 August 2011 08:00 | 10 August 2011 23:00 | 88 | 10,648 | 129.57 |
24 | 21 August 2012 15:00 | 27 August 2012 04:00 | 134 | 3767 | 127.14 |
25 | 27 August 2012 22:00 | 30 August 2012 12:00 | 63 | 4895 | 104.29 |
26 | 16 September 2012 07:00 | 19 September 2012 02:00 | 68 | 14,101 | 110.16 |
27 | 4 July 2013 12:00 | 7 July 2013 04:00 | 65 | 4050 | 116.40 |
28 | 2 August 2014 02:00 | 5 August 2014 23:00 | 94 | 4898 | 125.93 |
29 | 11 July 2015 17:00 | 14 July 2015 19:00 | 75 | 4546 | 114.95 |
30 | 25 August 2018 17:00 | 29 August 2018 05:00 | 85 | 5257 | 102.32 |
31 | 3 September 2018 16:00 | 5 September 2018 14:00 | 47 | 3368 | 150.23 |
32 | 5 October 2018 12:00 | 7 October 2018 17:00 | 54 | 7433 | 143.73 |
33 | 19 July 2019 05:00 | 23 July 2019 01:00 | 93 | 3997 | 144.25 |
34 | 2 October 2019 00:00 | 4 October 2019 15:00 | 64 | 5784 | 174.92 |
35 | 12 July 2020 06:00 | 14 July 2020 22:00 | 65 | 5443 | 167.71 |
36 | 21 July 2020 22:00 | 25 July 2020 22:00 | 97 | 3492 | 171.86 |
37 | 7 August 2020 01:00 | 9 August 2020 20:00 | 68 | 8729 | 165.78 |
38 | 2 September 2020 09:00 | 4 September 2020 11:00 | 51 | 6216 | 53.86 |
39 | 5 September 2022 13:00 | 7 September 2022 18:00 | 54 | 5467 | 48.97 |
40 | 15 July 2023 11:00 | 20 July 2023 17:00 | 127 | 3932 | 90.12 |
41 | 9 August 2023 14:00 | 12 August 2023 02:00 | 61 | 4798 | 85.88 |
42 | 29 August 2023 00:00 | 1 September 2023 20:00 | 93 | 3658 | 154.99 |
Scenarios | Input Variables | ||
---|---|---|---|
Inflow | Storage | Precipitation | |
1 | It−1 | St−1 | - |
2 | It−1 | St−1 | Pt−1 |
3 | It−3, It−2, It−1 | St−3, St−2, St−1 | - |
4 | It−3, It−2, It−1 | St−3, St−2, St−1 | Pt−3, Pt−2, Pt−1 |
5 | It−3, It−2, It−1, It, It+1, It+2 | St−3, St−2, St−1 | - |
6 | It−3, It−2, It−1, It, It+1, It+2 | St−3, St−2, St−1 | Pt−3, Pt−2, Pt−1, Pt, Pt+1, Pt+2 |
Training | Validation | Test | |||
---|---|---|---|---|---|
Event | Event | Event | |||
1 | 6524 | 4 | 3009 | 2 | 4149 |
3 | 3258 | 18 | 5846 | 5 | 3364 |
6 | 5792 | 19 | 4918 | 7 | 5442 |
8 | 14,818 | 22 | 7095 | 12 | 12,214 |
9 | 12,082 | 23 | 10,648 | 16 | 3543 |
10 | 6070 | 26 | 14,101 | 17 | 3005 |
11 | 3641 | 29 | 4546 | 20 | 3857 |
13 | 3534 | 33 | 3997 | 25 | 4895 |
14 | 8792 | 36 | 3492 | 34 | 5784 |
15 | 4211 | 39 | 5467 | 37 | 8729 |
21 | 5711 | 42 | 3658 | 38 | 6216 |
24 | 3767 | ||||
27 | 4050 | ||||
28 | 4898 | ||||
30 | 5257 | ||||
31 | 3368 | ||||
32 | 7433 | ||||
35 | 5443 | ||||
40 | 3932 | ||||
41 | 4798 |
Hyperparameter | Interval |
---|---|
Window size | [4, 6, 8] |
Batch size | [8, 32] |
Number of hidden nodes | [1, 100] |
Scenarios | GRU Hyperparameters | RMSE | NSE | ||||||
---|---|---|---|---|---|---|---|---|---|
Batch Size | Window Size | Number of Hidden Nodes | Training | Validation | Test | Training | Validation | Test | |
1 | 8 | 4 | 100 | 380.3 | 411.2 | 714.8 | 0.44 | 0.21 | 0.17 |
6 | 84 | 364.0 | 378.4 | 712.7 | 0.49 | 0.34 | 0.18 | ||
8 | 54 | 157.9 | 202.1 | 344.0 | 0.90 | 0.81 | 0.81 | ||
32 | 4 | 90 | 439.0 | 417.8 | 717.5 | 0.26 | 0.19 | 0.16 | |
6 | 98 | 137.9 | 376.8 | 671.0 | 0.93 | 0.34 | 0.27 | ||
8 | 84 | 154.4 | 251.6 | 414.4 | 0.91 | 0.71 | 0.72 | ||
2 | 8 | 4 | 60 | 345.3 | 397.1 | 694.9 | 0.54 | 0.27 | 0.21 |
6 | 46 | 360.9 | 379.7 | 690.4 | 0.50 | 0.33 | 0.23 | ||
8 | 22 | 125.0 | 294.5 | 521.9 | 0.94 | 0.60 | 0.56 | ||
32 | 4 | 100 | 356.4 | 396.9 | 702.3 | 0.51 | 0.27 | 0.20 | |
6 | 10 | 356.6 | 398.0 | 700.5 | 0.51 | 0.26 | 0.20 | ||
8 | 54 | 127.1 | 355.9 | 633.7 | 0.94 | 0.41 | 0.35 | ||
3 | 8 | 4 | 26 | 133.3 | 118.5 | 202.2 | 0.93 | 0.93 | 0.93 |
6 | 26 | 155.8 | 187.6 | 310.9 | 0.91 | 0.84 | 0.84 | ||
8 | 14 | 165.4 | 174.5 | 324.1 | 0.89 | 0.86 | 0.82 | ||
32 | 4 | 62 | 145.4 | 204.6 | 366.2 | 0.92 | 0.81 | 0.78 | |
6 | 10 | 163.2 | 394.9 | 679.0 | 0.90 | 0.28 | 0.26 | ||
8 | 16 | 167.7 | 216.8 | 379.1 | 0.89 | 0.78 | 0.76 | ||
4 | 8 | 4 | 20 | 125.9 | 160.7 | 262.5 | 0.94 | 0.88 | 0.89 |
6 | 10 | 155.6 | 172.4 | 250.2 | 0.91 | 0.86 | 0.90 | ||
8 | 10 | 173.8 | 226.0 | 375.6 | 0.88 | 0.76 | 0.76 | ||
32 | 4 | 46 | 133.0 | 202.5 | 343.4 | 0.93 | 0.81 | 0.81 | |
6 | 20 | 153.4 | 210.4 | 366.8 | 0.91 | 0.79 | 0.78 | ||
8 | 12 | 155.8 | 240.6 | 391.4 | 0.91 | 0.73 | 0.74 | ||
5 | 8 | 4 | 24 | 113.2 | 160.2 | 262.8 | 0.95 | 0.88 | 0.89 |
6 | 16 | 144.7 | 148.5 | 261.7 | 0.92 | 0.90 | 0.89 | ||
8 | 12 | 171.0 | 170.3 | 293.9 | 0.89 | 0.87 | 0.86 | ||
32 | 4 | 20 | 124.3 | 160.9 | 262.2 | 0.94 | 0.88 | 0.89 | |
6 | 20 | 143.8 | 236.9 | 435.9 | 0.92 | 0.74 | 0.69 | ||
8 | 24 | 174.1 | 187.0 | 318.5 | 0.88 | 0.84 | 0.83 | ||
6 | 8 | 4 | 10 | 88.4 | 299.4 | 530.6 | 0.97 | 0.58 | 0.55 |
6 | 50 | 123.2 | 200.2 | 323.9 | 0.94 | 0.81 | 0.83 | ||
8 | 24 | 142.8 | 213.3 | 340.0 | 0.92 | 0.79 | 0.81 | ||
32 | 4 | 14 | 109.5 | 249.2 | 434.1 | 0.95 | 0.71 | 0.70 | |
6 | 48 | 124.8 | 211.3 | 340.1 | 0.94 | 0.79 | 0.81 | ||
8 | 40 | 144.5 | 225.9 | 365.7 | 0.92 | 0.76 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Jun, K.S. GRU-Based Reservoir Operation with Data Integration for Real-Time Flood Control. Water 2025, 17, 3039. https://doi.org/10.3390/w17213039
Li L, Jun KS. GRU-Based Reservoir Operation with Data Integration for Real-Time Flood Control. Water. 2025; 17(21):3039. https://doi.org/10.3390/w17213039
Chicago/Turabian StyleLi, Li, and Kyung Soo Jun. 2025. "GRU-Based Reservoir Operation with Data Integration for Real-Time Flood Control" Water 17, no. 21: 3039. https://doi.org/10.3390/w17213039
APA StyleLi, L., & Jun, K. S. (2025). GRU-Based Reservoir Operation with Data Integration for Real-Time Flood Control. Water, 17(21), 3039. https://doi.org/10.3390/w17213039