Optimal Water Quality Sensor Placement in Water Distribution Systems: A Computationally Cost-Effective Genetic Algorithm Framework
Abstract
1. Introduction
2. Materials and Methods
- Within the simulation model, the WDN undergoes a preprocessing phase, and a hydraulic simulation is run. This analysis, for which contamination scenarios are examined to determine the location, strength, impacts, and start and end times of all possible contamination events, is performed by leveraging the WNTR [4] and NetworkX [73] libraries’ capabilities.
- Within the optimization model, the results derived from the simulation model are used as inputs for the SPO problem, selecting multiple optimal WQSS designs. The SPO problem is herein treated as a sensor-constrained one; that is, a fixed number of sensors must be set at first, which will be used as a constraint by the optimization model. To deal with the SPO problem complexity, which is proven to be NP-hard [74], a heuristic approach is adopted, which is based on a genetic algorithm. The genetic algorithm has been implemented using the DEAP library [75]. It is worth highlighting that, even though the sole definition of optimal WQSS design sets is addressed and no ranking and clustering approaches are applied, the optimization model provides a ranking list of each sensor position that appears at least once in any of the obtained WQSS design sets as an outcome.
2.1. The Simulation Model
- Contamination events originate from only one substance injection event at nodes. Scenarios for which the contaminant intrusion takes place at more than one location are omitted.
- Contaminants are treated as passive traces (i.e., non-reactive substances); thus, the hydraulic conditions are not altered by their presence (or by the volume of the injection).
- Each node may be the source of injection, with equal probability.
- Injection is modeled as steady-state, continuous, and constant throughout the simulation.
- Pollutant decay or deposition processes (or even interactions with pipe walls) are neglected.
- Once the contamination reaches a given node, its water consumption is treated as fully contaminated.
2.2. The Optimization Model
- Expected Time to Detection ()
- Expected Population affected prior to Detection ()
- Expected Consumption of Contaminated Waterprior to Detection ()
- Detection likelihood ()
3. Results
- Number of individuals per generation: ;
- Maximum number of generations: ;
- Crossover probability: ;
- Mutation probability: .
3.1. BWSN 1 Network
3.2. BWSN 2 Network
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DWSS | Drinking Water Supply System |
WDS | Water Distribution System |
WDN | Water Distribution Network |
WQSS | Water Quality Sensor System |
SPO | Sensor Placement Optimization |
WHO | World Health Organization |
EPA | Environmental Protection Agency |
GA | Genetic Algorithm |
GP | Genetic Programming |
ES | Evolution Strategy |
PSO | Particle Swarm Optimization |
GNN | Graph Neural Network |
SCADA | Supervisory Control and Data Acquisition |
ICT | Information and Communication Technologies |
TD | Time of Detection |
PE | Population Exposed |
VC | Volume of Contaminated water |
EC | Extent of Contamination |
DL | Detection Likelihood |
DC | Demand Coverage |
DR | Detection Redundancy |
References
- Nicolini, M. Complex Networks Theory for Evaluating Scaling Laws and WDS Vulnerability for Potential Contamination Events. Water 2020, 12, 1296. [Google Scholar] [CrossRef]
- Giudicianni, C.; Herrera, M.; Di Nardo, A.; Creaco, E.; Greco, R. Multi-Criteria Method for the Realistic Placement of Water Quality Sensors on Pipes of Water Distribution Systems. Environ. Model. Softw. 2022, 152, 105405. [Google Scholar] [CrossRef]
- UN Water (Ed.) Water for Prosperity and Peace; The United Nations World Water Development Report; UNESCO: Paris, France, 2024; ISBN 978-92-3-100657-9. [Google Scholar]
- Klise, K.; Hart, D.; Bynum, M.; Hogge, J.; Haxton, T.; Murray, R.; Burkhardt, J. Water Network Tool for Resilience (WNTR). User Manual, Version 0.2.3; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2020. [Google Scholar]
- Grey, D.; Sadoff, C.W. Sink or Swim? Water Security for Growth and Development. Water Policy 2007, 9, 545–571. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-009-32584-4. [Google Scholar]
- World Health Organization (Ed.) Guidelines for Drinking-Water Quality; Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022; ISBN 978-92-4-004506-4. [Google Scholar]
- European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Union 2020, 435, 1–62. [Google Scholar]
- EPA. National Primary Drinking Water Regulations: Long Term 1 Enhanced Surface Water Treatment Rule. Final Rule. Fed. Regist. 2002, 67, 1811–1844. [Google Scholar]
- Eliades, D.G.; Vrachimis, S.G.; Moghaddam, A.; Tzortzis, I.; Polycarpou, M.M. Contamination Event Diagnosis in Drinking Water Networks: A Review. Annu. Rev. Control. 2023, 55, 420–441. [Google Scholar] [CrossRef]
- World Health Organization. Outbreaks of Waterborne Diseases: Fact Sheet 1.1, December 2009; World Health Organization: Geneva, Switzerland, 2009.
- Moreira, N.A.; Bondelind, M. Safe Drinking Water and Waterborne Outbreaks. J. Water Health 2017, 15, 83–96. [Google Scholar] [CrossRef]
- World Health Organization. Surveillance and Outbreak Management of Water-Related Infectious Diseases Associated with Water-Supply Systems; World Health Organization: Geneva, Switzerland, 2019.
- Centers for Disease Control and Prevention. Waterborne Disease and Outbreak Surveillance System (WBDOSS) Summary Report, United States, 2015; Department of Health and Human Services, CDC: Atlanta, GA, USA, 2022.
- Kunz, J.M. Surveillance of Waterborne Disease Outbreaks Associated with Drinking Water—United States, 2015–2020. MMWR Surveill. Summ. 2024, 73, 1–23. [Google Scholar] [CrossRef]
- Nascetti, S.; Busani, L.; Bartoli, F.; Orioli, R.; Stenico, A.; Regele, D. Community Waterborne Outbreak Linked to a Firefighting Response during the COVID-19 Emergency. Ann. Dell’Ist. Super. Sanità 2021, 57, 226–232. [Google Scholar] [CrossRef]
- Gallay, A.; De Valk, H.; Cournot, M.; Ladeuil, B.; Hemery, C.; Castor, C.; Bon, F.; Mégraud, F.; Le Cann, P.; Desenclos, J.C. A Large Multi-Pathogen Waterborne Community Outbreak Linked to Faecal Contamination of a Groundwater System, France, 2000. Clin. Microbiol. Infect. 2006, 12, 561–570. [Google Scholar] [CrossRef]
- Riera-Montes, M.; Brus Sjölander, K.; Allestam, G.; Hallin, E.; Hedlund, K.-O.; Löfdahl, M. Waterborne Norovirus Outbreak in a Municipal Drinking-Water Supply in Sweden. Epidemiol. Infect. 2011, 139, 1928–1935. [Google Scholar] [CrossRef]
- Giammanco, G.M.; Di Bartolo, I.; Purpari, G.; Costantino, C.; Rotolo, V.; Spoto, V.; Geraci, G.; Bosco, G.; Petralia, A.; Guercio, A.; et al. Investigation and Control of a Norovirus Outbreak of Probable Waterborne Transmission through a Municipal Groundwater System. J. Water Health 2014, 12, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Mac Kenzie, W.R.; Hoxie, N.J.; Proctor, M.E.; Gradus, M.S.; Blair, K.A.; Peterson, D.E.; Kazmierczak, J.J.; Addiss, D.G.; Fox, K.R.; Rose, J.B. A Massive Outbreak in Milwaukee of Cryptosporidium Infection Transmitted through the Public Water Supply. N. Engl. J. Med. 1994, 331, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Bjelkmar, P.; Hansen, A.; Schönning, C.; Bergström, J.; Löfdahl, M.; Lebbad, M.; Wallensten, A.; Allestam, G.; Stenmark, S.; Lindh, J. Early Outbreak Detection by Linking Health Advice Line Calls to Water Distribution Areas Retrospectively Demonstrated in a Large Waterborne Outbreak of Cryptosporidiosis in Sweden. BMC Public Health 2017, 17, 328. [Google Scholar] [CrossRef] [PubMed]
- Jacqueline, C.; Del Valle Arrojo, M.; Bellver Moreira, P.; Rodríguez Feijóo, M.A.; Cabrerizo, M.; Fernandez-Garcia, M.D. Norovirus GII.3[P12] Outbreak Associated with the Drinking Water Supply in a Rural Area in Galicia, Spain, 2021. Microbiol. Spectr. 2022, 10, e01048-22. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.M.A.; Schout, C.; De Roda Husman, A.M.; Eilander, A.; Vennema, H.; Van Duynhoven, Y.T.H.P. Gastroenteritis Associated with Accidental Contamination of Drinking Water with Partially Treated Water. Epidemiol. Infect. 2007, 135, 818–826. [Google Scholar] [CrossRef]
- Altzibar, J.M.; Zigorraga, C.; Rodriguez, R.; Leturia, N.; Garmendia, A.; Rodriguez, A.; Alkorta, M.; Arriola, L. Outbreak of Acute Gastroenteritis Caused by Contamination of Drinking Water in a Factory, the Basque Country. J. Water Health 2015, 13, 168–173. [Google Scholar] [CrossRef][Green Version]
- Kuhn, K.G.; Falkenhorst, G.; Emborg, H.-D.; Ceper, T.; Torpdahl, M.; Krogfelt, K.A.; Ethelberg, S.; Mølbak, K. Epidemiological and Serological Investigation of a Waterborne Campylobacter jejuni Outbreak in a Danish Town. Epidemiol. Infect. 2017, 145, 701–709. [Google Scholar] [CrossRef]
- Nygard, K.; Wahl, E.; Krogh, T.; Tveit, O.A.; Bohleng, E.; Tverdal, A.; Aavitsland, P. Breaks and Maintenance Work in the Water Distribution Systems and Gastrointestinal Illness: A Cohort Study. Int. J. Epidemiol. 2007, 36, 873–880. [Google Scholar] [CrossRef]
- Lambertini, E.; Spencer, S.K.; Kieke, B.A.; Loge, F.J.; Borchardt, M.A. Virus Contamination from Operation and Maintenance Events in Small Drinking Water Distribution Systems. J. Water Health 2011, 9, 799–812. [Google Scholar] [CrossRef][Green Version]
- Oussou, K.R.; Kouassi, D.P.; Kouamé, D.A.; Irika, O.; Koffi, K.C.; Soumahoro, S.I.; Yéo, S.; Coulibaly, M. Investigation of a Waterborne Gastroenteritis Outbreak in Bouaké South Health District, Côte d’Ivoire, March 2024. J. Public Health Epidemiol. 2024, 16, 133–137. [Google Scholar][Green Version]
- Jalava, K.; Rintala, H.; Ollgren, J.; Maunula, L.; Gomez-Alvarez, V.; Revez, J.; Palander, M.; Antikainen, J.; Kauppinen, A.; Räsänen, P.; et al. Novel Microbiological and Spatial Statistical Methods to Improve Strength of Epidemiological Evidence in a Community-Wide Waterborne Outbreak. PLoS ONE 2014, 9, e104713. [Google Scholar] [CrossRef]
- Beaudeau, P.; De Valk, H.; Vaillant, V.; Mannschott, C.; Tillier, C.; Mouly, D.; Ledrans, M. Lessons Learned from Ten Investigations of Waterborne Gastroenteritis Outbreaks, France, 1998–2006. J. Water Health 2008, 6, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Jakopanec, I.; Borgen, K.; Vold, L.; Lund, H.; Forseth, T.; Hannula, R.; Nygård, K. A Large Waterborne Outbreak of Campylobacteriosis in Norway: The Need to Focus on Distribution System Safety. BMC Infect. Dis. 2008, 8, 128. [Google Scholar] [CrossRef]
- Giammanco, G.M.; Bonura, F.; Urone, N.; Purpari, G.; Cuccia, M.; Pepe, A.; Li Muli, S.; Cappa, V.; Saglimbene, C.; Mandolfo, G.; et al. Waterborne Norovirus Outbreak at a Seaside Resort Likely Originating from Municipal Water Distribution System Failure. Epidemiol. Infect. 2018, 146, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, A.; Pitkänen, T.; Al-Hello, H.; Maunula, L.; Hokajärvi, A.-M.; Rimhanen-Finne, R.; Miettinen, I.T. Two Drinking Water Outbreaks Caused by Wastewater Intrusion Including Sapovirus in Finland. Int. J. Environ. Res. Public Health 2019, 16, 4376. [Google Scholar] [CrossRef]
- Richardson, G.; Thomas, D.R.; Smith, R.M.M.; Nehaul, L.; Ribeiro, C.D.; Brown, A.G.; Salmon, R.L. A Community Outbreak of Campylobacter Jejuni Infection from a Chlorinated Public Water Supply. Epidemiol. Infect. 2007, 135, 1151–1158. [Google Scholar] [CrossRef]
- Smith, S.; Elliot, A.J.; Mallaghan, C.; Modha, D.; Hippisley-Cox, J.; Large, S.; Regan, M.; Smith, G.E. Value of Syndromic Surveillance in Monitoring a Focal Waterborne Outbreak Due to an Unusual Cryptosporidium Genotype in Northamptonshire, United Kingdom, June–July 2008. Eurosurveillance 2010, 15, 19643. [Google Scholar] [CrossRef]
- Gan, Y.; Kurisu, F.; Simazaki, D.; Yoshida, M.; Fukano, H.; Komine, T.; Nagashima, H.; Hoshino, Y.; Kasuga, I. Unveiling Significant Regrowth and Potential Risk of Nontuberculous Mycobacteria in Hospital Water Supply System. Water Res. 2025, 275, 123188. [Google Scholar] [CrossRef]
- Menekşe, Ş.; Tanrıverdi, E.S.; Altınay, E.; Oğuş, H.; Aydoğan, A.A.; Sağlam, D.; Çelik, Ö.; Otlu, B.; Kırali, M.K. A Long-Lasting Sphingomonas paucimobilis Outbreak: A Potential for Pathogens to Persist on Environmental Devices despite Disinfection Measures. Am. J. Infect. Control 2023, 51, 765–771. [Google Scholar] [CrossRef]
- Wang, S.; Xie, H.; Liu, L.; Du, L.; Yin, F.; Chen, Y.; Liu, Z.; Sun, G.; Zhang, X.; Sun, D.; et al. A Rare Waterborne Outbreak of Bacillus paranthracis in Shandong Province, China, 2020: Epidemiologic Survey, Genomic Insights, and Virulence Characteristics. Emerg. Microbes Infect. 2024, 13, 2348498. [Google Scholar] [CrossRef]
- Onyango, L.A.; Quinn, C.; Tng, K.H.; Wood, J.G.; Leslie, G. A Study of Failure Events in Drinking Water Systems as a Basis for Comparison and Evaluation of the Efficacy of Potable Reuse Schemes. Environ. Health Insights 2015, 9s3, EHI.S31749. [Google Scholar] [CrossRef]
- Zulkifli, S.N.; Rahim, H.A.; Lau, W.-J. Detection of Contaminants in Water Supply: A Review on State-of-the-Art Monitoring Technologies and Their Applications. Sens. Actuators B Chem. 2018, 255, 2657–2689. [Google Scholar] [CrossRef] [PubMed]
- Edzwald, J.K. Water Quality & Treatment: A Handbook on Drinking Water; American Water Works Association: Denver, CO, USA, 2011. [Google Scholar]
- Ostfeld, A.; Uber, J.G.; Salomons, E.; Berry, J.W.; Hart, W.E.; Phillips, C.A.; Watson, J.-P.; Dorini, G.; Jonkergouw, P.; Kapelan, Z.; et al. The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms. J. Water Resour. Plann. Manag. 2008, 134, 556–568. [Google Scholar] [CrossRef]
- Namtirtha, A.; Kumar, K.R.S.; Jain, S.; Simmhan, Y.; Kumar, M.S.M. Placement Strategies for Water Quality Sensors Using Complex Network Theory for Continuous and Intermittent Water Distribution Systems. Water Resour. Res. 2023, 59, e2022WR033112. [Google Scholar] [CrossRef]
- Murray, R.; Baranowski, T.; Hart, W.E.; Janke, R. Risk Reduction and Sensor Network Design. In Proceedings of the Water Distribution Systems Analysis 2008; American Society of Civil Engineers: Kruger National Park, South Africa, 2009; pp. 1–11. Available online: https://ascelibrary.org/doi/10.1061/41024%28340%2996 (accessed on 22 July 2025).
- Salem, A.K.; Abokifa, A.A. Optimal Sensor Placement in Water Distribution Networks Using Dynamic Prediction Graph Neural Networks. In Proceedings of the 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024), Ferrara, Italy, 1–4 July 2024; MDPI: Basel, Switzerland, 2024; p. 171. [Google Scholar]
- Lee, B.H.; Deininger, R.A. Optimal Locations of Monitoring Stations in Water Distribution System. J. Environ. Eng. 1992, 118, 4–16. [Google Scholar] [CrossRef]
- Rathi, S.; Gupta, R. A Simple Sensor Placement Approach for Regular Monitoring and Contamination Detection in Water Distribution Networks. KSCE J. Civ. Eng. 2016, 20, 597–608. [Google Scholar] [CrossRef]
- Preis, A.; Ostfeld, A. Multiobjective Contaminant Sensor Network Design for Water Distribution Systems. J. Water Resour. Plann. Manag. 2008, 134, 366–377. [Google Scholar] [CrossRef]
- Shen, H.; McBean, E. Pareto Optimality for Sensor Placements in a Water Distribution System. J. Water Resour. Plann. Manag. 2011, 137, 243–248. [Google Scholar] [CrossRef]
- Khaksar Fasaee, M.A.; Monghasemi, S.; Nikoo, M.R.; Shafiee, M.E.; Berglund, E.Z.; Bakhtiari, P.H. A K-Sensor Correlation-Based Evolutionary Optimization Algorithm to Cluster Contamination Events and Place Sensors in Water Distribution Systems. J. Clean. Prod. 2021, 319, 128763. [Google Scholar] [CrossRef]
- Tinelli, S.; Creaco, E.; Ciaponi, C. Impact of Objective Function Selection on Optimal Placement of Sensors in Water Distribution Networks. Ital. J. Eng. Geol. Environ. 2018, 173–178. [Google Scholar] [CrossRef]
- Watson, J.-P.; Greenberg, H.J.; Hart, W.E. A Multiple-Objective Analysis of Sensor Placement Optimization in Water Networks. In Proceedings of the Critical Transitions in Water and Environmental Resources Management; American Society of Civil Engineers: Salt Lake City, UT, USA, 2004; pp. 1–10. Available online: https://www.researchgate.net/publication/221936281_A_Multiple-Objective_Analysis_of_Sensor_Placement_Optimization_in_Water_Networks (accessed on 22 July 2025).
- Krause, A.; Leskovec, J.; Guestrin, C.; VanBriesen, J.; Faloutsos, C. Efficient Sensor Placement Optimization for Securing Large Water Distribution Networks. J. Water Resour. Plann. Manag. 2008, 134, 516–526. [Google Scholar] [CrossRef]
- Hu, C.; Li, M.; Zeng, D.; Guo, S. A Survey on Sensor Placement for Contamination Detection in Water Distribution Systems. Wirel. Netw 2018, 24, 647–661. [Google Scholar] [CrossRef]
- Adedoja, O.S.; Hamam, Y.; Khalaf, B.; Sadiku, R. A State-of-the-Art Review of an Optimal Sensor Placement for Contaminant Warning System in a Water Distribution Network. Urban Water J. 2018, 15, 985–1000. [Google Scholar] [CrossRef]
- Rathi, S.; Gupta, R. Sensor Placement Methods for Contamination Detection in Water Distribution Networks: A Review. Procedia Eng. 2014, 89, 181–188. [Google Scholar] [CrossRef]
- Hu, C.; Ren, G.; Liu, C.; Li, M.; Jie, W. A Spark-Based Genetic Algorithm for Sensor Placement in Large Scale Drinking Water Distribution Systems. Clust. Comput 2017, 20, 1089–1099. [Google Scholar] [CrossRef]
- Cardoso, S.M.; Barros, D.B.; Oliveira, E.; Brentan, B.; Ribeiro, L. Optimal Sensor Placement for Contamination Detection: A Multi-Objective and Probabilistic Approach. Environ. Model. Softw. 2021, 135, 104896. [Google Scholar] [CrossRef]
- Harif, S.; Azizyan, G.; Dehghani Darmian, M.; Givehchi, M. Selecting the Best Location of Water Quality Sensors in Water Distribution Networks by Considering the Importance of Nodes and Contaminations Using NSGA-III (Case Study: Zahedan Water Distribution Network, Iran). Environ. Sci. Pollut. Res. 2023, 30, 53229–53252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, F.; Kapelan, Z.; Savic, D.; He, G.; Ma, Y. Assessing the Global Resilience of Water Quality Sensor Placement Strategies within Water Distribution Systems. Water Res. 2020, 172, 115527. [Google Scholar] [CrossRef] [PubMed]
- Ponti, A.; Candelieri, A.; Archetti, F. A New Evolutionary Approach to Optimal Sensor Placement in Water Distribution Networks. Water 2021, 13, 1625. [Google Scholar] [CrossRef]
- Marlim, M.S.; Kang, D. Optimal Water Quality Sensor Placement by Accounting for Possible Contamination Events in Water Distribution Networks. Water 2021, 13, 1999. [Google Scholar] [CrossRef]
- Nazempour, R.; Monfared, M.A.S.; Zio, E. A Complex Network Theory Approach for Optimizing Contamination Warning Sensor Location in Water Distribution Networks. Int. J. Disaster Risk Reduct. 2018, 30, 225–234. [Google Scholar] [CrossRef]
- Giudicianni, C.; Herrera, M.; Di Nardo, A.; Greco, R.; Creaco, E.; Scala, A. Topological Placement of Quality Sensors in Water-Distribution Networks without the Recourse to Hydraulic Modeling. J. Water Resour. Plann. Manag. 2020, 146, 04020030. [Google Scholar] [CrossRef]
- Weickgenannt, M.; Kapelan, Z.; Blokker, M.; Savic, D.A. Risk-Based Sensor Placement for Contaminant Detection in Water Distribution Systems. J. Water Resour. Plann. Manag. 2010, 136, 629–636. [Google Scholar] [CrossRef]
- Naserizade, S.S.; Nikoo, M.R.; Montaseri, H. A Risk-Based Multi-Objective Model for Optimal Placement of Sensors in Water Distribution System. J. Hydrol. 2018, 557, 147–159. [Google Scholar] [CrossRef]
- Menapace, A.; Zanfei, A.; Herrera, M.; Brentan, B. Graph Neural Networks for Sensor Placement: A Proof of Concept towards a Digital Twin of Water Distribution Systems. Water 2024, 16, 1835. [Google Scholar] [CrossRef]
- Ciaponi, C.; Creaco, E.; Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Musmarra, D.; Santonastaso, G. Reducing Impacts of Contamination in Water Distribution Networks: A Combined Strategy Based on Network Partitioning and Installation of Water Quality Sensors. Water 2019, 11, 1315. [Google Scholar] [CrossRef]
- Siadatpour, S.A.S.; Aghamolaei, Z.; Jafari-Asl, J.; Baniasadi Moghadam, A. A Single-Objective Optimization of Water Quality Sensors in Water Distribution Networks Using Advanced Metaheuristic Techniques. Water 2025, 17, 1221. [Google Scholar] [CrossRef]
- He, G.; Zhang, T.; Zheng, F.; Zhang, Q. An Efficient Multi-Objective Optimization Method for Water Quality Sensor Placement within Water Distribution Systems Considering Contamination Probability Variations. Water Res. 2018, 143, 165–175. [Google Scholar] [CrossRef]
- Brentan, B.; Carpitella, S.; Barros, D.; Meirelles, G.; Certa, A.; Izquierdo, J. Water Quality Sensor Placement: A Multi-Objective and Multi-Criteria Approach. Water Res. Manag. 2021, 35, 225–241. [Google Scholar] [CrossRef]
- Rossman, L. EPANET 2 User Manual; Environmental Protection Agency: Cincinnati, OH, USA, 2000.
- Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function Using NetworkX. In Proceedings of the 7th Python in Science Conference, Pasadena, CA, USA, 19–24 August 2008; pp. 11–15. [Google Scholar]
- Berger-Wolf, T.Y.; Hart, W.E.; Saia, J. Discrete Sensor Placement Problems in Distribution Networks. Math. Comput. Model. 2005, 42, 1385–1396. [Google Scholar] [CrossRef]
- Fortin, F.-A.; De Rainville, F.-M.; Gardner, M.-A.G.; Parizeau, M.; Gagné, C. DEAP: Evolutionary Algorithms Made Easy. J. Mach. Learn. Res. 2012, 13, 2171–2175. [Google Scholar]
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Lam, S.K.; Pitrou, A.; Seibert, S. Numba: A LLVM-Based Python JIT Compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, Austin, TX, USA, 15 November 2015; pp. 1–6. [Google Scholar]
Parameter | Minimum | Average | Maximum |
---|---|---|---|
Detection times [] * | |||
Nodal population [] | |||
Flowrates [] |
Parameter | ||||
---|---|---|---|---|
Execution time [] | ||||
Evaluated individuals per second |
Parameter | Minimum | Average | Maximum |
---|---|---|---|
Detection times [] * | |||
Nodal population [] | |||
Flowrates [] |
Parameter | ||||
---|---|---|---|---|
] | ||||
Evaluated individuals per second |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanelli, E.; Nicolini, M.; Goi, D. Optimal Water Quality Sensor Placement in Water Distribution Systems: A Computationally Cost-Effective Genetic Algorithm Framework. Water 2025, 17, 2786. https://doi.org/10.3390/w17182786
Zanelli E, Nicolini M, Goi D. Optimal Water Quality Sensor Placement in Water Distribution Systems: A Computationally Cost-Effective Genetic Algorithm Framework. Water. 2025; 17(18):2786. https://doi.org/10.3390/w17182786
Chicago/Turabian StyleZanelli, Elia, Matteo Nicolini, and Daniele Goi. 2025. "Optimal Water Quality Sensor Placement in Water Distribution Systems: A Computationally Cost-Effective Genetic Algorithm Framework" Water 17, no. 18: 2786. https://doi.org/10.3390/w17182786
APA StyleZanelli, E., Nicolini, M., & Goi, D. (2025). Optimal Water Quality Sensor Placement in Water Distribution Systems: A Computationally Cost-Effective Genetic Algorithm Framework. Water, 17(18), 2786. https://doi.org/10.3390/w17182786