Hybrid RSM–ANN Modeling for Optimization of Electrocoagulation Using Aluminum Electrodes (Al–Al) for Hospital Wastewater Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Hospital Wastewater
2.2. Electrocoagulation Unit
2.3. Experimental Design
2.4. Analytical Methods
2.5. Statictical Analysis
2.6. Modeling and Optimization Approach
2.6.1. RSM Modeling
2.6.2. ANN Modeling
2.7. Calculation of Electrode and Energy Consumption
3. Results and Discussion
3.1. Characteristics of Raw Hospital Wastewater
Electrocoagulation Mechanism
3.2. Box–Behnken Design and Experimental Outcomes
3.3. RSM and ANN Model Development and Comparison
3.3.1. Polynomial Regression and ANOVA Analysis
3.3.2. ANN Model Structure and Performance
3.3.3. Model Comparison and Interpretation
3.4. Model Validation and Optimization
3.5. Electrode and Energy Consumption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Yan, S.; Chen, J.; Tyagi, R.D.; Li, J. 3-Physical, Chemical, and Biological Impact (Hazard) of Hospital Wastewater on Environment: Presence of Pharmaceuticals, Pathogens, and Antibiotic-Resistance Genes. In Current Developments in Biotechnology and Bioengineering; Tyagi, R.D., Sellamuthu, B., Tiwari, B., Yan, S., Drogui, P., Zhang, X., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 79–102. ISBN 978-0-12-819722-6. [Google Scholar]
- Ajala, O.J.; Tijani, J.O.; Salau, R.B.; Abdulkareem, A.S.; Aremu, O.S. A Review of Emerging Micro-Pollutants in Hospital Wastewater: Environmental Fate and Remediation Options. Results Eng. 2022, 16, 100671. [Google Scholar] [CrossRef]
- Tran, N.H.; Gin, K.Y.-H. Occurrence and Removal of Pharmaceuticals, Hormones, Personal Care Products, and Endocrine Disrupters in a Full-Scale Water Reclamation Plant. Sci. Total Environ. 2017, 599–600, 1503–1516. [Google Scholar] [CrossRef]
- Hakizimana, J.N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. Electrocoagulation Process in Water Treatment: A Review of Electrocoagulation Modeling Approaches. Desalination 2017, 404, 1–21. [Google Scholar] [CrossRef]
- Bajpai, M.; Katoch, S.S.; Kadier, A.; Singh, A. A Review on Electrocoagulation Process for the Removal of Emerging Contaminants: Theory, Fundamentals, and Applications. Environ. Sci. Pollut. Res. 2022, 29, 15252–15281. [Google Scholar] [CrossRef]
- Akter, S.; Suhan, M.B.K.; Islam, M.S. Recent Advances and Perspective of Electrocoagulation in the Treatment of Wastewater: A Review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100643. [Google Scholar] [CrossRef]
- Bharti, M.; Das, P.P.; Purkait, M.K. A Review on the Treatment of Water and Wastewater by Electrocoagulation Process: Advances and Emerging Applications. J. Environ. Chem. Eng. 2023, 11, 111558. [Google Scholar] [CrossRef]
- Phu, T.K.C.; Nguyen, P.L.; Phung, T.V.B. Recent Progress in Highly Effective Electrocoagulation-Coupled Systems for Advanced Wastewater Treatment. iScience 2025, 28, 111965. [Google Scholar] [CrossRef]
- Tegladza, I.; Xu, Q.; Xu, K.; Lv, G.; Lu, J. Electrocoagulation Processes: A General Review about Role of Electro-Generated Flocs in Pollutant Removal. Process Saf. Environ. Prot. 2021, 146, 169–189. [Google Scholar] [CrossRef]
- Emamjomeh, M.M.; Muttucumaru, S. Review of Pollutants Removed by Electrocoagulation and Electrocoagulation/Flotation Processes. J. Environ. Manag. 2009, 90, 1663–1679. [Google Scholar] [CrossRef]
- Jasim, M.A.; AlJaberi, F.Y.; Alardhi, S.M.; Salman, A.D.; Hathal, M.M.; Cretescu, I.; Vargas, A.R. Enhancing the Removal of Total Dissolved Solids from Petroleum Wastewater through Electrocoagulation. Eng. Technol. J. 2025, 43, 220–233. [Google Scholar] [CrossRef]
- Chapman, D.V. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1996; ISBN 978-0-419-21590-5. [Google Scholar]
- Nazlabadi, E.; Niaragh, E.K.; Moghaddam, M.R.A. A Systematic and Critical Review of Two Decades’ Application of Response Surface Methodology in Biological Wastewater Treatment Processes. Desalination Water Treat. 2021, 228, 92–120. [Google Scholar] [CrossRef]
- Reza, A.; Chen, L.; Mao, X. Response Surface Methodology for Process Optimization in Livestock Wastewater Treatment: A Review. Heliyon 2024, 10, e30326. [Google Scholar] [CrossRef]
- Fan, M.; Hu, J.; Cao, R.; Ruan, W.; Wei, X. A Review on Experimental Design for Pollutants Removal in Water Treatment with the Aid of Artificial Intelligence. Chemosphere 2018, 200, 330–343. [Google Scholar] [CrossRef]
- Al Aani, S.; Bonny, T.; Hasan, S.W.; Hilal, N. Can Machine Language and Artificial Intelligence Revolutionize Process Automation for Water Treatment and Desalination? Desalination 2019, 458, 84–96. [Google Scholar] [CrossRef]
- Kothari, M.S.; Vegad, K.G.; Shah, K.A.; Hassan, A.A. An Artificial Neural Network Combined with Response Surface Methodology Approach for Modelling and Optimization of the Electro-Coagulation for Cationic Dye. Heliyon 2022, 8, e08749. [Google Scholar] [CrossRef]
- Selvaraj, D.; Arivazhagan, M. An Integrated (Electrocoagulation and Adsorption) Approach for the Treatment of Textile Industrial Wastewater: RSM and ANN Based Optimization. Water Air Soil Pollut. 2023, 235, 32. [Google Scholar] [CrossRef]
- Elfghi, F.M. A Hybrid Statistical Approach for Modeling and Optimization of RON: A Comparative Study and Combined Application of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Based on Design of Experiment (DOE). Chem. Eng. Res. Des. 2016, 113, 264–272. [Google Scholar] [CrossRef]
- Awolusi, T.F.; Oke, O.L.; Akinkurolere, O.O.; Atoyebi, O.D. Comparison of Response Surface Methodology and Hybrid-Training Approach of Artificial Neural Network in Modelling the Properties of Concrete Containing Steel Fibre Extracted from Waste Tyres. Cogent Eng. 2019, 6, 1649852. [Google Scholar] [CrossRef]
- Stein, M.; Chen, C.-F.; Robles, D.J.; Rhodes, C.; Mukherjee, P.P. Non-Aqueous Electrode Processing and Construction of Lithium-Ion Coin Cells. J. Vis. Exp. 2016, 118, e53490. [Google Scholar] [CrossRef]
- Stan, D.; Mirica, A.-C.; Iosub, R.; Stan, D.; Mincu, N.B.; Gheorghe, M.; Avram, M.; Adiaconita, B.; Craciun, G.; Bocancia Mateescu, A.L. What Is the Optimal Method for Cleaning Screen-Printed Electrodes? Processes 2022, 10, 723. [Google Scholar] [CrossRef]
- Chen, P.; Ruck, M. A Stable Porous Aluminum Electrode with High Capacity for Rechargeable Lithium-Ion Batteries. Batteries 2023, 9, 37. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; Volume 53, p. 1699. ISBN 978-0-87553-287-5. [Google Scholar]
- Holt, P.K.; Barton, G.W.; Mitchell, C.A. The Future for Electrocoagulation as a Localised Water Treatment Technology. Chemosphere 2005, 59, 355–367. [Google Scholar] [CrossRef]
- Kanchanapiya, P.; Tantisattayakul, T. Wastewater Reclamation Trends in Thailand. Water Sci. Technol. 2022, 86, 2878–2911. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. What Have We Learned from Worldwide Experiences on the Management and Treatment of Hospital Effluent? An Overview and a Discussion on Perspectives. Sci. Total Environ. 2015, 514, 467–491. [Google Scholar] [CrossRef]
- Metcalf & Eddy Inc.; Tchobanoglous, G.; Stensel, H.; Tsuchihashi, R.; Burton, F. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Mechelhoff, M.; Kelsall, G.H.; Graham, N.J.D. Electrochemical Behaviour of Aluminium in Electrocoagulation Processes. Chem. Eng. Sci. 2013, 95, 301–312. [Google Scholar] [CrossRef]
- Mahajan, R.; Khandegar, V.; Saroha, K. Treatment of Hospital Operation Theatre Effluent by Electrocoagulation. Int. J. Chem. Environ. Eng. 2013, 4, 1–4. [Google Scholar]
- Esfandyari, Y.; Saeb, K.; Tavana, A.; Rahnavard, A.; Fahimi, F.G. Effective Removal of Cefazolin from Hospital Wastewater by the Electrocoagulation Process. Water Sci. Technol. 2019, 80, 2422–2429. [Google Scholar] [CrossRef]
- Deshpande, A.M.; Ramakant, N.; Satyanarayan, S. Treatment of Pharmaceutical Wastewater by Electrochemical Method: Optimization of Operating Parameters by Response Surface Methodology. J. Hazard. Toxic Radioact. Waste 2012, 16, 316–326. [Google Scholar] [CrossRef]
- Indah Dianawati, R.; Endah Wahyuningsih, N.; Nur, M. Treatment of Hospital Waste Water by Ozone Technology. J. Phys. Conf. Ser. 2018, 1025, 012013. [Google Scholar] [CrossRef]
- Kane, A.; Assadi, A.A.; El Jery, A.; Badawi, A.K.; Kenfoud, H.; Baaloudj, O.; Assadi, A.A. Advanced Photocatalytic Treatment of Wastewater Using Immobilized Titanium Dioxide as a Photocatalyst in a Pilot-Scale Reactor: Process Intensification. Materials 2022, 15, 4547. [Google Scholar] [CrossRef]
- Locke, B.R.; Sato, M.; Sunka, P.; Hoffmann, M.R.; Chang, J.-S. Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment. Ind. Eng. Chem. Res. 2006, 45, 882–905. [Google Scholar] [CrossRef]
- Theepharaksapan, S.; Matra, K. Atmospheric Argon Plasma Jet for Post-Treatment of Biotreated Landfill Leachate. In Proceedings of the 2018 International Electrical Engineering Congress (iEECON), Krabi, Thailand, 7–9 March 2018. [Google Scholar]
- He, J.; Zhang, Z.; Cui, F.; Tan, X.; Zheng, X.; Cheng, R. Global Techno-Economic Analysis of MBR for Hospital Wastewater Treatment. Sci. Total Environ. 2024, 956, 177172. [Google Scholar] [CrossRef] [PubMed]




| Parameters Analyzed | Unit | Value |
|---|---|---|
| Color | - | Yellow blank |
| pH | - | 6.73 ± 0.61 |
| Conductivity | μS/cm | 974.43 ± 171.76 |
| Temperature | °C | 26.70 ± 1.42 |
| Turbidity | NTU | 152.69 ± 84.91 |
| Alkalinity | mg L−1 | 280.00 ± 4.62 |
| Biochemical oxygen demand (BOD) | mg L−1 | 140.83 ± 108.54 |
| Chemical oxygen demand (COD) | mg L−1 | 569.33 ± 443.04 |
| Total suspended solid (TSS) | mg L−1 | 80.50 ± 43.44 |
| Total dissolved solid (TDS) | mg L−1 | 725.33 ± 538.15 |
| Independent Variable | Factor | Coded Level of Variable | ||
|---|---|---|---|---|
| −1 | 0 | 1 | ||
| pH | 4 | 7 | 10 | |
| Current density (mA/cm2) | 5 | 15 | 25 | |
| Electrolysis time (min) | 30 | 60 | 90 | |
| Run | Factors | Turbidity Removal (%) | sCOD Removal (%) | TDS Removal (%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| X1 | X2 | X3 | Actual | Predicted | Actual | Predicted | Actual | Predicted | ||||
| RSM | ANN | RSM | ANN | RSM | ANN | |||||||
| 1 | 7 | 15 | 60 | 98.3 | 96.19 | 98.49 * | 26.1 | 74.39 | 25.15 | 33.7 | 62.94 | 31.60 |
| 2 | 10 | 15 | 90 | 87.3 | 96.23 | 87.31 | 47.2 | 43.47 | 46.96 | 4.4 | 26.37 | 4.07 |
| 3 | 4 | 15 | 90 | 98.5 | 87.78 | 98.22 | 58.5 | 57.52 | 59.27 | 46.7 * | 74.66 | 49.20 |
| 4 | 7 | 25 | 90 | 98.2 | 77.87 | 97.73 | 42.6 | 4.58 | 42.64 | 25.4 | 24.22 | 30.09 |
| 5 | 7 | 5 | 90 | 98 | 89.16 | 98.10 | 62 | 33.93 | 61.76 | 25.2 | 40.7 | 24.76 |
| 6 | 7 | 15 | 60 | 99.1 * | 98.88 | 98.49 * | 24.9 | 24.83 | 25.15 | 22.8 | 29.67 | 31.60 |
| 7 | 4 | 25 | 60 | 96.1 | 98.88 | 95.70 | 16.3 | 24.83 | 16.36 | 35.9 | 29.67 | 40.75 |
| 8 | 10 | 25 | 60 | 91.4 | 100.30 | 91.42 | 11.7 | 42.04 | 11.68 | 13.2 | 34.5 | 13.22 |
| 9 | 4 | 5 | 60 | 95.6 | 98.88 | 95.16 | 74.0* | 24.83 | 73.98 * | 46.7 * | 29.67 | 51.51 * |
| 10 | 10 | 5 | 60 | 96 | 93.16 | 96.07 | 50.7 | 62.61 | 50.53 | 5.6 | 69.63 | 5.28 |
| 11 | 7 | 15 | 60 | 98.6 | 87.84 | 98.49 * | 23.5 | 1.51 | 25.15 | 32.5 | 44.34 | 31.60 |
| 12 | 4 | 15 | 30 | 78.5 | 95.94 | 78.22 | 14.5 | 23.53 | 14.55 | 41.2 | 58.21 | 46.13 |
| 13 | 10 | 15 | 30 | 93.9 | 93.95 | 93.57 | 3.6 | 12.11 | 3.66 | 11.1 | 33.35 | 15.05 |
| 14 | 7 | 25 | 30 | 88.7 | 91.90 | 88.46 | 13.9 | 19.66 | 13.90 | −2.1 | 52.18 | 0.80 |
| 15 | 7 | 5 | 30 | 85.3 | 97.73 | 84.98 | 27.7 | 36.37 | 27.72 | −14 | 54.86 | −10.57 |
| Response | Model | F-Value | p-Value | Sig. Terms | R2 | Adj. R2 | Adeq. Precision |
|---|---|---|---|---|---|---|---|
| Turbidity | Yes | 11.85 | 0.0013 | X2, X3, X1X3 | 0.959 | 0.922 | 9.08 |
| sCOD | Yes | 7.42 | 0.0031 | X1, X2, X32 | 0.900 | 0.820 | 8.07 |
| TDS | Yes | 6.39 | 0.0065 | X3, X32 | 0.856 | 0.759 | 6.45 |
| Response | Training | Validation | |||
|---|---|---|---|---|---|
| RMSE | MSE | R2 | RMSE | MSE | |
| Turbidity | 0.32 | 0.10 | 1.00 | 31.4 | 985.9600 |
| sCOD | 0.54 | 0.29 | 1.00 | 22.56 | 508.9536 |
| TDS | 3.82 | 14.59 | 0.98 | 20.86 | 435.1396 |
| Parameter | Predicted (%) | Observed (%) | Absolute Error | Relative Error (%) |
|---|---|---|---|---|
| Turbidity | 95.9 | 94.5 ± 2.3 | 1.4 | 1.46% |
| sCOD | 72.4 | 69.8 ± 3.1 | 2.6 | 3.59% |
| TDS | 20.6 | 19.1 ± 2.8 | 1.5 | 7.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matra, K.; Lerkmahalikit, Y.; Prasertkulsak, S.; Kongdee, A.; Pomthong, R.; Thongson, S.; Theepharaksapan, S. Hybrid RSM–ANN Modeling for Optimization of Electrocoagulation Using Aluminum Electrodes (Al–Al) for Hospital Wastewater Treatment. Water 2025, 17, 3003. https://doi.org/10.3390/w17203003
Matra K, Lerkmahalikit Y, Prasertkulsak S, Kongdee A, Pomthong R, Thongson S, Theepharaksapan S. Hybrid RSM–ANN Modeling for Optimization of Electrocoagulation Using Aluminum Electrodes (Al–Al) for Hospital Wastewater Treatment. Water. 2025; 17(20):3003. https://doi.org/10.3390/w17203003
Chicago/Turabian StyleMatra, Khanit, Yanika Lerkmahalikit, Sirilak Prasertkulsak, Amnuaychai Kongdee, Raweeporn Pomthong, Suchira Thongson, and Suthida Theepharaksapan. 2025. "Hybrid RSM–ANN Modeling for Optimization of Electrocoagulation Using Aluminum Electrodes (Al–Al) for Hospital Wastewater Treatment" Water 17, no. 20: 3003. https://doi.org/10.3390/w17203003
APA StyleMatra, K., Lerkmahalikit, Y., Prasertkulsak, S., Kongdee, A., Pomthong, R., Thongson, S., & Theepharaksapan, S. (2025). Hybrid RSM–ANN Modeling for Optimization of Electrocoagulation Using Aluminum Electrodes (Al–Al) for Hospital Wastewater Treatment. Water, 17(20), 3003. https://doi.org/10.3390/w17203003

