From Filamentous Bulking to Utilization: Formation Mechanisms of Filamentous Biofilms and Construction of Stabilized Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Reactor Setup
2.2. Experimental Process
2.3. Analytical Methods
3. Results and Discussion
3.1. Sludge Characteristics
3.2. Removal Performance
3.3. Microbial Community
3.4. FBs System Construction
3.4.1. Sludge Properties
3.4.2. Removal Performance of Immobilized FBs
3.4.3. Microbial Community of Immobilized FBs
4. Scalability Potential, Limitations, and Linkages to the Biocircular Economy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilén, B.M.; Jin, B.; Lant, P. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res. 2003, 37, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, L.; Li, H.; Fang, F.; Yan, P.; Chen, Y.; Guo, J.; Ma, T.; Shen, Y. The branched chains and branching degree of exopolysaccharides affecting the stability of anammox granular sludge. Water Res. 2020, 178, 115818. [Google Scholar] [CrossRef]
- Sezgin, M.; Jenkins, D.; Parker, D.S. A unified theory of filamentous activated sludge bulking. J. Water Pollut. Control. Fed. 1978, 50, 362–381. [Google Scholar]
- Liang, Y.; Pan, Z.; Guo, T.; Feng, H.; Yan, A.; Ni, Y.; Li, J. Filamentous bacteria and stalked ciliates for the stable structure of aerobic granular sludge treating wastewater. Int. J. Environ. Res. Public Health 2022, 19, 15747. [Google Scholar] [CrossRef]
- Zinatizadeh, A.A.L.; Ghaytooli, E. Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (mbbr): Process modeling and optimization. J. Taiwan Inst. Chem. Eng. 2015, 53, 98–111. [Google Scholar] [CrossRef]
- Geng, M.; You, S.; Guo, H.; Ma, F.; Xiao, X.; Zhang, J. Impact of fungal pellets dosage on long-term stability of aerobic granular sludge. Bioresour. Technol. 2021, 332, 125106. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Ren, H.Q.; Geng, J.J.; Xu, K.; Huang, H.; Ding, L.L. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor. Bioresour. Technol. 2015, 180, 345–351. [Google Scholar] [CrossRef]
- Wang, H.; Song, Q.; Wang, J.; Zhang, H.; He, Q.; Zhang, W.; Song, J.; Zhou, J.; Li, H. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: Effects of carbon to nitrogen ratios. Sci. Total Environ. 2018, 642, 1145–1152. [Google Scholar] [CrossRef]
- Xiao, X.; Ma, F.; You, S.; Guo, H.; Zhang, J.; Bao, X.; Ma, X. Direct sludge granulation by applying mycelial pellets in continuous-flow aerobic membrane bioreactor: Performance, granulation process and mechanism. Bioresour. Technol. 2022, 344, 126233. [Google Scholar] [CrossRef]
- Ren, X.; Guo, L.; Chen, Y.; She, Z.; Gao, M.; Zhao, Y.; Shao, M. Effect of magnet powder (Fe3O4) on aerobic granular sludge (ags) formation and microbial community structure characteristics. ACS Sustain. Chem. Eng. 2018, 6, 9707–9715. [Google Scholar] [CrossRef]
- Zhang, D.; Li, W.; Hou, C.; Shen, J.; Jiang, X.; Sun, X.; Li, J.; Han, W.; Wang, L.; Liu, X. Aerobic granulation accelerated by biochar for the treatment of refractory wastewater. Chem. Eng. J. 2017, 314, 88–97. [Google Scholar] [CrossRef]
- Martins Antonio, M.P.; Pagilla, K.; Heijnen, J.J.; van Loosdrecht, M.C. Filamentous bulking sludge—A critical review. Water Res. 2004, 38, 793–817. [Google Scholar] [CrossRef]
- Wágner, D.S.; Ramin, E.; Szabo, P.; Dechesne, A.; Plósz, B.G. Microthrix parvicella abundance associates with activated sludge settling velocity and rheology–quantifying and modelling filamentous bulking. Water Res. 2015, 78, 121–132. [Google Scholar] [CrossRef]
- He, Q.; Zhang, J.; Gao, S.; Chen, L.; Lyu, W.; Zhang, W.; Song, J.; Hu, X.; Chen, R.; Wang, H.; et al. A comprehensive comparison between non-bulking and bulking aerobic granular sludge in microbial communities. Bioresour. Technol. 2019, 294, 122151. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Peng, Y.; Wang, S.; Yang, X.; Wang, Z.; Zhu, A. Stable limited filamentous bulking through keeping the competition between floc-formers and filaments in balance. Bioresour. Technol. 2012, 103, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Zhang, X.; Li, J. The formation and distinct characteristics of aerobic granular sludge with filamentous bacteria in low strength wastewater. Bioresour. Technol. 2022, 360, 127409. [Google Scholar] [CrossRef]
- Wu, Y.; Wan, A.; Zhao, B.; Xue, S.; Xu, A. Single-stage mbbr using novel carriers to remove nitrogen in rural domestic sewage: The effect of carrier structure on biofilm morphology and snd. J. Environ. Chem. Eng. 2022, 10, 108267. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Foundation: Alexandria, VA, USA, 2005. [Google Scholar]
- Zou, J.; Li, Y.; Zhang, L.; Wang, R.; Sun, J. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system. Bioresour. Technol. 2015, 177, 209–216. [Google Scholar] [CrossRef]
- Iorhemen, O.T.; Hamza, R.A.; Zaghloul, M.S.; Tay, J.H. Aerobic granular sludge membrane bioreactor (agmbr): Extracellular polymeric substances (eps) analysis. Water Res. 2019, 156, 305–314. [Google Scholar] [CrossRef]
- Taherzadeh, D.; Picioreanu, C.; Horn, H. Mass transfer enhancement in moving biofilm structures. Biophys. J. 2012, 102, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Morgan-Sagastume, F.; Allen, D.G. Effects of temperature transient conditions on aerobic biological treatment of wastewater. Water Res. 2003, 37, 3590–3601. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Pan, J.; Wu, S.; Qian, M.; He, Z.; Wang, B.; Li, J. Rapid control of activated sludge bulking and simultaneous acceleration of aerobic granulation by adding intact aerobic granular sludge. Sci. Total Environ. 2019, 674, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chen, C.; Fu, L.; Cui, B.; Zhou, D. Social network of filamentous sphaerotilus during activated sludge bulking: Identifying the roles of signaling molecules and verifying a novel control strategy. Chem. Eng. J. 2023, 454, 140109. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W.; Zheng, X.; Liu, Q.; Xiang, W.; Qu, J.; Yang, C. Microbial community structure analysis in a hybrid membrane bioreactor via high-throughput sequencing. Chemosphere 2021, 282, 130989. [Google Scholar] [CrossRef]
- Gu, Y.-Q.; Li, T.-T.; Li, H.-Q. Biofilm formation monitored by confocal laser scanning microscopy during startup of mbbr operated under different intermittent aeration modes. Process Biochem. 2018, 74, 132–140. [Google Scholar] [CrossRef]
- He, Q.; Chen, L.; Zhang, S.; Chen, R.; Wang, H.; Zhang, W.; Song, J. Natural sunlight induced rapid formation of water-born algal-bacterial granules in an aerobic bacterial granular photo-sequencing batch reactor. J. Hazard. Mater. 2018, 359, 222–230. [Google Scholar] [CrossRef]
- Quartaroli, L.; Silva, C.M.; Silva, L.C.F.; Lima, H.S.; de Paula, S.O.; Dias, R.S.; Carvalho, K.B.; Souza, R.S.; Bassin, J.P.; da Silva, C.C. Effect of the gradual increase of salt on stability and microbial diversity of granular sludge and ammonia removal. J. Environ. Manag. 2019, 248, 109273. [Google Scholar] [CrossRef]
- Zhang, B.; Lens, P.N.; Shi, W.; Zhang, R.; Zhang, Z.; Guo, Y.; Bao, X.; Cui, F. Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chem. Eng. J. 2018, 334, 2373–2382. [Google Scholar] [CrossRef]
- Brudey, T.; Largitte, L.; Jean-Marius, C.; Tant, T.; Dumesnil, P.C.; Lodewyckx, P. Adsorption of lead by chemically activated carbons from three lignocellulosic precursors. J. Anal. Appl. Pyrolysis 2016, 120, 450–463. [Google Scholar] [CrossRef]
- Castellanos, R.M.; Dias, J.M.R.; Bassin, I.D.; Dezotti, M.; Bassin, J.P. Effect of sludge age on aerobic granular sludge: Addressing nutrient removal performance and biomass stability. Process Saf. Environ. Prot. 2021, 149, 212–222. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, T.; Li, J.; Zhang, X. From Filamentous Bulking to Utilization: Formation Mechanisms of Filamentous Biofilms and Construction of Stabilized Systems. Water 2025, 17, 2885. https://doi.org/10.3390/w17192885
Song T, Li J, Zhang X. From Filamentous Bulking to Utilization: Formation Mechanisms of Filamentous Biofilms and Construction of Stabilized Systems. Water. 2025; 17(19):2885. https://doi.org/10.3390/w17192885
Chicago/Turabian StyleSong, Tao, Ji Li, and Xiaolei Zhang. 2025. "From Filamentous Bulking to Utilization: Formation Mechanisms of Filamentous Biofilms and Construction of Stabilized Systems" Water 17, no. 19: 2885. https://doi.org/10.3390/w17192885
APA StyleSong, T., Li, J., & Zhang, X. (2025). From Filamentous Bulking to Utilization: Formation Mechanisms of Filamentous Biofilms and Construction of Stabilized Systems. Water, 17(19), 2885. https://doi.org/10.3390/w17192885