Estimating Household Water Demand and Affordability Under Intermittent Supply: An Econometric Analysis with a Water–Energy Nexus Perspective for Pimpri-Chinchwad, India
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Data
2.3. Methods
2.3.1. Affordability Calculation
2.3.2. Demand Estimation
2.3.3. Microsimulation of Price Impact
3. Results
3.1. Water Affordability in Pimpri-Chinchwad
3.2. Estimates for Household Piped Water Demand
3.3. Impact of Price Increases on Household Piped Water Demand
4. Discussion
4.1. Hidden Costs and Water Affordability
4.2. The Water–Energy Nexus and Tariff Design
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DCC | Discrete-Continuous Choice |
IBT | Increasing Block Tariff |
INR | Indian Rupees |
LPCD | Liters per Capita per Day |
OLS | Ordinary Least Squares |
References
- Karutz, R.; Omann, I.; Gorelick, S.M.; Klassert, C.J.A.; Zozmann, H.; Zhu, Y.; Kabisch, S.; Kindler, A.; Figueroa, A.J.; Wang, A.; et al. Capturing Stakeholders’ Challenges of the Food–Water–Energy Nexus—A Participatory Approach for Pune and the Bhima Basin, India. Sustainability 2022, 14, 5323. [Google Scholar] [CrossRef]
- Moore, M.; Gould, P.; Keary, B.S. Global urbanization and impact on health. Int. J. Hyg. Environ. Health 2003, 206, 269–278. [Google Scholar]
- Dos Santos, S.; Adams, E.A.; Neville, G.; Wada, Y.; de Sherbinin, A.; Bernhardt, E.M.; Adamo, S.B. Urban growth and water access in sub-Saharan Africa: Progress, challenges, and emerging research directions. Sci. Total Environ. 2017, 607, 497–508. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef]
- Belmeziti, A. Intermittent water supply: A literature review of causes, water availability and adaptation strategies. Water Environ. J. 2025, 39, 260–274. [Google Scholar] [CrossRef]
- Kumpel, E.; Nelson, K.L. Intermittent water supply: Prevalence, practice, and microbial water quality. Environ. Sci. Technol. 2016, 50, 542–553. [Google Scholar] [CrossRef]
- Simukonda, K.; Farmani, R.; Butler, D. Intermittent water supply systems: Causal factors, problems and solution options. Urban Water J. 2018, 15, 488–500. [Google Scholar] [CrossRef]
- Klassert, C.; Yoon, J.; Sigel, K.; Klauer, B.; Talozi, S.; Lachaut, T.; Selby, P.; Knox, S.; Avisse, N.; Tilmant, A.; et al. Unexpected growth of an illegal water market. Nat. Sustain. 2023, 6, 1406–1417. [Google Scholar] [CrossRef]
- Zhu, Y.; Gawel, E.; Klauer, B.; Klassert, C. Impacts of intermittent water supply on household electricity demand: An econometric analysis for the Pune Metropolitan Region, India. Water Resour. Econ. 2024, 48, 100250. [Google Scholar] [CrossRef]
- Sarisen, D.; Koukoravas, V.; Farmani, R.; Kapelan, Z.; Memon, F.A. Review of hydraulic modelling approaches for intermittent water supply systems. AQUA—Water Infrastruct. Ecosyst. Soc. 2022, 71, 1291–1310. [Google Scholar]
- Klassert, C.; Gawel, E.; Sigel, K.; Klauer, B. Sustainable transformation of urban water infrastructure in Amman, Jordan–meeting residential water demand in the face of deficient public supply and alternative private water markets. In Urban Transformations: Sustainable Urban Development Through Resource Efficiency, Quality of Life and Resilience; Springer: Cham, Switzerland, 2018; pp. 93–115. [Google Scholar]
- Guragai, B.; Takizawa, S.; Hashimoto, T.; Oguma, K. Effects of inequality of supply hours on consumers’ coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal. Sci. Total Environ. 2017, 599, 431–441. [Google Scholar]
- Majuru, B.; Suhrcke, M.; Hunter, P.R. How Do Households Respond to Unreliable Water Supplies? A Systematic Review. Int. J. Environ. Res. Public Health 2016, 13, 1222. [Google Scholar] [CrossRef]
- Zozmann, H.; Klassert, C.; Klauer, B.; Gawel, E. Water procurement time and its implications for household water demand—Insights from a water diary study in five informal settlements of Pune, India. Water 2022, 14, 1009. [Google Scholar] [CrossRef]
- Zhu, Y.; Klassert, C.; Klauer, B.; Gawel, E. Understanding the Water-Energy Nexus at the Private Household Level: An Economic Perspective. Water Econ. Policy 2024, 10, 2450010. [Google Scholar] [CrossRef]
- Cook, J.; Kimuyu, P.; Whittington, D. The costs of coping with poor water supply in rural Kenya. Water Resour. Res. 2016, 52, 841–859. [Google Scholar] [CrossRef]
- Pattanayak, S.K.; Yang, J.-C.; Whittington, D.; Bal Kumar, K.C. Coping with unreliable public water supplies: Averting expenditures by households in Kathmandu, Nepal. Water Resour. Res. 2005, 41, W0201. [Google Scholar] [CrossRef]
- Katuwal, H.; Bohara, A.K. Coping with poor water supplies: Empirical evidence from Kathmandu, Nepal. J. Water Health 2011, 9, 143–158. [Google Scholar]
- Rachunok, B.; Fletcher, S. Socio-hydrological drought impacts on urban water affordability. Nat. Water 2023, 1, 83–94. [Google Scholar] [CrossRef]
- Fletcher, S.; Hadjimichael, A.; Quinn, J.; Osman, K.; Giuliani, M.; Gold, D.; Figueroa, A.J.; Gordon, B. Equity in water resources planning: A path forward for decision support modelers. J. Water Resour. Plan. Manag. 2022, 148, 2522005. [Google Scholar] [CrossRef]
- Arbués, F.; García-Valiñas, M.Á.; Martínez-Espiñeira, R. Estimation of residential water demand: A state-of-the-art review. J. Socio-Econ. 2003, 32, 81–102. [Google Scholar] [CrossRef]
- Nauges, C.; Whittington, D. Estimation of Water Demand in Developing Countries: An Overview. World Bank Res. Obs. 2010, 25, 263–294. [Google Scholar] [CrossRef]
- Rosenberg, D.E.; Talozi, S.; Lund, J.R. Intermittent Water Supplies: Challenges and Opportunities for Residential Water Users in Jordan. In The Private Sector and Water Pricing in Efficient Urban Water Management; Routledge: Abingdon, UK, 2016; pp. 166–182. [Google Scholar]
- PCMC. Pimpri-Chinchwad Municipal Corporation-General Info. Available online: https://www.pcmcindia.gov.in/location_info (accessed on 12 May 2025).
- Census of India. Census of India 2011, National Population Register & Socio Economic and Caste Census; Office of the Registrar General & Census Commissioner: New Delhi, India, 2011. [Google Scholar]
- Karutz, R.; Klassert, C.J.A.; Kabisch, S. On farmland and floodplains—Modeling urban growth impacts based on global population scenarios in Pune, India. Land 2023, 12, 1051. [Google Scholar] [CrossRef]
- Bhailume, S.; Sonawane, G. Geospatial Analysis of Urban Growth: A Comparative Study of Pune, Pimpri-Chinchwad and Nashik Municipal Corporations. In Emerging Geosustainability Transformations in India; Springer: Singapore, 2024; pp. 25–48. [Google Scholar]
- Ladkat, P. Pimpri-Chinchwad Water Supply System Inculding Intra City Distribution of Water and Control of UfW; Pimpri-Chinchwad Municipal Corporation (PCMC): Pimpri-Chinchwad, India, 2011. [Google Scholar]
- PCMC. Pimpri-Chinchwad Municipal Corporation Standing Committee Working Paper No. 45 (in Meeting Minutes); PCMC: Pimpri-Chinchwad, India, 2018. [Google Scholar]
- OECD. Managing Water for All: An OECD Perspective on Pricing and Financing; OECD Studies on Water; OECD Publishing: Paris, France, 2009. [Google Scholar]
- OECD. Pricing Water Resources and Water and Sanitation Services; OECD Studies on Water; OECD Publishing: Paris, France, 2010. [Google Scholar]
- Grafton, R.Q.; Chu, L.; Wyrwoll, P. The paradox of water pricing: Dichotomies, dilemmas, and decisions. Oxf. Rev. Econ. Policy 2020, 36, 86–107. [Google Scholar] [CrossRef]
- PCMC. Pimpri-Chinchwad Municipal Corporation Standing Committee Working Paper No. 159 (in Meeting Minutes); PCMC: Pimpri-Chinchwad, India, 2020. [Google Scholar]
- Hulchanski, J.D. The concept of housing affordability: Six contemporary uses of the housing expenditure-to-income ratio. Hous. Stud. 1995, 10, 471–491. [Google Scholar] [CrossRef]
- Davis, J.P.; Teodoro, M.P. Financial Capability and Affordability. In Water and Wastewater Financing and Pricing; CRC Press: Boca Raton, FL, USA, 2014; pp. 443–465. [Google Scholar]
- Gawel, E.; Bretschneider, W. The Affordability of Water and Energy Pricing: The case of Germany. In International Handbook on Social Policy and the Environment; Edward Elgar Publishing: Gloucestershire, UK, 2014; pp. 123–151. ISBN 0857936131. [Google Scholar]
- Gawel, E.; Sigel, K.; Bretschneider, W. Affordability of water supply in Mongolia: Empirical lessons for measuring affordability. Water Policy 2013, 15, 19–42. [Google Scholar] [CrossRef]
- Goddard, J.J.; Ray, I.; Balazs, C. How should water affordability be measured in the United States? A critical review. Wiley Interdiscip. Rev. Water 2022, 9, e1573. [Google Scholar] [CrossRef]
- Fagundes, T.S.; Marques, R.C.; Malheiros, T. Water affordability analysis: A critical literature review. AQUA—Water Infrastruct. Ecosyst. Soc. 2023, 72, 1431–1445. [Google Scholar] [CrossRef]
- Teodoro, M.P. Measuring household affordability for water and sewer utilities. J. Am. Water Work. Assoc. 2018, 110, 13–24. [Google Scholar] [CrossRef]
- Pérez-Foguet, A. Broadening the water affordability approach to monitor the human right to water. Cities 2023, 143, 104573. [Google Scholar] [CrossRef]
- Mack, E.A.; Wrase, S. A burgeoning crisis? A nationwide assessment of the geography of water affordability in the United States. PLoS ONE 2017, 12, e0169488. [Google Scholar]
- Schneeman, M. Defining and Measuring Water Affordability: A Literature Review; IISG19-RCE-RLA-056. 2020. Available online: https://repository.library.noaa.gov/view/noaa/38534/noaa_38534_DS1.pdf (accessed on 31 August 2023).
- Nordin, J.A. A proposed modification of Taylor’s demand analysis: Comment. Bell J. Econ. 1976, 7, 719–721. [Google Scholar] [CrossRef]
- Nieswiadomy, M.L.; Molina, D.J. Urban water demand estimates under increasing block rates. Growth Change 1988, 19, 1–12. [Google Scholar]
- Dalhuisen, J.M.; Florax, R.J.; de Groot, H.L.; Nijkamp, P. Price and Income Elasticities of Residential Water Demand: Why Empirical Estimates Differ. 2001. Available online: https://hdl.handle.net/10419/86001 (accessed on 28 May 2024).
- Corral, L.; Fisher, A.C.; Hatch, N.W. Price and Non-Price Influences on Water Conservation: An Econometric Model of Aggregate Demand Under Nonlinear Budget Constraint; Working Paper No. 881; Department of Agricultural and Resource Economics, UCB, UC Berkeley: Berkely, CA, USA, 1999; Available online: https://escholarship.org/uc/item/3gx868tg (accessed on 27 August 2025).
- Gaudin, S.; Griffin, R.C.; Sickles, R.C. Demand specification for municipal water management: Evaluation of the Stone-Geary form. Land Econ. 2001, 77, 399–422. [Google Scholar] [CrossRef]
- Dharmaratna, D.; Harris, E. Estimating residential water demand using the Stone-Geary functional form: The case of Sri Lanka. Water Resour. Manag. 2012, 26, 2283–2299. [Google Scholar] [CrossRef]
- García-Valiñas, M.Á.; Suárez-Fernández, S. Are economic tools useful to manage residential water demand? A review of old issues and emerging topics. Water 2022, 14, 2536. [Google Scholar] [CrossRef]
- Yoon, J.; Klassert, C.; Selby, P.; Lachaut, T.; Knox, S.; Avisse, N.; Harou, J.; Tilmant, A.; Klauer, B.; Mustafa, D. A coupled human–natural system analysis of freshwater security under climate and population change. Proc. Natl. Acad. Sci. USA 2021, 118, e2020431118. [Google Scholar] [CrossRef]
- Worthington, A.C.; Hoffman, M. An Empirical Survey of Residential Water Demand Modelling. J. Econ. Surv. 2008, 22, 842–871. [Google Scholar] [CrossRef]
- Klassert, C.; Sigel, K.; Klauer, B.; Gawel, E. Increasing Block Tariffs in an Arid Developing Country: A Discrete/Continuous Choice Model of Residential Water Demand in Jordan. Water 2018, 10, 248. [Google Scholar] [CrossRef]
- Vásquez Lavín, F.A.; Hernandez, J.I.; Ponce, R.D.; Orrego, S.A. Functional forms and price elasticities in a discrete continuous choice model of the residential water demand. Water Resour. Res. 2017, 53, 6296–6311. [Google Scholar] [CrossRef]
- Miyawaki, K.; Omori, Y.; Hibiki, A. Panel Data Analysis of Japanese Residential Water Demand Using a Discrete/Continuous Choice Approach. Jpn. Econ. Rev. 2011, 62, 365–386. [Google Scholar] [CrossRef]
- Olmstead, S.M.; Hanemann, W.M.; Stavins, R.N. Water demand under alternative price structures. J. Environ. Econ. Manag. 2007, 54, 181–198. [Google Scholar] [CrossRef]
- Olmstead, S.M. Reduced-form versus structural models of water demand under nonlinear prices. J. Bus. Econ. Stat. 2009, 27, 84–94. [Google Scholar] [CrossRef]
- Hewitt, J.A.; Hanemann, W.M. A discrete/continuous choice approach to residential water demand under block rate pricing. Land Econ. 1995, 71, 173–192. [Google Scholar] [CrossRef]
- Amit, R.K.; Sasidharan, S. Measuring affordability of access to clean water: A coping cost approach. Resour. Conserv. Recycl. 2019, 141, 410–417. [Google Scholar] [CrossRef]
- Srinivasan, V. An Integrated Framework for Analysis of Water Supply Strategies in a Developing City: Chennai, India; Stanford University: Stanford, CA, USA, 2008; ISBN 0549851267. [Google Scholar]
- Choudhary, M.; Sharma, R.; Kumar, S. Development of residential water demand model for a densely populated area of Jaipur City, India. J. Water Sanit. Hyg. Dev. 2012, 2, 10–19. [Google Scholar] [CrossRef]
- Stoler, J.; Pearson, A.L.; Staddon, C.; Wutich, A.; Mack, E.; Brewis, A.; Rosinger, A.Y.; Adams, E.; Ahmed, J.F.; Alexander, M. Cash water expenditures are associated with household water insecurity, food insecurity, and perceived stress in study sites across 20 low-and middle-income countries. Sci. Total Environ. 2020, 716, 135881. [Google Scholar] [CrossRef] [PubMed]
- Gimelli, F.M.; Bos, J.J.; Rogers, B.C. Fostering equity and wellbeing through water: A reinterpretation of the goal of securing access. World Dev. 2018, 104, 1–9. [Google Scholar] [CrossRef]
- Oyerinde, A.O.; Jacobs, H.E. Determinants of household water demand: A cross-sectional study in South West Nigeria. J. Water Sanit. Hyg. Dev. 2022, 12, 200–207. [Google Scholar]
- Hansen, L.G. Water and Energy Price Impacts on Residential Water Demand in Copenhagen. Land Econ. 1996, 72, 66–79. [Google Scholar] [CrossRef]
- Maas, A.; Goemans, C.; Manning, D.T.; Burkhardt, J.; Arabi, M. Complements of the house: Estimating demand-side linkages between residential water and electricity. Water Resour. Econ. 2020, 29, 100140. [Google Scholar] [CrossRef]
- Suárez-Varela, M. Modeling residential water demand: An approach based on household demand systems. J. Environ. Manag. 2020, 261, 109921. [Google Scholar] [CrossRef] [PubMed]
- Babamiri, A.S.; Pishvaee, M.S.; Mirzamohammadi, S. The analysis of financially sustainable management strategies of urban water distribution network under increasing block tariff structure: A system dynamics approach. Sustain. Cities Soc. 2020, 60, 102193. [Google Scholar] [CrossRef]
- Martinez-Espineira, R. Estimating water demand under increasing-block tariffs using aggregate data and proportions of users per block. Environ. Resour. Econ. 2003, 26, 5–23. [Google Scholar] [CrossRef]
- Whittington, D. Possible adverse effects of increasing block water tariffs in developing countries. Econ. Dev. Cult. Change 1992, 41, 75–87. [Google Scholar] [CrossRef]
- Hoque, S.F.; Wichelns, D. State-of-the-art review: Designing urban water tariffs to recover costs and promote wise use. International J. Water Resour. Dev. 2013, 29, 472–491. [Google Scholar] [CrossRef]
- Nauges, C.; Whittington, D. Evaluating the performance of alternative municipal water tariff designs: Quantifying the tradeoffs between equity, economic efficiency, and cost recovery. World Dev. 2017, 91, 125–143. [Google Scholar] [CrossRef]
- Whittington, D. Municipal water pricing and tariff design: A reform agenda for South Asia. Water Policy 2003, 5, 61–76. [Google Scholar] [CrossRef]
- Dahan, M.; Nisan, U. Unintended consequences of increasing block tariffs pricing policy in urban water. Water Resour. Res. 2007, 43, W03402. [Google Scholar] [CrossRef]
Consumption Block (m3) | Rates FY 2019/20 | Rates FY 2020/21 | Rates FY 2021/22 | Rates FY 2022/23 |
---|---|---|---|---|
0–6 | 0 | 0 | 0 | 0 |
6–15 | 4.2 | 4.41 | 4.63 | 4.86 |
15–22.5 | 4.2 | 4.41 | 4.63 | 4.86 |
22.5–30 | 8.4 | 8.82 | 9.26 | 9.72 |
above 30 | 12.6 | 13.23 | 13.89 | 14.58 |
Statistic | Full Sample of Standard Urban Households in Pimpri-Chinchwad | Subsample for Demand Estimation | ||||||
---|---|---|---|---|---|---|---|---|
N | Mean | St. Dev. | N | Mean | St. Dev. | Min | Max | |
Household Income (INR/Month) | 559 | 40,503.58 | 36,160.35 | 160 | 39,518.75 | 45,257.61 | 3000 | 500,000 |
Household Size (Count) | 568 | 4.94 | 2.89 | 160 | 5.02 | 2.34 | 1 | 16 |
Piped Water Supply Hours (Hour/Day) | 372 | 3.63 | 5.16 | 104 | 3.76 | 6.03 | 0.50 | 24.00 |
Use of Electric Water Pump (Dummy) | 568 | 0.52 | 0.50 | 160 | 0.65 | 0.48 | 0 | 1 |
Monthly Household Piped Water Consumption (m3/Month) | - | 160 | 24.47 | 13.41 | 2.40 | 84.61 | ||
Monthly Household Electricity Consumption (kWh/Month) | - | 160 | 121.51 | 124.34 | 0.80 | 1304.25 | ||
Marginal Price for Water (INR/m3) | - | 160 | 7.01 | 3.70 | 0.00 | 12.60 | ||
Marginal Price for Electricity (INR/kWh) | - | 160 | 7.80 | 2.70 | 5.45 | 17.06 |
Dependent Variable | |||
---|---|---|---|
Log (LPCD) | |||
OLS | DCC | ||
(1) | (2) | (3) | |
Marginal Water Price | 0.120 *** | −0.070 *** | |
(0.007) | (1.722 × 10−3) | ||
Log (Marginal Electricity Price) | 0.114 | −0.092 | −0.097 *** |
(0.073) | (0.127) | (4.888 × 10−3) | |
Log (Income + Difference) | 0.043 | 0.166 *** | 0.177 *** |
(0.036) | (0.061) | (4.830 × 10−4) | |
Household Size | −0.326 *** | −0.252 *** | −0.247 *** |
(0.035) | (0.060) | (6.010 × 10−4) | |
Square of Household Size | 0.011 *** | 0.009 ** | 0.007 *** |
(0.002) | (0.004) | (2.259 × 10−4) | |
Constant | 4.828 *** | 4.500 *** | 4.877 *** |
(0.360) | (0.630) | (7.993 × 10−3) | |
Observations | 160 | 160 | 160 |
R2 | 0.755 | 0.245 | |
Adjusted R2 | 0.747 | 0.225 | |
Residual Std. Error | 0.293 (df = 154) | 0.512 (df = 155) | |
F Statistic | 94.835 *** (df = 5; 154) | 12.544 *** (df = 4; 155) | |
SigmaEta | −6.781 × 10−3 ** | ||
(3.156 × 10−3) | |||
SigmaEps | −4.087 × 10−1 *** | ||
(1.891 × 10−2) | |||
Log-Likelihood | −1.591 (df = 8) |
Tariff Block | Price Elasticity |
---|---|
Block 1 (0 INR/m3) | 0 |
Block 2 (4.2 INR/m3) | −0.292 |
Block 3 (8.4 INR/m3) | −0.584 |
Block 4 (12.6 INR/m3) | −0.876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Klassert, C.; Klauer, B.; Gawel, E. Estimating Household Water Demand and Affordability Under Intermittent Supply: An Econometric Analysis with a Water–Energy Nexus Perspective for Pimpri-Chinchwad, India. Water 2025, 17, 2917. https://doi.org/10.3390/w17192917
Zhu Y, Klassert C, Klauer B, Gawel E. Estimating Household Water Demand and Affordability Under Intermittent Supply: An Econometric Analysis with a Water–Energy Nexus Perspective for Pimpri-Chinchwad, India. Water. 2025; 17(19):2917. https://doi.org/10.3390/w17192917
Chicago/Turabian StyleZhu, Yuanzao, Christian Klassert, Bernd Klauer, and Erik Gawel. 2025. "Estimating Household Water Demand and Affordability Under Intermittent Supply: An Econometric Analysis with a Water–Energy Nexus Perspective for Pimpri-Chinchwad, India" Water 17, no. 19: 2917. https://doi.org/10.3390/w17192917
APA StyleZhu, Y., Klassert, C., Klauer, B., & Gawel, E. (2025). Estimating Household Water Demand and Affordability Under Intermittent Supply: An Econometric Analysis with a Water–Energy Nexus Perspective for Pimpri-Chinchwad, India. Water, 17(19), 2917. https://doi.org/10.3390/w17192917