Mineral-Rich Brines from Portuguese Coastal Lagoons: Insights into Their Use in Thalassotherapy and Skin Care
Abstract
1. Introduction
2. Materials and Methods
2.1. Areas of Interest
2.2. Sampling, Samples Preparation, and Analysis
3. Results and Discussion
4. Potential Uses in Thalassotherapy and Skin Care
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cegolon, L.; Filon, F.L.; Mastrangelo, G. Seawater Pools Versus Freshwater Pools to Treat Inflammatory Skin Diseases and Rheumatic Conditions: A Scoping Review. Water 2024, 16, 3650. [Google Scholar] [CrossRef]
- Riyaz, N.; Arakkal, F.R. Spa therapy in dermatology. Indian J. Dermatol. Venereol. Leprol. 2011, 77, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Katz, U.; Shoenfeld, Y.; Zakin, V.; Sherer, Y.; Sukenik, S. Scientific Evidence of the Therapeutic Effects of Dead Sea Treatments: A Systematic Review. Semin. Arthritis Rheum. 2012, 42, 186–200. [Google Scholar] [CrossRef]
- Dostrovsky, A.; Sagher, F. Preliminary report: The therapeutic effect of the hot spring of Zohar (Dead Sea) on some skin diseases. Harefuah 1959, 15, 143–145. [Google Scholar]
- Munteanu, C.; Munteanu, D. Thalassotherapy today. Balneo Res. J. 2019, 10, 440–444. [Google Scholar] [CrossRef]
- Moss, G.A. Water and health: A forgotten connection? Perspect. Public Health 2010, 130, 227–232. [Google Scholar] [CrossRef]
- Gomes, C.S.F.; Fernandes, J.V.; Fernandes, F.V.; Silva, J.B.P. Salt Mineral Water and Thalassotherapy. In Minerals Latu Sensu and Human Health; Gomes, C., Rautureau, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 631–656. [Google Scholar] [CrossRef]
- Rich, V.I.; Maier, R.M. Chapter 6—Aquatic Environments. Environmental Microbiology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 111–138. [Google Scholar] [CrossRef]
- Proksch, E.; Nissen, H.-P.; Bremgartner, M.; Urquhart, C. Bathing in a magnesium-rich Dead Sea salt solution improves skin barrier function, enhances skin hydration, and reduces inflammation in atopic dry skin. Int. J. Dermatol. 2005, 44, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, P.; Kaliaperumal, K. Salt and skin. Int. J. Dermatol. 2021, 61, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Carbajo, J.M.; Maraver, F. Salt water and skin interactions: New lines of evidence. Int. J. Biometeorol. 2018, 62, 1345–1360. [Google Scholar] [CrossRef]
- Kim, N.I.; Kim, S.J.; Jang, J.H.; Shin Ws Eum Hj Kim, B.; Choi, A.; Lee, S.S. Changes in Fatigue Recovery and Muscle Damage Enzymes after Deep-Sea Water Thalassotherapy. Appl. Sci. 2020, 10, 8383. [Google Scholar] [CrossRef]
- Emine, K.E.; Gulbeyaz, C. The effect of salt-water bath in the management of treatment-related peripheral neuropathy in cancer patients receiving taxane and platinum-based treatment. Explore 2022, 18, 347–356. [Google Scholar] [CrossRef]
- Gambichler, T.; Demetriou, C.; Terras, S.; Bechara, F.G.; Skrygan, M. The Impact of Salt Water Soaks on Biophysical and Molecular Parameters in Psoriatic Epidermis Equivalents. Dermatol. Immunol. Allergy 2011, 223, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Petersen, B.W.; Arbuckle, H.A.; Berman, S. Effectiveness of saltwater baths in the treatment of epidermolysis bullosa. Pediatr. Dermatol. 2015, 31, 60–63. [Google Scholar] [CrossRef]
- Bebianno, M.J. Effects of pollutants in the Ria Formosa Lagoon, Portugal. Sci. Total Environ. 1995, 171, 107–115. [Google Scholar] [CrossRef]
- Carrasco, A.R.; Plomaritis, T.; Reyns, J.; Ferreira, Ó.; Roelvink, D. Tide circulation patterns in a coastal lagoon under sea-level rise. Ocean Dyn. 2018, 68, 1121–1139. [Google Scholar] [CrossRef]
- Manuppella, G. Geological Map of Portugal at Scale 1:100,000: Occidental Sheet—Algarve; Portugal Geological Survey: Lisbon, Portugal, 1992. [Google Scholar]
- Kazhyken, K.; Valseth, E.; Videman, J.; Dawson, C. Application of a dispersive wave hydro-sediment-morphodynamic model in the Ria Formosa lagoon. Comput. Geosci. 2024, 28, 1031–1047. [Google Scholar] [CrossRef]
- Ceia, F.R.; Patrício, J.; Marques, J.C.; Dias, J.A. Coastal vulnerability in Barrier islands: The high risk areas of the Ria Formosa (Portugal) system. Ocean Coast. Manag. 2010, 53, 478–486. [Google Scholar] [CrossRef]
- Teixeira, C.; Zbyszewski, G. Geological Map of Portugal at Scale 1:50,000: Sheet 18-C—Aveiro; Portugal Geological Survey: Lisbon, Portugal, 1976. [Google Scholar]
- Mil-Homens, M.; Vale, C.; Raimundo, J.; Pereira, P.; Brito, P.; Caetano, M. Major factors influencing the elemental composition of surface estuarine sediments: The case of 15 estuaries in Portugal. Mar. Pollut. Bull. 2014, 84, 135–146. [Google Scholar] [CrossRef]
- Gadelha, J.R.; Rocha, A.C.; Camacho, C.; Eljarrat, E.; Peris, A.; Aminot, Y.; Readman, J.W.; Boti, V.; Nannou, C.; Kapsi, M.; et al. Persistent and emerging pollutants assessment on aquaculture oysters (Crossostrea gigas) from NW Portuguese coast (Ria De Aveiro). Sci. Total Environ. 2019, 666, 731–742. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Handbook for Sampling and Sample Preservation of Water and Wastewater; USEPA: Washington, DC, USA, 1982; 402p. [Google Scholar]
- American Society for Testing Materials (ASTM). Annual Book of ASTM Standards: Section 11, Water and Environmental Technology; American Society for Testing Materials: West Conshohocken, PA, USA, 1984; Volume 11. [Google Scholar]
- Almeida, L.; Rocha, F.; Candeias, C. Characterization of saline waters from Ria de Aveiro for potential use in SPA treatments. Comun. Geológicas 2025, 112, 243–246. [Google Scholar] [CrossRef]
- Hammer, U.T. Saline Lake Ecosystems of the World; Dr. W. Junk Publishers: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Kerr, D.E.; Brown, P.J.; Grey, A.; Kelleher, B.P. The influence of organic alkalinity on the carbonate system in coastal waters. Mar. Chem. 2021, 237, 104050. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Saline water: Quality characteristics of saline waters. In Wastewater Treatment and Use in Agriculture; Irrigation and Drainage Paper No. 47; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Sauerheber, R.; Heinz, B. Temperature Effects on Conductivity of Seawater and Physiologic Saline, Mechanism and Significance. Chem. Sci. J. 2015, 6, 4172. [Google Scholar] [CrossRef]
- Li, G.; Liu, J.; Diao, Z.; Jiang, X.; Li, J.; Ke, Z.; Shen, P.; Ren, L.; Huang, L.; Tan, Y. Subsurface low dissolved oxygen occurred at fresh-and saline-water intersection of the Pearl River estuary during the summer period. Mar. Pollut. Bull. 2018, 126, 585–591. [Google Scholar] [CrossRef]
- Liu, G.; He, W.; Cai, S. Seasonal Variation of Dissolved Oxygen in the Southeast of the Pearl River Estuary. Water 2020, 12, 2475. [Google Scholar] [CrossRef]
- Lopes, J.F.; Dias, J.M.; Cardoso, A.C.; Silva, C.I.V. The water quality of the Ria de Aveiro lagoon, Portugal: From the observations to the implementation of a numerical model. Mar. Environ. Res. 2005, 60, 594–628. [Google Scholar] [CrossRef]
- Horita, J. Saline waters. In Isotopes in the Water Cycle: Past, Present and Future of a Developing Science; Springer: Dordrecht, The Netherlands, 2005; pp. 271–287. [Google Scholar]
- UNESCO. Background Papers and Supporting Data on the Practical Salinity Scale; UNESCO Technical Papers in Marine Science; UNESCO: Paris, France, 1981; Volume 37. [Google Scholar]
- Millero, F.J.; Feistel, R.; Wright, D.G.; McDougall, T.J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 50–72. [Google Scholar] [CrossRef]
- Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxic. 2014, 7, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Richard, A.; Hao, W.; Liu, C.; Tang, Z. Trace metals in saline waters and brines from China: Implications for tectonic and climatic controls on basin-related mineralization. J. Asian Earth Sci. 2022, 233, 105263. [Google Scholar] [CrossRef]
- Health Canada. Guidance on Heavy Metal Impurities in Cosmetics; Health Canada: Ottawa, ON, Canada, 2012. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Driessche, A.E.S.V.; Stawski, T.M.; Kellermeier, M. Calcium sulfate precipitation pathways in natural and engineered environments. Chem. Geol. 2019, 530, 119274. [Google Scholar] [CrossRef]
- Bae, H.; Park, J.; Ahn, H.; Khim, J.S. Shift in benthic diatom community structure and salinity thresholds in a hypersaline environment of solar saltern, Korea. Algae 2020, 35, 361–373. [Google Scholar] [CrossRef]
- Bok, M.K.; Chin, C.H.; Choi, H.J.; Ham, J.H.; Chang, B.S. Analysis of composition and microstructure of diatom frustules in mud on the coast of Boryeong- city, South Korea. Appl. Microsc. 2022, 52, 12. [Google Scholar] [CrossRef]
- Shalev, N.; Lazar, B.; Köbberich, M.; Halicz, L.; Gavrieli, I. The chemical evolution of brine and Mg-K-salts along the course of extreme evaporation of seawater—An experimental study. Geochim. Cosmochim. Acta 2018, 241, 164–179. [Google Scholar] [CrossRef]
- Chase, J.E.; Arizaleta, M.L.; Tutolo, B.M. A Series of Data-Driven Hypotheses for Inferring Biogeochemical Conditions in Alkaline Lakes and Their Deposits Based on the Behavior of Mg and SiO2. Minerals 2021, 11, 106. [Google Scholar] [CrossRef]
- Nie, Z.; Bu, L.; Zheng, M.; Zhang, Y. Crystallization path of salts from brine in Zabuye Salt Lake, Tibet, during isothermal evaporation. Nat. Resour. Environ. Issues 2009, 15, 40. [Google Scholar]
- Vicari, F.; Randazzo, S.; López, J.; Labastida, M.F.; Vallès, V.; Micale, G.; Tamburini, A.; Staiti, G.D.; Cortina, J.L.; Cipollina, A. Mining minerals and critical raw materials from bittern: Understanding metal ions fate in saltwork ponds. Sci. Total Environ. 2022, 847, 157544. [Google Scholar] [CrossRef] [PubMed]
- Jehlička, J.; Oren, A.; Vítek, P.; Wierzchos, J. Microbial colonization of gypsum: From the fossil record to the present day. Front. Microbiol. 2024, 15, 1397437. [Google Scholar] [CrossRef] [PubMed]
- Aref, M.A.; Taj, R.J.; Mannaa, A.A. Sedimentological implications of microbial mats, gypsum, and halite in Dhahban solar saltwork, Red Sea coast, Saudi Arabia. Facies 2020, 66, 10. [Google Scholar] [CrossRef]
- He, S.; Morse, J. Prediction of halite, gypsum, and anhydrite solubility in natural brines under subsurface conditions. Comput. Geosci. 1993, 19, 1–22. [Google Scholar] [CrossRef]
- Decho, A.W.; Gutierrez, T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Front. Microbiol. 2017, 8, 922. [Google Scholar] [CrossRef]
- Barbieri, R.; Cavalazzi, B. Early taphonomic processes in a microbial-based sedimentary system from a temperate salt-pan site (Cervia salterns, Italy). Int. J. Astrobiol. 2022, 21, 308–328. [Google Scholar] [CrossRef]
- Gibson, M.E.; Benison, K.C. It’s a trap!: Modern and ancient halite as Lagerstätten. J. Sediment. Res. 2023, 93, 642–655. [Google Scholar] [CrossRef]
- Perillo, V.L.; Maisano, L.; Martinez, A.M.; Quijada, I.E.; Cuadrado, D.G. Microbial mat contribution to the formation of an evaporitic environment in a temperate-latitude ecosystem. J. Hydrol. 2019, 575, 105–114. [Google Scholar] [CrossRef]
- Rothschild, L.J.; Giver, L.J.; White, M.R.; Mancinelli, R.L. Metabolic activity of microorganisms in evaporites. J. Phycol. 1994, 30, 431–438. [Google Scholar] [CrossRef]
- Bian, Q.; Zhang, D.; Wang, Z.; Zhou, B.; Ning, F. The research and application of marine evaporite minerals: A Review. Mod. Approaches Oceanogr. Petrochem. Sci. 2023, 3, 287–296. [Google Scholar] [CrossRef]
- Cockell, C.S.; Osinski, G.R.; Banerjee, N.R.; Howard, K.T.; Gilmour, I.; Watson, J.S. The microbe–mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology 2010, 8, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.; Rocha, F.; Candeias, C. Geochemical and mineralogical characterization of Ria de Aveiro (Portugal) saltpan sediments for pelotherapy application. Environ. Geochem. Health 2023, 45, 3199–3214. [Google Scholar] [CrossRef]
- Lowenstein, T. Microorganisms in Evaporites: Review of Modern Geomicrobiology. In Advances in Understanding the Biology of Halophilic Microorganisms; Vreeland, R.H., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 117–139. [Google Scholar] [CrossRef]
- Dai, D.; Ma, X.; Yan, X.; Bao, X. The Biological Role of Dead Sea Water in Skin Health: A Review. Cosmetics 2023, 10, 21. [Google Scholar] [CrossRef]
- de Andrade, S.C.; de Carvalho, R.F.P.P.; Soares, A.S.; de Abreu Freitas, R.P.; de Medeiros Guerra, L.M.; Vilar, M.J. Thalassotherapy for fibromyalgia: A randomized controlled trial comparing aquatic exercises in sea water and water pool. Rheumatol. Int. 2008, 29, 147–152. [Google Scholar] [CrossRef] [PubMed]
ID | Location | Saltpan | Salt Production | Collection |
---|---|---|---|---|
FW | Ria Formosa | Fuzeta | Traditional | July 2024 |
OW | Olhão | Traditional | ||
TW1 | Tavira | Semi-industrial | ||
TW2 | ||||
AW | Ria de Aveiro | Aveiro | Traditional | September 2024 |
ID | pH | EC | T | DO | TDS | TSS |
---|---|---|---|---|---|---|
FW | 7.28 | 189.6 | 27.1 | 108.7 | 94.8 | 3.55 |
OW | 6.94 | 155.3 | 29.9 | 63.3 | 77.7 | 4.31 |
TW1 | 6.85 | 165.6 | 37.8 | 34.0 | 82.8 | 3.63 |
TW2 | 7.19 | 191.6 | 32.1 | 69.3 | 95.8 | 3.20 |
AW | 8.34 | 145.0 | 23.8 | 51.1 | 72.5 | 1.51 |
ID | Ca | K | Mg | Na |
---|---|---|---|---|
FW | 254 | 8253 | 26,747 | 73,397 |
OW | 152 | 11,073 | 37,591 | 51,490 |
T1W | 185 | 10,923 | 34,326 | 59,967 |
T2W | 334 | 6461 | 18,727 | 88,875 |
AW | 1782 | 1794 | 5760 | 48,791 |
ID | As | B | Ba | Li | Mn | Mo | Rb | Sr | V | U |
---|---|---|---|---|---|---|---|---|---|---|
FW | 28 | 50,114 | bdl | 1538 | 130 | 34 | 1803 | 21,111 | 11 | 16 |
OW | 85 | 71,009 | bdl | 2307 | 626 | 53 | 2740 | 10,432 | 14 | 28 |
TW1 | 73 | 66,250 | bdl | 2107 | 659 | 40 | 2560 | 13,984 | 12 | 22 |
TW2 | 32 | 40,634 | 33 | 1133 | 203 | 94 | 1481 | 30,499 | 11 | 27 |
AW | bdl | 11,272 | 70 | 389 | 184 | 12 | 409 | 26,181 | bdl | bdl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, L.; Rocha, F.; Candeias, C. Mineral-Rich Brines from Portuguese Coastal Lagoons: Insights into Their Use in Thalassotherapy and Skin Care. Water 2025, 17, 3021. https://doi.org/10.3390/w17203021
Almeida L, Rocha F, Candeias C. Mineral-Rich Brines from Portuguese Coastal Lagoons: Insights into Their Use in Thalassotherapy and Skin Care. Water. 2025; 17(20):3021. https://doi.org/10.3390/w17203021
Chicago/Turabian StyleAlmeida, Lara, Fernando Rocha, and Carla Candeias. 2025. "Mineral-Rich Brines from Portuguese Coastal Lagoons: Insights into Their Use in Thalassotherapy and Skin Care" Water 17, no. 20: 3021. https://doi.org/10.3390/w17203021
APA StyleAlmeida, L., Rocha, F., & Candeias, C. (2025). Mineral-Rich Brines from Portuguese Coastal Lagoons: Insights into Their Use in Thalassotherapy and Skin Care. Water, 17(20), 3021. https://doi.org/10.3390/w17203021