Multi-Scenario Analysis of Brackish Water Irrigation Efficiency Based on the SBM Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SBM-DEA Model
2.3. Determination of Input and Output Indicators
2.4. Scenario Design and Data Construction Methods
2.4.1. Scenario Design Scheme
- (1)
- Water-saving irrigation ratio: Based on regional agricultural water resource planning and policy goals, the scenarios set the water-saving irrigation ratio for 2030 at 90% and 100%, while S0 retains the actual ratio for 2020.
- (2)
- Hydrological year type: To reflect the impact of meteorological and hydrological changes on irrigation demand, two types of years are defined: normal year (average multi-year precipitation conditions) and dry year (significant reduction in precipitation and increased irrigation water demand).
- (3)
- Brackish water utilization level: Set at the same level as the baseline year, with an additional 15% increase for one of the scenarios, which simulates the potential substitution capacity under enhanced salt-tolerant crop planting and water quality management.
2.4.2. Indicator Construction Under Scenarios
- (1)
- Salt-tolerant crop area prediction
- (2)
- Brackish water irrigation volume
- (3)
- Freshwater irrigation volume
- (4)
- Total yield of salt-tolerant crops
2.5. Evaluation of Brackish Water Input Redundancy
3. Results and Discussion
3.1. Overall Efficiency Analysis Results
3.1.1. Efficiency Levels and Stability Across Scenarios
3.1.2. Distribution Characteristics and Proportion of High-Efficiency Units
3.1.3. Regularity of Efficiency Response Among Different Scenarios
3.2. Regional Differences Analysis
3.3. Identification of Brackish Water Utilization Potential
4. Conclusions and Implications
4.1. Conclusions
4.2. Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DEA | Data envelopment analysis |
SBM | Slacks-Based Measure |
DMUs | Decision-making units |
BWIE | brackish water irrigation efficiency |
CP | Guangping |
QX | Qiuxian |
GT | Guantao |
FX | Feixiang |
CA | Cheng’an |
QZ | Quzhou |
References
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Xu, Y.; Li, C.; Zhang, X.; Wang, X. Characteristics of Groundwater Drought and Its Correlation with Meteorological and Agricultural Drought over the North China Plain Based on Grace. Ecol. Indic. 2024, 161, 111925. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Chen, Y.; Sui, P.; Pacenka, S.; Steenhuis, T.S.; Siddique, K.H.M. Reduced Groundwater Use and Increased Grain Production by Optimized Irrigation Scheduling in Winter Wheat–Summer Maize Double Cropping System—A 16-Year Field Study in North China Plain. Field Crops Res. 2022, 275, 108364. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Li, J.; Liu, Z.; Zhao, Z.; Zhang, Y.; Zhou, S.; Wang, Z. Improving Water Use Efficiency and Grain Yield of Winter Wheat by Optimizing Irrigations in the North China Plain. Field Crops Res. 2018, 221, 219–227. [Google Scholar] [CrossRef]
- Karimidastenaei, Z.; Avellán, T.; Sadegh, M.; Kløve, B.; Haghighi, A.T. Unconventional Water Resources: Global Opportunities and Challenges. Sci. Total Environ. 2022, 827, 154429. [Google Scholar] [CrossRef]
- Yazdandoost, F.; Noruzi, M.M.; Yazdani, S.A. Sustainability Assessment Approaches Based on Water-Energy Nexus: Fictions and Nonfictions About Non-Conventional Water Resources. Sci. Total Environ. 2021, 758, 143703. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Feng, D.; Zhang, A.; Zheng, C.; Li, K.; Ning, S.; Zhang, J.; Sun, C. Effects of Saline Water Mulched Drip Irrigation on Cotton Yield and Soil Quality in the North China Plain. Agric. Water Manag. 2022, 262, 107405. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Z.; Zhang, J.; Ma, K. An Optimum Combination of Irrigation Amount, Irrigation Water Salinity and Nitrogen Application Rate Can Improve Cotton (for Fiber) Nitrogen Uptake and Final Yield. Ind. Crops Prod. 2022, 187, 115386. [Google Scholar] [CrossRef]
- Li, C.; Lei, J.; Zhao, Y.; Xu, X.; Li, S. Effect of Saline Water Irrigation on Soil Development and Plant Growth in the Taklimakan Desert Highway Shelterbelt. Soil Tillage Res. 2015, 146, 99–107. [Google Scholar] [CrossRef]
- Su, F.; Wu, J.; Wang, D.; Zhao, H.; Wang, Y.; He, X. Moisture Movement, Soil Salt Migration, and Nitrogen Transformation under Different Irrigation Conditions: Field Experimental Research. Chemosphere 2022, 300, 134569. [Google Scholar] [CrossRef]
- Yan, S.; Gao, Y.; Tian, M.; Tian, Y.; Li, J. Comprehensive Evaluation of Effects of Various Carbon-Rich Amendments on Tomato Production under Continuous Saline Water Irrigation: Overall Soil Quality, Plant Nutrient Uptake, Crop Yields and Fruit Quality. Agric. Water Manag. 2021, 255, 106995. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Z.; Šimůnek, J.; He, Y.; Muhamma, R. Optimizing the Strategies of Mulched Brackish Drip Irrigation under a Shallow Water Table in Xinjiang, China, Using Hydrus-3d. Agric. Water Manag. 2023, 283, 108303. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Kong, X.; Liu, X.; Sun, H. Modeling and Assessing Feasibility of Long-Term Brackish Water Irrigation in Vertically Homogeneous and Heterogeneous Cultivated Lowland in the North China Plain. Agric. Water Manag. 2019, 211, 98–110. [Google Scholar] [CrossRef]
- Yong, Q.; Zhaoji, Z.; Yuhong, F.E.I.; Jingsheng, C.; Feng’e, Z.; Zhao, W. Sustainable Exploitable Potential of Shallow Groundwater in the North China Plain. Chin. J. Eco-Agric. 2014, 22, 890–897. [Google Scholar]
- Zhang, J.; Li, K.; Zheng, C.; Cao, C.; Sun, C.; Dang, H.; Feng, D.; Sun, J. Cotton Responses to Saline Water Irrigation in the Low Plain around the Bohai Sea in China. J. Irrig. Drain. Eng. 2018, 144, 04018027. [Google Scholar] [CrossRef]
- Guo, X.; Du, S.; Guo, H.; Min, W. Long-Term Saline Water Drip Irrigation Alters Soil Physicochemical Properties, Bacterial Community Structure, and Nitrogen Transformations in Cotton. Appl. Soil Ecol. 2023, 182, 104719. [Google Scholar] [CrossRef]
- Cao, Y.; Tian, Y.; Gao, L.; Chen, Q. Attenuating the Negative Effects of Irrigation with Saline Water on Cucumber (Cucumis sativus L.) by Application of Straw Biological-Reactor. Agric. Water Manag. 2016, 163, 169–179. [Google Scholar] [CrossRef]
- Kumar, P.; Choudhary, M.; Halder, T.; Prakash, N.R.; Singh, V.; V, V.T.; Sheoran, S.; T, R.K.; Longmei, N.; Rakshit, S.; et al. Salinity Stress Tolerance and Omics Approaches: Revisiting the Progress and Achievements in Major Cereal Crops. Heredity 2022, 128, 497–518. [Google Scholar] [CrossRef]
- de Oliveira, F.A.; Carrilho, M.J.S.O.; de Medeiros, J.F.; Maracajá, P.B.; de Oliveira, M.K.T. Performance of Lettuce Cultivars under Different Salinity Levels of Irrigation Water. Rev. Bras. Eng. Agric. Ambient. 2011, 15, 771–777. [Google Scholar]
- Galvani, A. The Challenge of the Food Sufficiency through Salt Tolerant Crops. Rev. Environ. Sci. Bio/Technol. 2007, 6, 3–16. [Google Scholar] [CrossRef]
- Ma, K.; Wang, Z.; Li, H.; Wang, T.; Chen, R. Effects of Nitrogen Application and Brackish Water Irrigation on Yield and Quality of Cotton. Agric. Water Manag. 2022, 264, 107512. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, C.; Yan, Z.; Shao, L.; Chen, S.; Niu, J.; Zhang, X. Effects of Long-Term Saline Water Irrigation on Soil Salinity and Crop Production of Winter Wheat-Maize Cropping System in the North China Plain: A Case Study. Agric. Water Manag. 2024, 303, 109060. [Google Scholar] [CrossRef]
- Wang, R.; Cao, H.; Kang, S.; Du, T.; Tong, L.; Kang, J.; Gao, J.; Ding, R. Agronomic Measures Improve Crop Yield and Water and Nitrogen Use Efficiency under Brackish Water Irrigation: A Global Meta-Analysis. Agric. Syst. 2025, 226, 104304. [Google Scholar] [CrossRef]
- Haile, T.; Wolodko, J.; Wilkie, R.; Tsaprailis, H. Corrosion of Brackish Water Systems Used for in-Situ Thermal Operations. In Proceedings of the CORROSION 2015, Dallas, TX, USA, 15–19 March 2015; pp. 1–13. [Google Scholar]
- Zhou, S.; Gao, Y.; Zhang, J.; Pang, J.; Hamani, A.K.; Xu, C.; Dang, H.; Cao, C.; Wang, G.; Sun, J. Impacts of Saline Water Irrigation on Soil Respiration from Cotton Fields in the North China Plain. Agronomy 2023, 13, 1197. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, A.; Zhu, C.; Dang, H.; Zheng, C.; Zhang, J.; Cao, C. Saline Water Irrigation Changed the Stability of Soil Aggregates and Crop Yields in a Winter Wheat–Summer Maize Rotation System. Agronomy 2024, 14, 2564. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Wang, X.; Sun, X.; Yang, L.; Zhang, S.; Xiang, Y.; Zhang, F. Crop Yield and Water Productivity under Salty Water Irrigation: A Global Meta-Analysis. Agric. Water Manag. 2021, 256, 107105. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, Z.; Wan, C.; Lu, P.; Bakour, A. Effects of Saline Water Irrigation on Soil Salinity and Yield of Summer Maize (Zea mays L.) in Subsurface Drainage System. Agric. Water Manag. 2017, 193, 205–213. [Google Scholar] [CrossRef]
- Bouras, H.; Mamassi, A.; Devkota, K.P.; Choukr-Allah, R.; Bouazzama, B. Integrated Effect of Saline Water Irrigation and Phosphorus Fertilization Practices on Wheat (Triticum aestivum) Growth, Productivity, Nutrient Content and Soil Proprieties under Dryland Farming. Plant Stress 2023, 10, 100295. [Google Scholar] [CrossRef]
- He, K.; Yang, Y.; Yang, Y.; Chen, S.; Hu, Q.; Liu, X.; Gao, F. Hydrus Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain. Water 2017, 9, 536. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, X.; Rashid, M.A.; Li, H.; Jing, H.; Hochman, Z. Assessment of the Sustainability of Different Cropping Systems under Three Irrigation Strategies in the North China Plain under Climate Change. Agric. Syst. 2020, 178, 102745. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Asghar, S.; Sasaki, N.; Jourdain, D.; Tsusaka, T.W. Levels of Technical, Allocative, and Groundwater Use Efficiency and the Factors Affecting the Allocative Efficiency of Wheat Farmers in Pakistan. Sustainability 2018, 10, 1619. [Google Scholar] [CrossRef]
- Watkins, K.B.; Henry, C.G.; Hardke, J.T.; Mane, R.U.; Mazzanti, R.; Baker, R. Non-Radial Technical Efficiency Measurement of Irrigation Water Relative to Other Inputs Used in Arkansas Rice Production. Agric. Water Manag. 2021, 244, 106441. [Google Scholar] [CrossRef]
- Ho, T.Q.; Hoang, V.-N.; Wilson, C. Sustainability Certification and Water Efficiency in Coffee Farming: The Role of Irrigation Technologies. Resour. Conserv. Recycl. 2022, 180, 106175. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, J. Water Constraint Mitigation and Agricultural Productivity: Evidence from the China’s South-to-North Water Diversion Project. Agric. Water Manag. 2025, 314, 109511. [Google Scholar] [CrossRef]
- Ait Sidhoum, A.; Vrachioli, M. Technology Adoption and Assessment of Eco-Efficiency in Water Management. Environ. Impact Assess. Rev. 2025, 112, 107799. [Google Scholar] [CrossRef]
- Lu, H.; Chen, Y.; Luo, J. Development of Green and Low-Carbon Agriculture through Grain Production Agglomeration and Agricultural Environmental Efficiency Improvement in China. J. Clean. Prod. 2024, 442, 141128. [Google Scholar] [CrossRef]
- Wei, J.; Lei, Y.; Yao, H.; Ge, J.; Wu, S.; Liu, L. Estimation and Influencing Factors of Agricultural Water Efficiency in the Yellow River Basin, China. J. Clean. Prod. 2021, 308, 127249. [Google Scholar] [CrossRef]
- Tone, K. A Slacks-Based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, Y.; Ren, H.; Xu, L. Scenario-Based Dea Assessment of Energy-Saving Technological Combinations in Aluminum Industry. J. Clean. Prod. 2020, 260, 121010. [Google Scholar]
- Wang, W.; Elahi, E.; Sun, S.; Tong, X.; Zhang, Z.; Abro, M.I. Factors Influencing Water Use Efficiency in Agriculture: A Case Study of Shaanxi, China. Sustainability 2023, 15, 2157. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, X.; Xie, M.; Cheng, W.; Shu, Q. A Study on the Effects of Regional Differences on Agricultural Water Resource Utilization Efficiency Using Super-Efficiency Sbm Model. Sci. Rep. 2021, 11, 9953. [Google Scholar] [CrossRef] [PubMed]
- Batisha, A. Multi-Disciplinary Strategy to Optimize Irrigation Efficiency in Irrigated Agriculture. Sci. Rep. 2024, 14, 11433. [Google Scholar] [CrossRef]
- Geng, Q.; Ren, Q.; Nolan, R.H.; Wu, P.; Yu, Q. Assessing China’s Agricultural Water Use Efficiency in a Green-Blue Water Perspective: A Study Based on Data Envelopment Analysis. Ecol. Indic. 2019, 96, 329–335. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Chen, Y.; Yao, X.; Yang, X.; Du, T. Water-Saving Potential of Optimized Irrigation System for Winter Wheat–Summer Maize Double Cropping System in the North China Plain Based on Citespace. J. China Agric. Univ. 2022, 27, 1–20. [Google Scholar]
- Zhang, N.; Zuo, Q.; Shi, J.; Xu, Y.; Wu, X. Estimating the Yields and Profits of Saline Water Irrigated Cotton in Xinjiang Based on Answer Model. Trans. Chin. Soc. Agric. Eng. 2023, 39, 78–89. [Google Scholar]
- Kresović, B.; Tapanarova, A.; Tomić, Z.; Životić, L.; Vujović, D.; Sredojević, Z.; Gajić, B. Grain Yield and Water Use Efficiency of Maize as Influenced by Different Irrigation Regimes through Sprinkler Irrigation under Temperate Climate. Agric. Water Manag. 2016, 169, 34–43. [Google Scholar] [CrossRef]
Indicator Type | Indicator | Unit |
---|---|---|
Input Indicators | Salt-tolerant crop planting area | mu |
Freshwater irrigation volume | 104 m3 | |
Brackish water irrigation volume | 104 m3 | |
Output Indicators | Total yield of salt-tolerant crops | ton |
Indicator | Source | Note |
---|---|---|
Brackish water irrigation volume | Handan City Water Resources Bulletin (2020) | County-level irrigation water data |
Freshwater irrigation volume | Derived from irrigation quotas and crop planting areas | Estimated for study area |
Irrigation water quotas (wheat, maize, cotton) | Irrigation Water Quotas for Wheat, Maize, and Cotton | Official standards |
Salt-tolerant crop yields (wheat, maize, cotton) | Handan Statistical Yearbook (2015–2020) | County-level agricultural yield data |
Yield improvement coefficients under water-saving irrigation () | Published literature | 15% (maize), 8% (wheat), 13% (cotton) [47,48,49] |
Total yield of salt-tolerant crops | Handan Statistical Yearbook (2015–2020) | Agricultural land use statistics |
Scenario | Year | Proportion of Water-Saving Irrigation | Hydrological Year Type | Brackish Water Utilization |
---|---|---|---|---|
S0 | 2020 | Current level | Actual hydrological conditions | Statistical values of the year |
S1 | 2030 | 90% | Dry year | Maintain baseline level |
S2 | 2030 | 90% | Normal year | Maintain baseline level |
S3 | 2030 | 90% | Dry year | Increase by 15% |
S4 | 2030 | 90% | Normal year | Increase by 15% |
S5 | 2030 | 100% | Dry year | Maintain baseline level |
S6 | 2030 | 100% | Normal year | Maintain baseline level |
S7 | 2030 | 100% | Dry year | Increase by 15% |
S8 | 2030 | 100% | Normal year | Increase by 15% |
Indicator | Sample Size | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
Salt-tolerant crop planting area | 54 | 354,050 | 54,087 | 257,080 | 475,500 |
Freshwater irrigation volume | 54 | 3409 | 756 | 2160 | 5203 |
Brackish water irrigation volume | 54 | 414 | 201 | 90 | 805 |
Total yield of salt-tolerant crops | 54 | 305,929 | 62,584 | 190,062 | 416,802 |
Scenario | Rank | Mean Efficiency | Standard Deviation |
---|---|---|---|
S0 | 7 | 0.696 | 0.209 |
S1 | 8 | 0.663 | 0.142 |
S2 | 5 | 0.726 | 0.136 |
S3 | 9 | 0.646 | 0.133 |
S4 | 6 | 0.711 | 0.13 |
S5 | 3 | 0.782 | 0.144 |
S6 | 2 | 0.903 | 0.117 |
S7 | 4 | 0.756 | 0.121 |
S8 | 1 | 0.909 | 0.122 |
County | Mean | Standard Deviation | Range | S8–S0 Difference | DEA Efficient (Count) | Classification |
---|---|---|---|---|---|---|
GP | 0.934 | 0.048 | 0.14 | 0.065 | 2 | Stable and efficient |
QX | 0.655 | 0.186 | 0.55 | 0.55 | 1 | Improvement potential |
GT | 0.798 | 0.153 | 0.374 | 0.374 | 2 | Improvement potential |
FX | 0.824 | 0.134 | 0.39 | 0.39 | 2 | Improvement potential |
CA | 0.662 | 0.082 | 0.227 | 0.209 | 0 | Low-efficiency and vulnerable |
QZ | 0.689 | 0.15 | 0.311 | −0.311 | 0 | Low-efficiency and vulnerable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Feng, Z.; Kong, X.; Zhang, S.; Liu, M.; Zhao, X.; Liu, K.; Ren, Z.; Wu, J. Multi-Scenario Analysis of Brackish Water Irrigation Efficiency Based on the SBM Model. Water 2025, 17, 2860. https://doi.org/10.3390/w17192860
Wu J, Feng Z, Kong X, Zhang S, Liu M, Zhao X, Liu K, Ren Z, Wu J. Multi-Scenario Analysis of Brackish Water Irrigation Efficiency Based on the SBM Model. Water. 2025; 17(19):2860. https://doi.org/10.3390/w17192860
Chicago/Turabian StyleWu, Jie, Zilong Feng, Xiangbin Kong, Shiwei Zhang, Miao Liu, Xiaojing Zhao, Kuo Liu, Zhongyu Ren, and Jin Wu. 2025. "Multi-Scenario Analysis of Brackish Water Irrigation Efficiency Based on the SBM Model" Water 17, no. 19: 2860. https://doi.org/10.3390/w17192860
APA StyleWu, J., Feng, Z., Kong, X., Zhang, S., Liu, M., Zhao, X., Liu, K., Ren, Z., & Wu, J. (2025). Multi-Scenario Analysis of Brackish Water Irrigation Efficiency Based on the SBM Model. Water, 17(19), 2860. https://doi.org/10.3390/w17192860