Evaluation of Water Resource Carrying Capacity in Taizhou City, Southeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Construction of a Water Resource Carrying Capacity Evaluation System
Selection of Evaluation Subsystems
- (1)
- Water resources subsystem
- (2)
- Social subsystem
- (3)
- Economic subsystem
- (4)
- Ecological subsystem
Principles for Designing Evaluation Indicators
- (1)
- The principle of scientific
- (2)
- Systemic principles
- (3)
- Hierarchy principle
- (4)
- Principles of sustainable development
- (5)
- Operational principle
Establishment of an Evaluation Indicator System
2.3.2. Water Resource Carrying Capacity Evaluation
Calculation of Evaluation Indicator Weights Based on the Entropy Weight Method
- (1)
- Use the extreme value method to make the indicators dimensionless
- (2)
- Non-negative translation
- (1)
- Information entropy value
- (2)
- Information utility value
- (3)
- Indicator weight coefficient
Calculation of Evaluation Indicator Weights Based on Principal Component Analysis
- (1)
- Calculate the linear combination coefficient matrix
- (2)
- Calculate the comprehensive score coefficient
- (3)
- Calculate the weight and normalize the comprehensive score coefficient to obtain the weight values of each indicator
Assessment of Water Resource Carrying Capacity Based on the TOPSIS Model
- (1)
- Dimensionless data. Equations (1) and (2) are used to calculate the positive and negative indicators to obtain a dimensionless normalized matrix.
- (2)
- Calculate the weighted matrix. Based on the normalized matrix, multiply each indicator by its corresponding weight to obtain the weighted matrix :
- (3)
- Identify the positive and negative ideal solutions. Positive ideal solution:
- (4)
- Compute the Euclidean distance from each evaluation object to both the positive and negative ideal solutions. Distance from the positive ideal solution:
- (5)
- Calculate the relative proximity of each evaluation object to the optimal solution using the distance to the negative ideal solution. The resulting score ranges from 0 to 1, with higher values indicating better performance:
3. Results
3.1. Weight Calculation Using the Entropy Weight Method
3.2. Weight Calculation in Principal Component Analysis
3.3. Data Analysis of the Entropy Weight–TOPSIS Model
3.4. Data Analysis Using Principal Component Analysis and the TOPSIS Model
3.5. Data Analysis Using the Combined Evaluation Method
4. Discussion
4.1. Water Resource Carrying Capacity Assessment Methods
4.2. Analysis of Taizhou City’s Water Resource Carrying Capacity Based on the Combination Evaluation Method
4.3. Taizhou City Water Resource Carrying Capacity Protection Strategy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Q.; Zhu, M.; Zhang, C.; Zhou, Q. The Driving Effect of Spatial-Temporal Difference of Water Resources Carrying Capacity in the Yellow River Basin. J. Clean. Prod. 2023, 388, 135709. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Qiu, H.; Xu, Y.P.; Teegavarapu, R.S.V.; Guo, Y.; Nie, H.; Xie, H.; Xie, J.; Shao, Y.; et al. Assessment of Ecological Flow in River Basins at a Global Scale: Insights on Baseflow Dynamics and Hydrological Health. Ecol. Indic. 2025, 178, 113868. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Gao, C.; Tang, X. Coupling Coordination and Driving Mechanisms of Water Resources Carrying Capacity under the Dynamic Interaction of the Water-Social-Economic-Ecological Environment System. Sci. Total Environ. 2024, 920, 171011. [Google Scholar] [CrossRef] [PubMed]
- Naimi Ait-Aoudia, M.; Berezowska-Azzag, E. Water Resources Carrying Capacity Assessment: The Case of Algeria’s Capital City. Habitat Int. 2016, 58, 51–58. [Google Scholar] [CrossRef]
- Yu, D.; Xu, Z.; Wang, W. Bibliometric Analysis of Fuzzy Theory Research in China: A 30-Year Perspective. Knowl.-Based Syst. 2018, 141, 188–199. [Google Scholar] [CrossRef]
- Liang, H.; Zou, J.; Li, Z.; Khan, M.J.; Lu, Y. Dynamic Evaluation of Drilling Leakage Risk Based on Fuzzy Theory and PSO-SVR Algorithm. Future Gener. Comput. Syst. 2019, 95, 454–466. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, Z.; Li, C.; Li, R. A Novel Combined Forecasting System for Air Pollutants Concentration Based on Fuzzy Theory and Optimization of Aggregation Weight. Appl. Soft Comput. 2020, 87, 105972. [Google Scholar] [CrossRef]
- Hu, A.; Xie, N. Construction and Application of a Novel Grey Relational Analysis Model Considering Factor Coupling Relationship. Grey Syst. Theory Appl. 2025, 15, 1–20. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, X.; Yang, J. Teaching Evaluation Algorithm Based on Grey Relational Analysis. Complexity 2021, 2021, 5596518. [Google Scholar] [CrossRef]
- Hamzaçebi, C.; Pekkaya, M. Determining of Stock Investments with Grey Relational Analysis. Expert Syst. Appl. 2011, 38, 9186–9195. [Google Scholar] [CrossRef]
- Çelikbilek, Y.; Tüysüz, F. An In-Depth Review of Theory of the TOPSIS Method: An Experimental Analysis. J. Manag. Anal. 2020, 7, 281–300. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Yao, Y. BMW-TOPSIS: A Generalized TOPSIS Model Based on Three-Way Decision. Inf. Sci. 2022, 607, 799–818. [Google Scholar] [CrossRef]
- Ramakrishnan, K.R.; Chakraborty, S. A Cloud TOPSIS Model for Green Supplier Selection. Facta Univ. Ser. Mech. Eng. 2020, 18, 375–397. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Peng, W.; Tabatabaei, M.; Kalogirou, S.A.; Soltanian, S.; Hosseinzadeh-Bandbafha, H.; Mahian, O.; Lam, S.S. Machine Learning Technology in Biodiesel Research: A Review. Prog. Energy Combust. Sci. 2021, 85, 100904. [Google Scholar] [CrossRef]
- Sarkar, C.; Das, B.; Rawat, V.S.; Wahlang, J.B.; Nongpiur, A.; Tiewsoh, I.; Lyngdoh, N.M.; Das, D.; Bidarolli, M.; Sony, H.T. Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. Int. J. Mol. Sci. 2023, 24, 2026. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lim, M.K.; Qu, Y.; Ni, D.; Xiao, Z. Supply Chain Risk Management with Machine Learning Technology: A Literature Review and Future Research Directions. Comput. Ind. Eng. 2023, 175, 108859. [Google Scholar] [CrossRef] [PubMed]
- Chen, P. Effects of the Entropy Weight on TOPSIS. Expert Syst. Appl. 2021, 168, 114186. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Z.; Wang, Y.; Fan, G.; Zhang, J. Suitability Evaluation System for the Shallow Geothermal Energy Implementation in Region by Entropy Weight Method and TOPSIS Method. Renew. Energy 2022, 184, 564–576. [Google Scholar] [CrossRef]
- Zhe, W.; Xigang, X.; Feng, Y. An Abnormal Phenomenon in Entropy Weight Method in the Dynamic Evaluation of Water Quality Index. Ecol. Indic. 2021, 131, 108137. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Odhiambo Omuya, E.; Onyango Okeyo, G.; Waema Kimwele, M. Feature Selection for Classification Using Principal Component Analysis and Information Gain. Expert Syst. Appl. 2021, 174, 114765. [Google Scholar] [CrossRef]
- Lamichhane, S.; Eğilmez, G.; Gedik, R.; Bhutta, M.K.S.; Erenay, B. Benchmarking OECD Countries’ Sustainable Development Performance: A Goal-Specific Principal Component Analysis Approach. J. Clean. Prod. 2021, 287, 125040. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Bao, J.; Wei, T.; Xu, S. A Research on the Evaluation of China’s Food Security under the Perspective of Sustainable Development-Based on an Entropy Weight TOPSIS Model. Agriculture 2022, 12, 1926. [Google Scholar] [CrossRef]
- Jing, X.; Tao, S.; Hu, H.; Sun, M.; Wang, M. Spatio-Temporal Evaluation of Ecological Security of Cultivated Land in China Based on DPSIR-Entropy Weight TOPSIS Model and Analysis of Obstacle Factors. Ecol. Indic. 2024, 166, 112579. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Z.; Xu, C.; Cai, G.; Zhan, J. Assessment of Provincial Waterlogging Risk Based on Entropy Weight TOPSIS-PCA Method. Nat. Hazards 2021, 108, 1545–1567. [Google Scholar] [CrossRef]
- Lv, B.; Liu, C.; Li, T.; Meng, F.; Fu, Q.; Ji, Y.; Hou, R. Evaluation of the Water Resource Carrying Capacity in Heilongjiang, Eastern China, Based on the Improved TOPSIS Model. Ecol. Indic. 2023, 150, 110208. [Google Scholar] [CrossRef]
- Li, J.; Meng, Z.; Zhang, J.; Chen, Y.; Yao, J.; Li, X.; Qin, P.; Liu, X.; Cheng, C. Prediction of Seawater Intrusion Run-Up Distance Based on K-Means Clustering and ANN Model. J. Mar. Sci. Eng. 2025, 13, 377. [Google Scholar] [CrossRef]
- Wang, G.; Xiao, C.; Qi, Z.; Meng, F.; Liang, X. Development Tendency Analysis for the Water Resource Carrying Capacity Based on System Dynamics Model and the Improved Fuzzy Comprehensive Evaluation Method in the Changchun City, China. Ecol. Indic. 2021, 122, 107232. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Zhang, S.; Gao, C. Dynamic Simulation and Comprehensive Evaluation of the Water Resources Carrying Capacity in Guangzhou City, China. Ecol. Indic. 2022, 135, 108528. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Z.; Zhang, B.; Yang, Q. Evaluating Water Resources Carrying Capacity of Pearl River Delta by Entropy Weight-TOPSIS Model. Front. Environ. Sci. 2022, 10, 967775. [Google Scholar] [CrossRef]
- Liu, P.; Lü, S.; Han, Y.; Wang, F.; Tang, L. Comprehensive Evaluation on Water Resources Carrying Capacity Based on Water-Economy-Ecology Concept Framework and EFAST-Cloud Model: A Case Study of Henan Province, China. Ecol. Indic. 2022, 143, 109392. [Google Scholar] [CrossRef]
- Deng, L.; Yin, J.; Tian, J.; Li, Q.; Guo, S. Comprehensive Evaluation of Water Resources Carrying Capacity in the Han River Basin. Water 2021, 13, 249. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of Entropy Weight Method in Decision-Making. Math. Probl. Eng. 2020, 2020, 3564835. [Google Scholar] [CrossRef]
- Yoon, K.P.; Kim, W.K. The Behavioral TOPSIS. Expert Syst. Appl. 2017, 89, 266–272. [Google Scholar] [CrossRef]
- Pandey, V.; Komal; Dincer, H. A Review on TOPSIS Method and Its Extensions for Different Applications with Recent Development. Soft Comput. 2023, 27, 18011–18039. [Google Scholar] [CrossRef]
- Cheng, K.; Fu, Q.; Meng, J.; Li, T.X.; Pei, W. Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model. Water Resour. Manag. 2018, 32, 2767–2781. [Google Scholar] [CrossRef]
- Song, X.; Kong, F.; Zhan, C. Assessment of Water Resources Carrying Capacity in Tianjin City of China. Water Resour. Manag. 2011, 25, 857–873. [Google Scholar] [CrossRef]
- Mei, H.; Liu, Y.; Du, H.; Yang, X. Advances in Study on Water Resources Carrying Capacity in China. Procedia Environ. Sci. 2010, 2, 1894–1903. [Google Scholar] [CrossRef]
- Pliego-Martínez, O.; Martínez-Rebollar, A.; Estrada-Esquivel, H.; de la Cruz-Nicolás, E. An Integrated Attribute-Weighting Method Based on PCA and Entropy: Case of Study Marginalized Areas in a City. Appl. Sci. 2024, 14, 2016. [Google Scholar] [CrossRef]
- Wu, R.M.X.; Zhang, Z.; Yan, W.; Fan, J.; Gou, J.; Liu, B.; Gide, E.; Soar, J.; Shen, B.; Fazal-e-Hasan, S.; et al. A Comparative Analysis of the Principal Component Analysis and Entropy Weight Methods to Establish the Indexing Measurement. PLoS ONE 2022, 17, e0262261. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, X.; Li, B.; Wu, P.; Cai, X.; Luo, Y.; Deng, X.; Jiang, M. A Groundwater Quality Assessment Model for Water Quality Index: Combining Principal Component Analysis, Entropy Weight Method, and Coefficient of Variation Method for Dimensionality Reduction and Weight Optimization, and Its Application. Water Environ. Res. 2024, 96, e11155. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Lei, Y.; Wu, T.; Chen, K. Evaluating Water Resources Carrying Capacity: The Empirical Analysis of Hubei Province, China 2008–2020. Ecol. Indic. 2022, 144, 109454. [Google Scholar] [CrossRef]
- Tian, J.; Han, Y.; Shen, J.; Zhu, Y. Leveraging Sustainable Development of Agriculture with Sustainable Water Management: The Empirical Investigation of “Five Water Cohabitation” of Zhejiang Province in China. Environ. Monit. Assess. 2022, 194, 124. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, Q.; You, H.; Liu, Y. Multi-Dimensional Assessment, Regional Differences, and Influencing Factors of Agricultural Water Pollution from the Perspective of Grey Water Footprint in Zhejiang Province, China. Agriculture 2024, 14, 2031. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, W.; Li, M.; Wang, Q.; Zhou, H. Flood Control Storage Substitution from Multiple to Single-Reservoir and Storage Reservation Strategy for Hydropower Optimization in Cascade Reservoir Systems. J. Hydrol. 2025, 662, 133926. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, X.; Guo, A.; Wang, Y.; Chang, J.; Liang, Y.; Li, Z.; Zhai, D.; Zheng, R. Dynamic Compensation Operating Rule of Parallel Reservoirs to Enhance Sufficient Hydrological and Reservoir Capacity Compensation. J. Hydrol. 2025, 657, 133149. [Google Scholar] [CrossRef]
- Zhao, R.; Gan, T.; Wang, X.; Wang, H. Research on Parameter Optimization of the Optimal Schedule Model of Water Resources for the Jiaodong Water Transfer Project Based on the ICCP Model. Water 2023, 15, 2731. [Google Scholar] [CrossRef]
- Chen, H.; Xu, B.; Qiu, H.; Huang, S.; Teegavarapu, R.S.V.; Xu, Y.P.; Guo, Y.; Nie, H.; Xie, H. Adaptive Assessment of Reservoir Scheduling to Hydrometeorological Comprehensive Dry and Wet Condition Evolution in a Multi-Reservoir Region of Southeastern China. J. Hydrol. 2025, 648, 132392. [Google Scholar] [CrossRef]
- Xu, Z.; Ding, Y.; Han, S.C.; Zhang, C. Predicting the Performance of Lithium Adsorption and Recovery from Unconventional Water Sources with Machine Learning. Water Res. 2024, 266, 122374. [Google Scholar] [CrossRef]
- Zhang, D.; Xie, X.; Wang, T.; Wang, B.; Pei, S. Research on Water Resources Allocation System Based on Rational Utilization of Brackish Water. Water 2022, 14, 948. [Google Scholar] [CrossRef]
- Barati, A.A.; Azadi, H.; Scheffran, J. A System Dynamics Model of Smart Groundwater Governance. Agric. Water Manag. 2019, 221, 502–518. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Xu, Y.-P.; Teegavarapu, R.S.V.; Guo, Y.; Nie, H.; Xie, H. Using Baseflow Ensembles for Hydrologic Hysteresis Characterization in Humid Basins of Southeastern China. Water Resour. Res. 2024, 60, e2023WR036195. [Google Scholar] [CrossRef]
- Thakur, J.K. Hydrogeological Modeling for Improving Groundwater Monitoring Network and Strategies. Appl. Water Sci. 2017, 7, 3223–3240. [Google Scholar] [CrossRef]
- Xiuling, D.; Qian, L.; Lipeng, L.; Sarkar, A. The Impact of Technical Training on Farmers Adopting Water-Saving Irrigation Technology: An Empirical Evidence from China. Agriculture 2023, 13, 956. [Google Scholar] [CrossRef]
- Moore, S. Toward Effective River Basin Management (RBM): The Politics of Cooperation, Sustainability, and Collaboration in the Delaware River Basin. J. Environ. Manag. 2021, 298, 113421. [Google Scholar] [CrossRef]
- Nel, J.L.; Le Maitre, D.C.; Roux, D.J.; Colvin, C.; Smith, J.S.; Smith-Adao, L.B.; Maherry, A.; Sitas, N. Strategic Water Source Areas for Urban Water Security: Making the Connection between Protecting Ecosystems and Benefiting from Their Services. Ecosyst. Serv. 2017, 28, 251–259. [Google Scholar] [CrossRef]
- Cheng, B.; Li, H. Improving Water Saving Measures Is the Necessary Way to Protect the Ecological Base Flow of Rivers in Water Shortage Areas of Northwest China. Ecol. Indic. 2021, 123, 107347. [Google Scholar] [CrossRef]
Target Layer | Principles Layer | Indicator Layer | Unit | Indicator Code | Indicator Attributes |
---|---|---|---|---|---|
Water Resource Carrying Capacity Assessment | Water Resources Subsystem | Per capita water resources | m3 | X1 | Positive |
Total water resources | 100 million m3 | X2 | Positive | ||
Surface water resources | 100 million m3 | X3 | Positive | ||
Groundwater and surface water as non-duplicative resources | 100 million m3 | X4 | Positive | ||
Precipitation | mm | X5 | Positive | ||
Water production modulus | ten thousand m3/km2 | X6 | Positive | ||
Social Subsystem | Per capita comprehensive water consumption | m3/person | X7 | Negative | |
Population density | people/square kilometer | X8 | Negative | ||
Population growth rate | % | X9 | Negative | ||
Agricultural irrigation water consumption | 100 million m3 | X10 | Negative | ||
Industrial water consumption | 100 million m3 | X11 | Negative | ||
Residential water consumption | 100 million m3 | X12 | Negative | ||
Economic Subsystem | Regional gross domestic product | 100 million CNY | X13 | Negative | |
Regional GDP growth rate | % | X14 | Negative | ||
Per capita GDP | CNY | X15 | Positive | ||
Share of primary industry in GDP | % | X16 | Negative | ||
Share of secondary industry in GDP | % | X17 | Negative | ||
Share of the tertiary industry in GDP | % | X18 | Negative | ||
Ecological Subsystem | Green space coverage area | hectares | X19 | Positive | |
Ecological environment water consumption | 100 million m3 | X20 | Positive | ||
Ecological environment water consumption rate | % | X21 | Positive | ||
Industrial wastewater discharge volume | 10,000 t | X22 | Negative | ||
Average water consumption per mu of farmland for irrigation | m3/mu | X23 | Negative |
Ranking | Grade Description | |
---|---|---|
(0, 0.2) | V (Poor) | Water resource carrying capacity is at the lowest level. Severe water shortage. Supply and demand issues are prominent. Ecosystems are severely damaged. The development of various subsystems is extremely unbalanced. |
[0.2, 0.4) | IV (Relatively poor) | Water resource carrying capacity is relatively low. Water resources have been damaged to a certain extent. The various subsystems are in a state of uncoordinated development. |
[0.4, 0.6) | III (General) | Water resource carrying capacity is moderate. There is a trend toward weakening water resource carrying capacity. Water resource development and utilization are approaching saturation. |
[0.6, 0.8) | II (Good) | Water resource carrying capacity is relatively high. Water resources can adapt to socioeconomic development. It is in a stress-free state. |
[0.8, 1) | I (Great) | The highest water resource carrying capacity level is achieved with abundant water resources. Well-suited to the development of the social economy. All subsystems develop in coordination. |
Year | Positive Ideal Solution Distance | Negative Ideal Solution Distance | Proximity | Ranking | Rating Level |
---|---|---|---|---|---|
2012 | 0.1528 | 0.1232 | 0.4462 | 6 | III |
2013 | 0.1587 | 0.0901 | 0.3621 | 10 | IV |
2014 | 0.1426 | 0.1012 | 0.4152 | 7 | III |
2015 | 0.1436 | 0.0936 | 0.3946 | 8 | IV |
2016 | 0.1412 | 0.0858 | 0.3781 | 9 | IV |
2017 | 0.1678 | 0.0799 | 0.3226 | 11 | IV |
2018 | 0.1232 | 0.1162 | 0.4854 | 5 | III |
2019 | 0.0776 | 0.1707 | 0.6876 | 2 | II |
2020 | 0.1373 | 0.1456 | 0.5146 | 4 | III |
2021 | 0.0730 | 0.1847 | 0.7168 | 1 | II |
2022 | 0.1371 | 0.1500 | 0.5225 | 3 | III |
Year | Positive Ideal Solution Distance | Negative Ideal Solution Distance | Proximity | Ranking | Rating Level |
---|---|---|---|---|---|
2012 | 0.1527 | 0.1171 | 0.4340 | 7 | III |
2013 | 0.1520 | 0.0889 | 0.3690 | 11 | IV |
2014 | 0.1339 | 0.1010 | 0.4300 | 8 | III |
2015 | 0.1304 | 0.1006 | 0.4353 | 6 | III |
2016 | 0.1319 | 0.0920 | 0.4110 | 9 | III |
2017 | 0.1547 | 0.0907 | 0.3696 | 10 | IV |
2018 | 0.1128 | 0.1201 | 0.5157 | 5 | III |
2019 | 0.0699 | 0.1667 | 0.7047 | 2 | II |
2020 | 0.1195 | 0.1481 | 0.5534 | 3 | III |
2021 | 0.0709 | 0.1750 | 0.7117 | 1 | II |
2022 | 0.1330 | 0.1443 | 0.5205 | 4 | III |
Year | Comprehensive Proximity | Overall Ranking | Rating Level |
---|---|---|---|
2012 | 0.4401 | 6 | III |
2013 | 0.3655 | 10 | IV |
2014 | 0.4226 | 7 | III |
2015 | 0.4149 | 8 | III |
2016 | 0.3945 | 9 | IV |
2017 | 0.3461 | 11 | IV |
2018 | 0.5005 | 5 | III |
2019 | 0.6962 | 2 | II |
2020 | 0.5340 | 3 | III |
2021 | 0.7143 | 1 | II |
2022 | 0.5215 | 4 | III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Ye, J.; Chen, Y.; Wang, Y.; Qiu, H.; Tan, J.; Wei, W.; Li, Z.; Yu, T.; Chen, H. Evaluation of Water Resource Carrying Capacity in Taizhou City, Southeast China. Water 2025, 17, 2688. https://doi.org/10.3390/w17182688
Xu C, Ye J, Chen Y, Wang Y, Qiu H, Tan J, Wei W, Li Z, Yu T, Chen H. Evaluation of Water Resource Carrying Capacity in Taizhou City, Southeast China. Water. 2025; 17(18):2688. https://doi.org/10.3390/w17182688
Chicago/Turabian StyleXu, Chuyu, Jiandong Ye, Yijing Chen, Yukun Wang, Haodong Qiu, Jiaqi Tan, Wencheng Wei, Zhishao Li, Tongtong Yu, and Hao Chen. 2025. "Evaluation of Water Resource Carrying Capacity in Taizhou City, Southeast China" Water 17, no. 18: 2688. https://doi.org/10.3390/w17182688
APA StyleXu, C., Ye, J., Chen, Y., Wang, Y., Qiu, H., Tan, J., Wei, W., Li, Z., Yu, T., & Chen, H. (2025). Evaluation of Water Resource Carrying Capacity in Taizhou City, Southeast China. Water, 17(18), 2688. https://doi.org/10.3390/w17182688