Identification of Driving Factors of Long-Term Terrestrial Water Storage Anomaly Trend Changes in the Yangtze River Basin Based on Multisource Data and Geographical Detector Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Data Pre-Processing
2.3.2. Time Series Decomposition
2.3.3. The GeoDetector Model
3. Results
3.1. TWSA Changes in the YRB
3.2. Identification of Driving Factors for the Long-Term Trend of TWSA in the Upper YRB
3.3. Identification of Driving Factors for the Long-Term Trend of TWSA in the Middle YRB
3.4. Identification of Driving Factors for the Long-Term Trend of TWSA in the Lower YRB
4. Discussion
4.1. Comparison with Results from Other Methods
4.2. Limitations of Driver Selection and Analysis
4.3. Limitations of the GeoDetector Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Wang, D.; Li, W.; Liu, L. Sustainable water resources development and management in large river basins: An introduction. Environ. Earth Sci. 2022, 81, 179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tian, Y.; Dong, N.; Wu, H.; Li, S. The projected futures of water resources vulnerability under climate and socioeconomic change in the Yangtze River Basin, China. Ecol. Indic. 2023, 147, 109933. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Liu, Q.; Yao, Y.; Li, Y.; Wu, X.; Wang, C.; Yu, W.; Wang, T. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 2017, 607, 920–932. [Google Scholar] [CrossRef]
- Bai, H.; Zhong, Y.; Ma, N.; Kong, D.; Mao, Y.; Feng, W.; Wu, Y.; Zhong, M. Changes and drivers of long-term land evapotranspiration in the Yangtze River Basin: A water balance perspective. J. Hydrol. 2025, 653, 132763. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Y.; Awange, J.L.; Yang, L. A deep learning model for reconstructing centenary water storage changes in the Yangtze River Basin. Sci. Total Environ. 2023, 905, 167030. [Google Scholar] [CrossRef]
- Mashaly, A.F.; Fernald, A.G. Identifying capabilities and potentials of system dynamics in hydrology and water resources as a promising modeling approach for water management. Water 2020, 12, 1432. [Google Scholar] [CrossRef]
- Yang, T.-H.; Liu, W.-C. A general overview of the risk-reduction strategies for floods and droughts. Sustainability 2020, 12, 2687. [Google Scholar] [CrossRef]
- Schmidt, R.; Flechtner, F.; Meyer, U.; Neumayer, K.H.; Dahle, C.; König, R.; Kusche, J. Hydrological signals observed by the GRACE satellites. Surv. Geophys. 2008, 29, 319–334. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef]
- Chao, N.; Jin, T.; Cai, Z.; Chen, G.; Liu, X.; Wang, Z.; Yeh, P.J.F. Estimation of component contributions to total terrestrial water storage change in the Yangtze river basin. J. Hydrol. 2021, 595, 125661. [Google Scholar] [CrossRef]
- Xie, J.; Xu, Y.P.; Yu, H.; Huang, Y.; Guo, Y. Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data. Hydrol. Earth Syst. Sci. 2022, 26, 5933–5954. [Google Scholar] [CrossRef]
- Wu, S.; Dong, Z.; Cai, C.; Zhu, S.; Shao, Y.; Meng, J.; Amponsah, G.E. Identification of Extreme Droughts Based on a Coupled Hydrometeorology Index from GRACE-Derived TWSA and Precipitation in the Yellow River and Yangtze River Basins. Water 2023, 15, 1990. [Google Scholar] [CrossRef]
- Yang, S.; Zhong, Y.; Wu, Y.; Yang, K.; An, Q.; Bai, H.; Liu, S. Quantifying long-term drought in China’s exorheic basins using a novel daily GRACE reconstructed TWSA index. J. Hydrol. 2025, 655, 132919. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, Z.; Yan, H.; Zhao, Y.; Li, Z. Characterizing drought events occurred in the Yangtze River Basin from 1979 to 2017 by reconstructing water storage anomalies based on GRACE and meteorological data. Sci. Total Environ. 2023, 868, 161755. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, E.; Wu, Y.; An, Q.; Wang, C.; Bai, H.; Gao, W. Reconstructing a long-term water storage-based drought index in the Yangtze River Basin. Sci. Total Environ. 2023, 883, 163403. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Meng, J.; Zhong, B.; An, J.; Li, Y.; Guo, H.; Lu, Y. Spatiotemporal evolution of 1998 extreme flood event in the Yangtze River basin from the perspective of the reconstructed GRACE/GRACE-FO data. J. Hydrol. Reg. Stud. 2025, 60, 102551. [Google Scholar] [CrossRef]
- Li, X.; Zhong, B.; Chen, J.; Li, J.; Wang, H. Investigation of 2020–2022 extreme floods and droughts in Sichuan Province of China based on joint inversion of GNSS and GRACE/GFO data. J. Hydrol. 2024, 632, 130868. [Google Scholar] [CrossRef]
- Wang, L.; Peng, Z.; Ma, X.; Zheng, Y.; Chen, C. Multiscale gravity measurements to characterize 2020 flood events and their spatio-temporal evolution in Yangtze river of China. J. Hydrol. 2021, 603, 127176. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Nie, S. Impact of LUCC on landscape pattern in the Yangtze River Basin during 2001–2019. Ecol. Inform. 2022, 69, 101631. [Google Scholar] [CrossRef]
- Liu, G.; Wang, W. Competing effects of vegetation greening-induced changes in summer evapotranspiration and precipitation on water yield in the Yangtze River Basin based on WRF simulations. Water Resour. Res. 2025, 61, e2024WR038663. [Google Scholar] [CrossRef]
- Ahmed, N.; Wang, G.; Lü, H.; Booij, M.J.; Marhaento, H.; Prodhan, F.A.; Ali, S.; Ali Imran, M. Attribution of changes in streamflow to climate change and land cover change in Yangtze River source region, China. Water 2022, 14, 259. [Google Scholar] [CrossRef]
- Chai, Y.; Li, Y.; Yang, Y.; Zhu, B.; Li, S.; Xu, C.; Liu, C. Influence of climate variability and reservoir operation on streamflow in the Yangtze River. Sci. Rep. 2019, 9, 5060. [Google Scholar] [CrossRef]
- Yuan, Z.; Yin, J.; Wei, M.; Yuan, Y. Spatio-temporal variations in the temperature and precipitation extremes in Yangtze River Basin, China during 1961–2020. Atmosphere 2021, 12, 1423. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, S.; Du, Q.; Ding, J.; Luan, G.; Xie, Z. Assessment of the sustainable development of rural minority settlements based on multidimensional data and geographical detector method: A case study in Dehong, China. Socio Econ. Plan. Sci. 2021, 78, 101066. [Google Scholar] [CrossRef]
- Dong, Y.; Yin, D.; Li, X.; Huang, J.; Su, W.; Li, X.; Wang, H. Spatial–temporal evolution of vegetation NDVI in association with climatic, environmental and anthropogenic factors in the loess plateau, China during 2000–2015: Quantitative analysis based on geographical detector model. Remote Sens. 2021, 13, 4380. [Google Scholar] [CrossRef]
- Han, J.; Wang, J.; Chen, L.; Xiang, J.; Ling, Z.; Li, Q.; Wang, E. Driving factors of desertification in Qaidam Basin, China: An 18-year analysis using the geographic detector model. Ecol. Indic. 2021, 124, 107404. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y. Spatial-temporal differentiation characteristics and driving factors of China’s energy eco-efficiency based on geographical detector model. J. Clean. Prod. 2024, 434, 140153. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Ma, X.; Fu, Z.; Zheng, Y.; Peng, Z. Evaluation of GRACE mascon solutions using in-situ geodetic data: The case of hydrologic-induced crust displacement in the Yangtze River Basin. Sci. Total Environ. 2020, 707, 135606. [Google Scholar] [CrossRef]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4, 170012. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, C.; Chu, Z.; Sun, Q.; Chen, L. Application of CN05.1 meteorological data in watershed hydrological simulation: A case study in the upper reaches of Kaidu River basin. Adv. Clim. Change Res. 2020, 16, 287. [Google Scholar]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Gou, J.; Miao, C.; Samaniego, L.; Xiao, M.; Wu, J.; Guo, X. CNRD v1.0: A High-Quality Natural Runoff Dataset for Hydrological and Climate Studies in China. Bull. Am. Meteorol. Soc. 2021, 102, E929–E947. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.A. A 5 km resolution dataset of monthly NDVI product of China (1982–2020). China Sci. Data 2022, 7, 1–9. [Google Scholar]
- Zhang, L.; Ren, Z.; Chen, B.; Gong, P.; Xu, B.; Fu, H. A prolonged artificial nighttime-light dataset of China (1984–2020). Sci. Data 2024, 11, 414. [Google Scholar] [CrossRef]
- Döll, P.; Kaspar, F.; Lehner, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Bai, H.; Ming, Z.; Zhong, Y.; Zhong, M.; Kong, D.; Ji, B. Evaluation of evapotranspiration for exorheic basins in China using an improved estimate of terrestrial water storage change. J. Hydrol. 2022, 610, 127885. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wang, Z.; Sun, Y.; Zhang, X.; Li, T.; Li, C.; Min, S.-K.; Hu, T. Human influence on historical heaviest precipitation events in the Yangtze River Valley. Environ. Res. Lett. 2023, 18, 024044. [Google Scholar] [CrossRef]
- Grömping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 2007, 17, 1–27. [Google Scholar]















| Type | Driving Factors | Abbreviation | Temporal Resolution | Spatial Resolution | Data Source |
|---|---|---|---|---|---|
| Natural factors | Soil moisture storage | SMS | Monthly | 0.1° × 0.1° | FLDAS Noah [29] |
| Evapotranspiration | ET | Monthly | 0.25° × 0.25° | GLEAM [30] | |
| Potential evapotranspiration | PET | Monthly | 0.25° × 0.25° | GLEAM | |
| Precipitation | PRE | Daily | 0.25° × 0.25° | CN05.1 [31] | |
| Temperature | TEM | Hourly | 0.1° × 0.1° | ERA5 Land [32] | |
| Snow water equivalent | SWE | Hourly | 0.1° × 0.1° | ERA5 Land | |
| Runoff | RO | Daily | 0.25° × 0.25° | CNRD v1.0 [33] | |
| Normalized difference vegetation index | NDVI | Monthly | 5 km × 5 km | A 5 km resolution dataset of monthly NDVI product of China (1982–2020) [34] | |
| Anthropogenic factors | Nighttime-light | LIGHT | Monthly | 100 m–1 km | A prolonged artificial nighttime-light dataset of China (1984–2020) [35] |
| Reservoir water storage | RWS | Monthly | 0.5° × 0.5° | WaterGAP Global Hydrology Model (WGHM) [36] |
| Judgment Basis | Interaction |
|---|---|
| Non-linear weakening | |
| Single-factor nonlinear attenuation | |
| Two-factor interaction enhancement | |
| Mutual independence | |
| Non-linear enhancement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Ye, S.; Wang, Y.; Qu, Y.; Yao, Z.; Liao, B.; Wang, J. Identification of Driving Factors of Long-Term Terrestrial Water Storage Anomaly Trend Changes in the Yangtze River Basin Based on Multisource Data and Geographical Detector Method. Water 2025, 17, 2914. https://doi.org/10.3390/w17192914
Li Q, Ye S, Wang Y, Qu Y, Yao Z, Liao B, Wang J. Identification of Driving Factors of Long-Term Terrestrial Water Storage Anomaly Trend Changes in the Yangtze River Basin Based on Multisource Data and Geographical Detector Method. Water. 2025; 17(19):2914. https://doi.org/10.3390/w17192914
Chicago/Turabian StyleLi, Qin, Song Ye, Ying Wang, Yingjie Qu, Zhengli Yao, Bocheng Liao, and Junke Wang. 2025. "Identification of Driving Factors of Long-Term Terrestrial Water Storage Anomaly Trend Changes in the Yangtze River Basin Based on Multisource Data and Geographical Detector Method" Water 17, no. 19: 2914. https://doi.org/10.3390/w17192914
APA StyleLi, Q., Ye, S., Wang, Y., Qu, Y., Yao, Z., Liao, B., & Wang, J. (2025). Identification of Driving Factors of Long-Term Terrestrial Water Storage Anomaly Trend Changes in the Yangtze River Basin Based on Multisource Data and Geographical Detector Method. Water, 17(19), 2914. https://doi.org/10.3390/w17192914

