Ecological Risk Assessment of Storm-Flood Processes in Shallow Urban Lakes Based on Resilience Theory
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydro-Sediment Model Construction
2.2.1. Hydrodynamic Governing Equations
2.2.2. Sediment Transport Model
2.2.3. Model Boundary Conditions
2.3. Resilience-Based Ecological Risk Assessment Model
2.3.1. Theoretical Basis
2.3.2. Experiments
2.3.3. Light-Suitability Curves for Macrophyte Growth Status
2.3.4. Ecological Risk Assessment Model
2.4. Uncertainty and Sensitivity Analysis Methods
2.4.1. Monte Carlo Simulation
2.4.2. Sensitivity Analysis
3. Results
3.1. Results of Lake Hydrodynamics Under Different Scenarios
3.2. Spatial Distribution of Total Suspended Sediment Concentration in Lakes
3.3. Ecological Risk Assessment Results
3.4. Uncertainty and Sensitivity Analysis Results
3.4.1. Confidence Intervals for Ecological Risk Assessment
3.4.2. Sensitivity of Risk Predictions to Key Parameters
4. Discussion
4.1. Applicability of the Resilience-Based Ecological Risk Assessment Framework
- Temporal resolution: identifying transient responses (e.g., risk peaks within 24 h) that static methods overlook.
- Multi-scale integration: linking hourly stress to weekly recovery.
- Scenario analysis: providing quantitative support for adaptive management [23].
4.2. Mechanisms by Which Hydro-Sediment Processes Govern Ecological Risk in Shallow Lakes
4.3. Comparative Analysis with Conventional Ecological Risk Assessment Approaches
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scheffer, M. Ecology of Shallow Lakes; Chapman and Hall: London, UK, 1998; p. xiv. [Google Scholar]
- Zhao, L.; Zhang, X.; Liu, Y.; He, B.; Zhu, X.; Zou, R.; Zhu, Y. Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China. J. Environ. Sci. 2012, 24, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yan, D.; Wang, Y.; Lu, F.; Liu, S. Research progress on risk assessment and integrated strategies for urban pluvial flooding. J. Catastrophology 2014, 29, 144–149. [Google Scholar]
- Zhang, Y.L.; Liu, X.; Qin, B.; Shi, K.; Deng, J.; Zhou, Y. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Sci. Rep. 2016, 6, 23867. [Google Scholar] [CrossRef]
- Shi, T.; Chen, Y.; Zhang, H.; Shi, K.; Deng, J.; Zhou, Y. Clearing floating submerged vegetation leaves: An effective management to stabilize the clear state in shallow lakes? J. Environ. Manag. 2024, 372, 123263. [Google Scholar] [CrossRef]
- Jennings, E.; Jones, S.; Arvola, L.; Staehr, P.A.; Jones, I.D.; Weathers, K.C.; Weyhenmeyer, G.A.; Chiu, C.-Y.; De Eyto, E. Effects of weather-related episodic events in lakes: An analysis based on high-frequency data. Freshw. Biol. 2012, 57, 589–601. [Google Scholar] [CrossRef]
- Graham, E.B.; Averill, C.; Bond-Lamberty, B.; Knelman, J.E.; Krause, S.; Peralta, A.L.; Shade, A.; Smith, A.P.; Cheng, S.J.; Fanin, N. Toward a generalizable framework of disturbance ecology. Front. Ecol. Evol. 2021, 9, 588940. [Google Scholar] [CrossRef]
- Lin, C.; Han, C.; Pan, H.; You, W.; Yan, H.; Cheng, H. Effects of different light intensity on growth of the eight submerged plants. Environ. Eng. 2016, 34, 16–19. [Google Scholar]
- Wu, J.; Wen, W.; Shao, L.; Yu, K.; Hu, Z.; Tao, Y.; He, P. Effect of suspended sediment and Scenedesmus obliquus on the photosynthetic oxygen evolution rate of Vallisneria natans. Ecol. Sci. 2015, 34, 1–8. [Google Scholar]
- Hou, X. Remote Sensing-Based Spatial-Temporal Dynamics of Sediment Concentrations and Its Relationship with Wetland Vege-Tation Coverage in Large Lakes and Reservoirs of the Middle and Lower Reaches of the Yangtze River. Ph.D. Thesis, Wuhan University, Wuhan, China, 2020. (In Chinese). [Google Scholar] [CrossRef]
- Lei, Z.; Yong, L.; Yuzhao, L.; Xiang, Z.; Rui, Z.; Di, S. Review on Driving Factor Detection Methods of Regime Shift in Lake Ecosystem. J. Hydroecology 2017, 38, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Chen, F.; Du, Y. The responses of the benthic-pelagic coupling to eutrophication and regime shifts in shallow lakes: Implication for lake restoration. J. Lake Sci. 2020, 32, 1–10. [Google Scholar] [CrossRef][Green Version]
- Wu, S.; Liang, Z.; Liu, Y. Exploring Recovery Time of eutrophic lakes with a minimal phosphorus recycling model. Acta Scien-Tiarum Nat. Univ. Pekin. 2018, 54, 1095–1102. (In Chinese) [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social-Ecological Systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Wu, M.L.; Li, X.Y. Research progress on influencing of light attenuation and the associated environmental factors on the growth of submersed aquatic vegetation. Acta Ecol. Sin. 2012, 32, 7202–7212. [Google Scholar] [CrossRef][Green Version]
- Yan, W.; Wang, H.; Li, Q.; Wang, C.; Zhou, Q.; Wu, Z. Research progress on environmental thresholds affecting the restoration of submerged macrophytes. Ecol. Sci. 2020, 39, 240–247. [Google Scholar][Green Version]
- Ji, G.; Xu, H.; Wang, L.; Zhao, F. Effects of light intensity at different depth of water on growth of 4 submerged plants. Environ. Pollut. Control 2011, 33, 29–32. [Google Scholar][Green Version]
- Jeppesen, E.; Kronvang, B.; Meerhoff, M.; Søndergaard, M.; Hansen, K.M.; Andersen, H.E.; Lauridsen, T.L.; Liboriussen, L.; Beklioglu, M.; Özen, A.; et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J. Environ. Qual. 2009, 38, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.; Walker, B.; Anderies, J.M.; Abel, N. From metaphor to measurement: Resilience of what to what? Ecosystems 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef]
- Forbes, V.E.; Calow, P. Species sensitivity distributions revisited: A critical appraisal. Hum. Ecol. Risk Assess. 2002, 8, 473–492. [Google Scholar] [CrossRef]
- Allen, C.R.; Fontaine, J.J.; Pope, K.L.; Garmestani, A.S. Adaptive management for a turbulent future. J. Environ. Manag. 2011, 92, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, E.; Søndergaard, M.; Jensen, J.P.; Havens, K.E.; Anneville, O.; Carvalho, L.; Coveney, M.F.; Deneke, R.; Dokulil, M.T.; Foy, B.; et al. Lake responses to reduced nutrient loading–an analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 2005, 50, 1747–1771. [Google Scholar] [CrossRef]
- Kristensen, P.; Søndergaard, M.; Jeppesen, E. Resuspension in a shallow eutrophic lake. Hydrobiologia 1992, 228, 101–109. [Google Scholar] [CrossRef]
- Håkanson, L. The importance of lake morphometry for the structure and function of lakes. Int. Rev. Hydrobiol. 2005, 90, 433–461. [Google Scholar] [CrossRef]
- Hamilton, D.P.; Mitchell, S.F. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 1996, 317, 209–220. [Google Scholar] [CrossRef]
- Droppo, I.G. Rethinking what constitutes suspended sediment. Hydrol. Process. 2001, 15, 1551–1564. [Google Scholar] [CrossRef]
- Vadeboncoeur, Y.; Jeppesen, E.; Vander Zanden, M.J.; Schierup, H.; Christoffersen, K.; Lodge, D.M. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnol. Oceanogr. 2003, 48, 1408–1418. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Cole, J.J.; Pace, M.L.; Batt, R.; Brock, W.A.; Cline, T.; Coloso, J.; Hodgson, J.R.; Kitchell, J.F.; Seekell, D.A.; et al. Early warnings of regime shifts: A whole-ecosystem experiment. Science 2011, 332, 1079–1082. [Google Scholar] [CrossRef] [PubMed]
- Suter, G.W., II. Ecological risk assessment in the United States Environmental Protection Agency: A historical overview. Integr. Environ. Assess. Manag. 2008, 4, 285–289. [Google Scholar] [CrossRef]
- Jeppesen, E.; Jensen, J.P.; Søndergaard, M.; Lauridsen, T.; Landkildehus, F. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshw. Biol. 2000, 45, 201–218. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol. Evol. 2003, 18, 648–656. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Wang, H.; Chen, Y.; He, W.; Zhang, H. Ecological Risk Assessment of Storm-Flood Processes in Shallow Urban Lakes Based on Resilience Theory. Water 2025, 17, 2809. https://doi.org/10.3390/w17192809
Fan C, Wang H, Chen Y, He W, Zhang H. Ecological Risk Assessment of Storm-Flood Processes in Shallow Urban Lakes Based on Resilience Theory. Water. 2025; 17(19):2809. https://doi.org/10.3390/w17192809
Chicago/Turabian StyleFan, Congxiang, Haoran Wang, Yongcan Chen, Wenyan He, and Hong Zhang. 2025. "Ecological Risk Assessment of Storm-Flood Processes in Shallow Urban Lakes Based on Resilience Theory" Water 17, no. 19: 2809. https://doi.org/10.3390/w17192809
APA StyleFan, C., Wang, H., Chen, Y., He, W., & Zhang, H. (2025). Ecological Risk Assessment of Storm-Flood Processes in Shallow Urban Lakes Based on Resilience Theory. Water, 17(19), 2809. https://doi.org/10.3390/w17192809