Magnetic Intensification of Fenton Processes Using Superconducting Technology for Enhanced Treatment of Printing and Dyeing Wastewater: Mechanisms and Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Wastewater
2.2. Magnetizing Equipment
2.3. Experiments
2.3.1. Determination of Surface Tension
2.3.2. Determination of Molecular Weight of Organic Compounds
2.3.3. Magnetic Fenton Experiments
2.4. The Pilot-Scale Experiment
2.5. The Calculation of COD Removal Rate (COD RR)
2.6. AI Tool
3. Results and Discussion
3.1. Effect of Magnetic Field on Surface Tension
3.2. Effect of Magnetic Field on Molecular Weight Distribution of Organic Matter in Wastewater
3.3. Magnetic-Enhanced Fenton Deep Treatment of Wastewater
3.3.1. pH
3.3.2. Fe2+ Dosage
3.3.3. H2O2 Dosage
3.3.4. Time
3.3.5. Effect of Magnetization Conditions on the Reaction
3.3.6. Kinetic Model and Mechanism Elucidation
4. Engineering Application
5. Conclusions
- (1)
- Magnetization enhances hydrogen bonding between water molecules, causing the cleavage of large water molecular clusters into smaller clusters. This facilitates the transformation of large-molecular-weight organic matter into small-molecular-weight organic matter, which is conducive to subsequent degradation treatment.
- (2)
- Magnetic Fenton demonstrates significant advantages over conventional Fenton. Crucially, it achieves comparable COD removal efficiency (60.0%) at pH 5 using reduced reagent dosages (Fe2+: 2 mmol/L, H2O2: 2 mmol/L), while conventional Fenton requires highly acidic conditions (pH 3) and higher reagent levels (3 mmol/L each) for optimal performance (62.7% removal). The magnetic field (1.5 T, 5 min magnetization) broadens the effective pH range, enabling efficient operation at pH 5, where conventional Fenton performance drops substantially. This translates to reduced acid consumption, 33.3% lower catalyst and oxidant usage, and effluent COD (40.0 mg/L) meeting stringent discharge standards (GB 18918-2002 Class 1A) within 40 min. The magnetic enhancement is attributed to improved reaction kinetics and mass transfer, allowing high efficiency under milder, more economical conditions.
- (3)
- In engineering applications of the magnetic Fenton process, comparative analysis with fluidized bed Fenton technology demonstrates that when effluent meets the Class 1A standard specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plants (GB 18918-2002), the reagent cost for magnetic Fenton (0.482 CNY/m3) is significantly lower than that of fluidized bed Fenton (0.853 CNY/m3). The magnetic Fenton process offers integrated advantages, including elimination of carrier material requirements, reduced electricity consumption, and lower iron sludge production, thereby enhancing its economic viability.
6. Novelty
- (1)
- Coupling a magnetic field with Fenton, applying physical and chemical methods to water treatment, providing a basis for engineering applications.
- (2)
- The mechanism of magnetic field-enhanced Fenton reaction was analyzed and verified.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, H.; Mei, Y.; Chen, J.; Wu, Z.; Lan, L.; Zhu, D. An analysis of the relation between water pollution and economic growth in China by considering the contemporaneous correlation of water pollutants. J. Clean. Prod. 2020, 276, 122783. [Google Scholar] [CrossRef]
- Song, Y.; Wang, L.; Qiang, X.; Gu, W.; Ma, Z.; Wang, G. An overview of biological mechanisms and strategies for treating wastewater from printing and dyeing processes. J. Water Process Eng. 2023, 55, 104242. [Google Scholar] [CrossRef]
- Shimin, Z.; Min, L.; Hongyun, P.; Dong, W.; Shaohai, F. Cost-effective resource utilization for waste biomass: A simple preparation method of photo-thermal biochar cakes (BCs) toward dye wastewater treatment with solar energy. Environ. Res. 2021, 194, 110720. [Google Scholar]
- Sá, M.F.T.; Castro, V.; Gomes, A.I.; Morais, D.F.S.; Braga, R.V.P.S.S.; Saraiva, I.; Souza-Chaves, B.M.; Park, M.; Fernández-Fernández, V.; Rodil, R.; et al. Tracking pollutants in a municipal sewage network impairing the operation of a wastewater treatment plant. Sci. Total Environ. 2022, 817, 152518. [Google Scholar] [CrossRef]
- Liu, Z.; Khan, T.A.; Islam, M.A.; Tabrez, U. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon. Bioresour. Technol. 2022, 354, 127168. [Google Scholar] [CrossRef]
- Nnaji, P.C.; Anadebe, V.C.; Ezemagu, I.G.; Onukwuli, O.D. Potential of Luffa cylindrica seed as coagulation-flocculation (CF) agent for the treatment of dye wastewater: Kinetic, mass transfer, optimization and CF adsorption studies. Arab. J. Chem. 2022, 15, 103629. [Google Scholar] [CrossRef]
- Wu, J.; Li, Q.; Li, W.; Li, Y.; Wang, G.; Li, A.; Li, H. Efficient removal of acid dyes using permanent magnetic resin and its preliminary investigation for advanced treatment of dyeing effluents. J. Clean. Prod. 2020, 251, 119694. [Google Scholar] [CrossRef]
- Zhou, Z.; Yao, Y.; Yang, Y.; Li, X.; Ren, J.; Qin, J. Ultrasound-assisted H2O2 directional-modification of powdered activated carbon for the enhanced adsorption of secondary effluent organic matter from printing and dyeing processes. J. Hazard. Mater. 2023, 449, 131065. [Google Scholar] [CrossRef]
- Hu, Z.; Guan, D.; Sun, Z.; Zhang, Z.; Shan, Y.; Wu, Y.; Gong, C.; Ren, X. Osmotic cleaning of typical inorganic and organic foulants on reverse osmosis membrane for textile printing and dyeing wastewater treatment. Chemosphere 2023, 336, 139162. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.J.; Dangal, P.; Lomnicki, S.; Roy, A.D.; Park, J.H. A novel sugarcane residue-derived bimetallic Fe/Mn-biochar composite for activation of peroxymonosulfate in advanced oxidation process removal of azo dye: Degradation behavior and mechanism. J. Water Process Eng. 2024, 58, 104740. [Google Scholar] [CrossRef]
- Ewuzie, U.; Saliu, O.D.; Dulta, K.; Ogunniyi, S.; Bajeh, A.O.; Iwuozor, K.O.; Ighalo, J.O. A review on treatment technologies for printing and dyeing wastewater (PDW). J. Water Process Eng. 2022, 50, 103273. [Google Scholar] [CrossRef]
- Sun, H.; Xie, G.; He, D.; Zhang, L. Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling. Appl. Catal. B: Environ. 2020, 267, 118383. [Google Scholar] [CrossRef]
- Xie, Q.; Zhao, K.; Li, S.; Lian, Y. Degradation of typical tetracycline antibiotics in landfll leachate by three-dimensional aerated electrocatalytic reactor (3D-AER): Electrode properties, infuencing factors and degradation mechanism. J. Environ. Manag. 2025, 386, 125787. [Google Scholar] [CrossRef] [PubMed]
- Askar, A.; Sunggat, M.; Yerlan, T.; Ainur, K.; Gulnar, S. Stud of the process of cleaning water-containing iron solutions using ozone technology. Water Conserv. Manag. 2023, 7, 148–157. [Google Scholar]
- Huang, X.; Hou, X.; Zhao, J.; Zhang, L. Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span. Appl. Catal. B Environ. 2016, 181, 127–137. [Google Scholar] [CrossRef]
- Si, G.; Yang, J.; Zhang, L.; Gao, J.; Zhang, S.; Ni, S.; Peng, Y. NH2-MIL-101(Fe)-mediated photo-Fenton reaction enhanced simultaneous removal of nitrogen and refractory organics in anammox process through interfacial electron transfer. Bioresour. Technol. 2024, 395, 130390. [Google Scholar] [CrossRef]
- Zhuang, H.; Han, H.; Shan, S. Treatment of British Gas/Lurgi coal gasification wastewater using a novel integration of heterogeneous Fenton oxidation on coal fly ash/sewage sludge carbon composite and anaerobic biological process. Fuel 2016, 178, 155–162. [Google Scholar] [CrossRef]
- Ge, X.; Meng, G.; Liu, B. Ultrasound-assisted preparation of LaFeO3/polystyrene for efficient photo-Fenton degradation of ciprofloxacin hydrochloride. J. Ind. Eng. Chem. 2022, 115, 390–401. [Google Scholar] [CrossRef]
- Cai, R.; Yang, H.; He, J.; Zhu, W. The effects of magnetic fields on water molecular hydrogen bonds. J. Mol. Struct. 2009, 938, 15–19. [Google Scholar] [CrossRef]
- Judit, D. From mystery to reality: Magnetized water to tackle the challenges of climate change and for cleaner agricultural production. J. Clean. Prod. 2023, 425, 139077. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, X.; Quan, J.; Xing, G.; Yang, L.; Zhao, C.; Wu, P.; Zhao, F.; Hu, B.; Hu, Y. Application of magnetic fields to wastewater treatment and its mechanisms: A review. Sci. Total Environ. 2021, 773, 145476. [Google Scholar] [CrossRef]
- Eskandarpour, A.; Sassa, K.; Bando, Y.; Okido, M.; Asai, S. Magnetic Removal of Phosphate from Wastewater Using Schwertmannite. Mater. Trans. 2006, 47, 1832–1837. [Google Scholar] [CrossRef]
- Hao, X.L.; Zou, L.Y.; Zhang, G.S.; Zhang, Y.B. Magnetic field assisted Fenton reactions for the enhanced degradation of methyl blue. Chin. Chem. Lett. 2008, 20, 99–101. [Google Scholar] [CrossRef]
- Chibowski, E.; Szcześ, A. Magnetic water treatment–A review of the latest approaches. Chemosphere 2018, 203, 54–67. [Google Scholar] [CrossRef]
- Esmaeilnezhad, E.; Choi, H.J.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. Characteristics and applications of magnetized water as a green technology. J. Clean. Prod. 2017, 161, 908–921. [Google Scholar] [CrossRef]
- Cao, J.K.; Zhou, D.F.; Zhang, Y.B. Improvements in the surface tension measurement using the capillary rise method and its application to water under external magnetic fields. J. Mol. Liq. 2023, 382, 121988. [Google Scholar] [CrossRef]
- Ren, J.; Zhu, Z.; Qiu, Y.; Yu, F.; Ma, J.; Zhao, J. Magnetic field assisted adsorption of pollutants from an aqueous solution: A review. J. Hazard. Mater. 2020, 408, 124846. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, V.; Luo, S.; Zhang, R.; Velu, M.; Dong, Y. Organic ligand-assisted Fe(II)-activated persulfate for enhanced degradation of chlorinated aromatic contaminants in soil remediation. J. Environ. Chem. Eng. 2025, 13, 115237. [Google Scholar]
- Yoon, J.; Lee, Y.; Kim, S. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2001, 44, 15–21. [Google Scholar] [CrossRef]
- Herney-Ramirez, J.; Vicente, M.A.; Madeira, L.M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Appl. Catal. B Environ. 2010, 98, 10–26. [Google Scholar] [CrossRef]
Parameter | Raw Water | >100 kDa | 30~100 kDa | 10~30 kDa | 3~10 kDa | <3 kDa | |
---|---|---|---|---|---|---|---|
Unmagnetized water | DOC | 19.43 | 2.65 | 4.92 | 2.06 | 2.27 | 7.53 |
Proportion | / | 13.6% | 25.3% | 10.6% | 11.7% | 38.8% | |
UV254 | 0.851 | 0.147 | 0.158 | 0.146 | 0.125 | 0.275 | |
Proportion | / | 17.3% | 18.6% | 17.2% | 14.7% | 32.3% | |
SUVA | 4.38 | 5.55 | 3.21 | 7.09 | 5.51 | 3.65 | |
Magnetic water | DOC | 18.16 | 2.82 | 3.46 | 1.38 | 2.21 | 8.29 |
Proportion | / | 15.5% | 19.1% | 7.6% | 12.2% | 45.6% | |
UV254 | 0.854 | 0.148 | 0.194 | 0.091 | 0.16 | 0.261 | |
Proportion | / | 17.3% | 22.7% | 10.7% | 18.7% | 30.6% | |
SUVA | 4.7 | 5.25 | 5.61 | 6.59 | 7.24 | 3.15 |
Process | Reaction | Kobs (min−1) | R2 |
---|---|---|---|
Fenton | pH = 3, Fe2+ = 3 mmol/L, H2O2 = 3 mmol/L | 0.024 | 0.987 |
Magnetic Fenton | pH = 5, Fe2+ = 2 mmol/L, H2O2 = 2 mmol/L, B = 1.5 T | 0.023 | 0.991 |
COD (mg/L) | BOD5 (mg/L) | SS (mg/L) | NH4+-N (mg/L) | TN (mg/L) | |
---|---|---|---|---|---|
influent | ≤150 | ≤20 | ≤50 | ≤5 | ≤15 |
effluent | ≤50 | ≤10 | ≤10 | ≤5 | ≤15 |
Days | COD (mg/L) | Magnetic Fenton | COD Removal Rate (%) | Fluidized Bed Fenton | COD Removal Rate (%) |
---|---|---|---|---|---|
1 | influent | 68 | 44.1 | 73 | 45 |
effluent | 38 | 40 | |||
2 | influent | 78 | 48.7 | 80 | 41.3 |
effluent | 40 | 47 | |||
3 | influent | 63 | 44.4 | 69 | 39.1 |
effluent | 35 | 42 | |||
4 | influent | 78 | 39.7 | 79 | 39.2 |
effluent | 47 | 48 | |||
5 | influent | 74 | 45.9 | 72 | 41.7 |
Process | 27.5%H2O2 mg/L | 90%FeSO4 mg/L | 98%H2SO4 mg/L | 30%NaOH mg/L | PAM mg/L |
---|---|---|---|---|---|
Fluidized bed Fenton | 364 | 326 | 268 | 176 | 2 |
Magnetic Fenton | 120 | 220 | 190 | 142 | 2 |
No. | Chemical Reagent | Specification | Consumption | Unit Price | Cost |
---|---|---|---|---|---|
1 | FeSO4 | 90% | 220 g/m3 | 0.5 CNY/kg | 0.11 CNY/m3 |
2 | H2SO4 | 98% | 190 g/m3 | 0.6 CNY/kg | 0.114 CNY/m3 |
3 | H2O2 | 27.5% | 120 g/m3 | 1.0 CNY/kg | 0.12 CNY/m3 |
4 | NaOH | 30% | 142 g/m3 | 0.8 CNY/kg | 0.114 CNY/m3 |
5 | PAM | — | 2 g/m3 | 12 CNY/kg | 0.024 CNY/m3 |
Total: 0.482 CNY/m3 | 0.482 CNY/m3 |
No. | Chemical Reagent | Specification | Consumption | Unit Price | Cost |
---|---|---|---|---|---|
1 | FeSO4 | 90% | 326 g/m3 | 0.5 CNY/kg | 0.163 CNY/m3 |
2 | H2SO4 | 98% | 268 g/m3 | 0.6 CNY/kg | 0.161 CNY/m3 |
3 | H2O2 | 27.5% | 364 g/m3 | 1.0 CNY/kg | 0.364 CNY/m3 |
4 | NaOH | 30% | 176 g/m3 | 0.8 CNY/kg | 0.141 CNY/m3 |
5 | PAM | — | 2 g/m3 | 12 CNY/kg | 0.024 CNY/m3 |
Total: 0.853 CNY/m3 | 0.853 CNY/m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Yin, Z.; Hu, Z.; Zhang, W.; Zhang, Y.; Huang, H.; Chen, Z.; Xu, J.; Mei, R. Magnetic Intensification of Fenton Processes Using Superconducting Technology for Enhanced Treatment of Printing and Dyeing Wastewater: Mechanisms and Applications. Water 2025, 17, 2686. https://doi.org/10.3390/w17182686
Luo Q, Yin Z, Hu Z, Zhang W, Zhang Y, Huang H, Chen Z, Xu J, Mei R. Magnetic Intensification of Fenton Processes Using Superconducting Technology for Enhanced Treatment of Printing and Dyeing Wastewater: Mechanisms and Applications. Water. 2025; 17(18):2686. https://doi.org/10.3390/w17182686
Chicago/Turabian StyleLuo, Qian, Zhenchang Yin, Zhengfeng Hu, Wei Zhang, Yu Zhang, Huimin Huang, Zhihui Chen, Junjie Xu, and Rongwu Mei. 2025. "Magnetic Intensification of Fenton Processes Using Superconducting Technology for Enhanced Treatment of Printing and Dyeing Wastewater: Mechanisms and Applications" Water 17, no. 18: 2686. https://doi.org/10.3390/w17182686
APA StyleLuo, Q., Yin, Z., Hu, Z., Zhang, W., Zhang, Y., Huang, H., Chen, Z., Xu, J., & Mei, R. (2025). Magnetic Intensification of Fenton Processes Using Superconducting Technology for Enhanced Treatment of Printing and Dyeing Wastewater: Mechanisms and Applications. Water, 17(18), 2686. https://doi.org/10.3390/w17182686