Review of Sub-Models in Groundwater System Dynamics Models to Facilitate “Lego-like” Modeling
Abstract
1. Introduction
- Textual cues—Narrative descriptions that aligned with known archetypes (e.g., discussions of capacity limits often indicated a Limits to Growth structure).
- Reference to the archetype family tree—The framework developed by Goodman and Kleiner [47], which maps relationships among core archetypes and supports selection when multiple candidates are plausible.
- Behavioral pattern analysis—Examining the simulated dynamics to match them with known structural patterns (e.g., overshoot and collapse indicating a specific structure), even when the original authors did not label it explicitly.
2. Basic Structures for Modeling Groundwater Resources
2.1. Quick Primer on SD Nomenclature
2.2. Limits to Growth Archetype
2.3. Predator–Prey
2.4. Tragedy of the Commons Archetype
2.5. Oscillation from Delays
3. Internal Mechanisms
3.1. Water Rights
3.1.1. Restricting Water Rights
3.1.2. Illegal Wells
3.1.3. Collective Action
3.2. Crop Type
3.3. Irrigation Efficiency
3.4. Land Size
3.4.1. Land Transformation
3.4.2. Land Abandonment
4. Using Legos
4.1. Dynamic Relationship Between Irrigation Efficiency and Groundwater
4.2. Dynamic Relationship Between Land-Use Change and Groundwater
4.3. Illegal Wells
5. Summary, Challenges, and Suggestions for Future Study
- Faster Model Development—Rather than starting from scratch, modelers can assemble pre-validated modules from the library, significantly accelerating the modeling process.
- Improved Understanding of Complex Models—Viewing models through a Lego-like lens enables less experienced SD modelers to decompose large, complex systems into smaller, more understandable sub-models. This incremental approach enhances comprehension and learning.
- Refinement of Existing Models—Some hydrology-based models are developed by hydrologists with limited SD expertise, which may result in gaps from a system dynamics perspective. The Lego-like approach, together with the sub-model library, can help address these gaps by allowing modelers to systematically deconstruct their models and compare each component with established sub-models in the library, thereby strengthening conceptual clarity and structural robustness.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardwell, H.E.; Cole, R.A.; Cartwright, L.A.; Martin, L.A. Integrated Water Resources Management: Definitions and Conceptual Musings. J. Contemp. Water Res. Educ. 2006, 135, 8–18. [Google Scholar] [CrossRef]
- Højberg, A.L.; Refsgaard, J.C. Model Uncertainty—Parameter Uncertainty versus Conceptual Models. Water Sci. Technol. 2005, 52, 177–186. [Google Scholar] [CrossRef]
- Kreamer, D.K.; Ball, D.M.; Re, V.; Simmons, C.T.; Bothwell, T.; Verweij, H.J.M.; Mukherjee, A.; Moreau, M.F. Chapter 37—The Future of Groundwater Science and Research. In Global Groundwater; Mukherjee, A., Scanlon, B.R., Aureli, A., Langan, S., Guo, H., McKenzie, A.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 503–517. ISBN 978-0-12-818172-0. [Google Scholar]
- Lall, U.; Josset, L.; Russo, T. A Snapshot of the World’s Groundwater Challenges. Annu. Rev. Environ. Resour. 2020, 45, 171–194. [Google Scholar] [CrossRef]
- Zektser, S.; Loáiciga, H.A.; Wolf, J.T. Environmental Impacts of Groundwater Overdraft: Selected Case Studies in the Southwestern United States. Environ. Geol. 2005, 47, 396–404. [Google Scholar] [CrossRef]
- Golian, M.; Saffarzadeh, A.; Katibeh, H.; Mahdad, M.; Saadat, H.; Khazaei, M.; Sametzadeh, E.; Ahmadi, A.; Sharifi Teshnizi, E.; Samadi Darafshani, M.; et al. Consequences of Groundwater Overexploitation on Land Subsidence in Fars Province of Iran and Its Mitigation Management Programme. Water Environ. J. 2021, 35, 975–985. [Google Scholar] [CrossRef]
- Alfarrah, N.; Walraevens, K. Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water 2018, 10, 143. [Google Scholar] [CrossRef]
- Kumar, P.; Avtar, R.; Dasgupta, R.; Johnson, B.A.; Mukherjee, A.; Ahsan, N.; Nguyen, D.C.H.; Nguyen, H.Q.; Shaw, R.; Mishra, B.K. Socio-Hydrology: A Key Approach for Adaptation to Water Scarcity and Achieving Human Well-Being in Large Riverine Islands. Prog. Disaster Sci. 2020, 8, 100134. [Google Scholar] [CrossRef]
- Deng, Z.; Ma, Q.; Zhang, J.; Feng, Q.; Niu, Z.; Zhu, G.; Jin, X.; Chen, M.; Chen, H. A New Socio-Hydrology System Based on System Dynamics and a SWAT-MODFLOW Coupling Model for Solving Water Resource Management in Nanchang City, China. Sustainability 2023, 15, 16079. [Google Scholar] [CrossRef]
- Reeves, H.W.; Zellner, M.L. Linking MODFLOW with an Agent-Based Land-Use Model to Support Decision Making. Groundwater 2010, 48, 649–660. [Google Scholar] [CrossRef]
- Gaur, S.; Omar, P.J.; Eslamian, S. Chapter 1—Advantage of Grid-Free Analytic Element Method for Identification of Locations and Pumping Rates of Wells. In Handbook of Hydroinformatics; Eslamian, S., Eslamian, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–10. ISBN 978-0-12-821962-1. [Google Scholar]
- Sterman, J. Business Dynamics: Systems Thinking and Modeling for a Complex World; Massachusetts Institute of Technology, Engineering Systems Division: Cambridge, MA, USA, 2000. [Google Scholar]
- Sterman, J. Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment. Manag. Sci. 1989, 35, 321–339. [Google Scholar] [CrossRef]
- Doyle, J.K.; Ford, D.N. Mental Models Concepts for System Dynamics Research. Syst. Dyn. Rev. 1998, 14, 3–29. [Google Scholar] [CrossRef]
- Besnard, D.; Greathead, D.; Baxter, G. When Mental Models Go Wrong: Co-Occurrences in Dynamic, Critical Systems. Int. J. Hum.-Comput. Stud. 2004, 60, 117–128. [Google Scholar] [CrossRef][Green Version]
- Hjorth, P.; Madani, K. Systems Analysis to Promote Frames and Mental Models for Sustainable Water Management. In Proceedings of the 3rd World Sustainability Forum, Online, 1–30 November 2013; Volume 3. [Google Scholar] [CrossRef]
- Milner-Gulland, E.J. Interactions between Human Behaviour and Ecological Systems. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Alley, W.M. Tracking U.S. Groundwater: Reserves for the Future? Environ. Sci. Policy Sustain. Dev. 2006, 48, 10–25. [Google Scholar] [CrossRef]
- Zhou, Y. A Critical Review of Groundwater Budget Myth, Safe Yield and Sustainability. J. Hydrol. 2009, 370, 207–213. [Google Scholar] [CrossRef]
- Beall King, A.; Thornton, M. Staying the Course: Collaborative Modeling to Support Adaptive and Resilient Water Resource Governance in the Inland Northwest. Water 2016, 8, 232. [Google Scholar] [CrossRef]
- Sušnik, J.; Vamvakeridou-Lyroudia, L.S.; Savić, D.A.; Kapelan, Z. Integrated System Dynamics Modelling for Water Scarcity Assessment: Case Study of the Kairouan Region. Sci. Total Environ. 2012, 440, 290–306. [Google Scholar] [CrossRef] [PubMed]
- Stave, K.A. A System Dynamics Model to Facilitate Public Understanding of Water Management Options in Las Vegas, Nevada. J. Environ. Manag. 2003, 67, 303–313. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Liu, J.; Wang, G.; He, R.; Elmahdi, A.; Elsawah, S. Water Resources Planning and Management Based on System Dynamics: A Case Study of Yulin City. Environ. Dev. Sustain. 2011, 13, 331–351. [Google Scholar] [CrossRef]
- Tidwell, V.C.; Passell, H.D.; Conrad, S.H.; Thomas, R.P. System Dynamics Modeling for Community-Based Water Planning: Application to the Middle Rio Grande. Aquat. Sci. 2004, 66, 357–372. [Google Scholar] [CrossRef]
- Sahin, O.; Siems, R.S.; Stewart, R.A.; Porter, M.G. Paradigm Shift to Enhanced Water Supply Planning through Augmented Grids, Scarcity Pricing and Adaptive Factory Water: A System Dynamics Approach. Environ. Model. Softw. 2016, 75, 348–361. [Google Scholar] [CrossRef]
- Elsawah, S.; McLucas, A.; Mazanov, J. An Empirical Investigation into the Learning Effects of Management Flight Simulators: A Mental Models Approach. Eur. J. Oper. Res. 2017, 259, 262–272. [Google Scholar] [CrossRef]
- Luna-Reyes, L.F.; Andersen, D.L. Collecting and Analyzing Qualitative Data for System Dynamics: Methods and Models. Syst. Dyn. Rev. 2003, 19, 271–296. [Google Scholar] [CrossRef]
- Wolstenholme, E.F. The Definition and Application of a Stepwise Approach to Model Conceptualisation and Analysis. Eur. J. Oper. Res. 1992, 59, 123–136. [Google Scholar] [CrossRef]
- Moghadam Manesh, M.; Beall King, A. Exploring Approaches to Conceptualization in System Dynamics Modeling. In Proceedings of the International System Dynamics Conference, Boston, MA, USA, 3–7 August 2025. [Google Scholar]
- Fiddaman, T.S. A Feedback-Rich Climate-Economy Model. In Proceedings of the 16th International Conference of the Systems Dynamics Society, Quebec, QC, Canada, 20–23 July 1998. [Google Scholar]
- Fiddaman, T.S. Exploring Policy Options with a Behavioral Climate–Economy Model. Syst. Dyn. Rev. 2002, 18, 243–267. [Google Scholar] [CrossRef]
- Elmasry, A.; Größler, A. Supply Chain Modularity in System Dynamics. Syst. Dyn. Rev. 2018, 34, 462–476. [Google Scholar] [CrossRef]
- Winz, I.; Brierley, G.; Trowsdale, S. The Use of System Dynamics Simulation in Water Resources Management. Water Resour. Manag. 2009, 23, 1301–1323. [Google Scholar] [CrossRef]
- Zarghami, S.A.; Gunawan, I.; Schultmann, F. System Dynamics Modelling Process in Water Sector: A Review of Research Literature. Syst. Res. Behav. Sci. 2018, 35, 776–790. [Google Scholar] [CrossRef]
- Zomorodian, M.; Lai, S.H.; Homayounfar, M.; Ibrahim, S.; Fatemi, S.E.; El-Shafie, A. The State-of-the-Art System Dynamics Application in Integrated Water Resources Modeling. J. Environ. Manag. 2018, 227, 294–304. [Google Scholar] [CrossRef]
- Mashaly, A.F.; Fernald, A.G. Identifying Capabilities and Potentials of System Dynamics in Hydrology and Water Resources as a Promising Modeling Approach for Water Management. Water 2020, 12, 1432. [Google Scholar] [CrossRef]
- Cerecedo Arroyo, M.E.; Martínez Austria, P.F. Dynamic Water System Modeling: A Systematic Review. Water Pract. Technol. 2021, 16, 744–755. [Google Scholar] [CrossRef]
- Phan, T.D.; Bertone, E.; Stewart, R.A. Critical Review of System Dynamics Modelling Applications for Water Resources Planning and Management. Clean. Environ. Syst. 2021, 2, 100031. [Google Scholar] [CrossRef]
- Naeem, K.; Zghibi, A.; Elomri, A.; Mazzoni, A.; Triki, C. A Literature Review on System Dynamics Modeling for Sustainable Management of Water Supply and Demand. Sustainability 2023, 15, 6826. [Google Scholar] [CrossRef]
- Senge, P.M. The Fifth Discipline: The Art and Practice of the Learning Organization, 1st ed.; Doubleday/Currency: New York, NY, USA, 1990; ISBN 978-0-385-26094-7. [Google Scholar]
- Kim, D.H. Systems Archetypes I; Pegasus Communications: Cambridge, MA, USA, 1993; ISBN 978-1-883823-00-9. [Google Scholar]
- Kim, D.H. Systems Archetypes as Dynamic Theories. Syst. Think. 1995, 6, 6–9. [Google Scholar]
- Wolstenholme, E. Using Generic System Archetypes to Support Thinking and Modelling. Syst. Dyn. Rev. 2004, 20, 341–356. [Google Scholar] [CrossRef]
- Wolstenholme, E.F. Towards the Definition and Use of a Core Set of Archetypal Structures in System Dynamics. Syst. Dyn. Rev. 2003, 19, 7–26. [Google Scholar] [CrossRef]
- Kim, D.H.; Lannon, C.P. Applying Systems Archetypes; Pegasus Communications: Waltham, MA, USA, 1997; ISBN 978-1-883823-10-8. [Google Scholar]
- Kim, D.H.; Anderson, V. Systems Archetype Basics: From Story to Structure; Revised edition; Pegasus Communications, Inc.: Waltham, MA, USA, 1998; ISBN 978-1-883823-04-7. [Google Scholar]
- Goodman, M.; Kleiner, A. Using the Archetype Family Tree as a Diagnostic Tool. Syst. Think. 1993, 4, 5–6. [Google Scholar]
- Bastan, M.; Ramazani Khorshid-Doust, R.; Delshad Sisi, S.; Ahmadvand, A. Sustainable Development of Agriculture: A System Dynamics Model. Kybernets 2018, 47, 142–162. [Google Scholar] [CrossRef]
- Dudley, R. Might Continued Emphasis on Maize at the Expense of More Drought Tolerant Crops Endanger Food Security in the Horn of Africa. In Proceedings of the 29th International Conference of the System Dynamics Society, Washington, DC, USA, 24–28 July 2011. [Google Scholar]
- Molle, F.; Closas, A. Why Is State-Centered Groundwater Governance Largely Ineffective? A Review. WIREs Water 2020, 7, e1395. [Google Scholar] [CrossRef]
- Nabavi, E. Failed Policies, Falling Aquifers: Unpacking Groundwater Overabstraction in Iran. Water Altern. 2018, 11, 699–724. [Google Scholar]
- Castillo, D.; Saysel, A.K. Simulation of Common Pool Resource Field Experiments: A Behavioral Model of Collective Action. Ecol. Econ. 2005, 55, 420–436. [Google Scholar] [CrossRef]
- Figueiredo, J.; Pereira, H.M. Regime Shifts in a Socio-Ecological Model of Farmland Abandonment. Landsc. Ecol. 2011, 26, 737–749. [Google Scholar] [CrossRef]
- Schaible, G.; Aillery, M. Water Conservation in Irrigated Agriculture: Trends and Challenges in the Face of Emerging Demands. USDA-ERS Econ. Inf. Bull. 2012, 99. [Google Scholar] [CrossRef]
- Peña, S.; Fuentes, C. Modeling the Institutional Framework Governing Land Use and Water Rights in the U.S.-Mexican Border Region. In The U.S.-Mexican Border Environment: Dynamics of Human-Environmental Interactions; Sadalla, E., Ed.; SCERP Monograph Series 11; San Diego State University Press: San Diego, CA, USA, 2005. [Google Scholar]
- Maani, K.E.; Cavana, R.Y. Systems Thinking, System Dynamics; Pearson Education Canada: Toronto, ON, Canada, 2010; ISBN 978-1-877371-03-5. [Google Scholar]
- Meadows, D.H. Thinking in Systems: International Bestseller; Wright, D., Ed.; Chelsea Green: Hartford, VT, USA, 2008; ISBN 978-1-60358-055-7. [Google Scholar]
- Morecroft, J. Strategic Modelling and Business; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 978-0-470-01286-4. [Google Scholar]
- Ford, A. Modeling the Environment, 2nd ed.; Island Press: Washington, DC, USA, 2009; ISBN 978-1-59726-473-0. [Google Scholar]
- Bagheri, A.; Hosseini, S. A System Dynamics Approach to Assess Water Resources Development Scheme in the Mashhad Plain, Iran, versus Sustainability. In Proceedings of the 4th International Perspective on Water Resources and the Environment (IPWE), Singapore, 4–6 January 2011. [Google Scholar]
- Ghashghaie, M.; Marofi, S.; Marofi, H. Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow. Water Resour. Manag. 2014, 28, 5055–5072. [Google Scholar] [CrossRef]
- Gohari, A.; Mirchi, A.; Madani, K. System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resour. Manag. 2017, 31, 1413–1434. [Google Scholar] [CrossRef]
- Zare, F.; Bagheri, A.; Elsawah, S. Using System Archetypes for Problem Framing and a Qualitative Analysis: A Case Study in Iranian Water Resource Management. In Proceedings of the 22nd International Congress on Modelling and Simulation, Hobart, TAS, Australia, 3–8 December 2017. [Google Scholar]
- Mirchi, A.; Madani, K.; Watkins, D.; Ahmad, S. Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resour. Manag. 2012, 26, 2421–2442. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Zarghami, M. Should Water Supply for Megacities Depend on Outside Resources? A Monte-Carlo System Dynamics Simulation for Shiraz, Iran. Sustain. Cities Soc. 2019, 44, 163–170. [Google Scholar] [CrossRef]
- Ford, A.; Flynn, H. Statistical Screening of System Dynamics Models. Syst. Dyn. Rev. 2005, 21, 273–303. [Google Scholar] [CrossRef]
- Beres, D.L.; Hawkins, D.M. Plackett–Burman Technique for Sensitivity Analysis of Many-Parametered Models. Ecol. Model. 2001, 141, 171–183. [Google Scholar] [CrossRef]
- Berryman, A.A. The Orgins and Evolution of Predator-Prey Theory. Ecology 1992, 73, 1530–1535. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Du, N.H.; Hieu, N.T.; Sato, K. Evolution of Predator–Prey Systems Described by a Lotka–Volterra Equation under Random Environment. J. Math. Anal. Appl. 2006, 323, 938–957. [Google Scholar] [CrossRef]
- Groesser, S.N.; Schaffernicht, M. Mental Models of Dynamic Systems: Taking Stock and Looking Ahead. Syst. Dyn. Rev. 2012, 28, 46–68. [Google Scholar] [CrossRef]
- Swart, J. A system dynamics approach to predator-prey modeling. Syst. Dyn. Rev. 1990, 6, 94–99. [Google Scholar] [CrossRef]
- Valderrama, J.M.; Ibáñez, J.; Alcalá, F.J.; Dominguez, A.; Yassin, M.; Puigdefábregas, J. The Use of a Hydrological-Economic Model to Assess Sustainability in Groundwater-Dependent Agriculture in Drylands. J. Hydrol. 2011, 402, 80–91. [Google Scholar] [CrossRef]
- Lalehzari, R.; Kerachian, R. Developing a Framework for Daily Common Pool Groundwater Allocation to Demands in Agricultural Regions. Agric. Water Manag. 2020, 241, 106278. [Google Scholar] [CrossRef]
- Müller, M.F.; Müller-Itten, M.C.; Gorelick, S.M. How Jordan and Saudi Arabia Are Avoiding a Tragedy of the Commons over Shared Groundwater. Water Resour. Res. 2017, 53, 5451–5468. [Google Scholar] [CrossRef]
- Gordon, H.S. The Economic Theory of a Common-Property Resource: The Fishery. J. Political Econ. 1954, 62, 124–142. [Google Scholar] [CrossRef]
- Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef]
- Duit, A.; Feindt, P.H.; Meadowcroft, J. Greening Leviathan: The Rise of the Environmental State? Environ. Politics 2016, 25, 1–23. [Google Scholar] [CrossRef]
- Ostrom, E. Collective Action and the Evolution of Social Norms. J. Econ. Perspect. 2000, 14, 137–158. [Google Scholar] [CrossRef]
- Rodden, J. Reviving Leviathan: Fiscal Federalism and the Growth of Government. Int. Organ. 2003, 57, 695–729. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990; ISBN 978-0-521-40599-7. [Google Scholar]
- Senge, P.M. The Fifth Discipline. Meas. Bus. Excell. 1997, 1, 46–51. [Google Scholar] [CrossRef]
- Kim, D. Tragedy of the Commons: All for One and None for All. Available online: https://thesystemsthinker.com/tragedy-of-the-commons-all-for-one-and-none-for-all/ (accessed on 6 July 2025).
- Loáiciga, H.A. Analytic Game—Theoretic Approach to Ground-Water Extraction. J. Hydrol. 2004, 297, 22–33. [Google Scholar] [CrossRef]
- Anderson, J.M. A Model for “The Tragedy of the Commons”. IEEE Trans. Syst. Man Cybern. 1974, SMC-4, 103–105. [Google Scholar] [CrossRef]
- Langarudi, S.P.; Silva, C.G.; Fernald, A.G. Measure More or Report Faster? Effect of Information Perception on Management of Commons. Syst. Dyn. Rev. 2021, 37, 72–92. [Google Scholar] [CrossRef]
- Moghadam Manesh, M. Tragedy of the Commons in Groundwater Resources and Evaluating Strategies to Achieve Sustainable Development (A Case Study of Iran). Master’s Thesis, The University of Bergen, Bergen, Norway, 2019. [Google Scholar]
- Sharot, T.; Korn, C.W.; Dolan, R.J. How Unrealistic Optimism Is Maintained in the Face of Reality. Nat. Neurosci. 2011, 14, 1475–1479. [Google Scholar] [CrossRef] [PubMed]
- Molle, F.; Closas, A. Groundwater Governance: A Synthesis; The International Water Management Institute (IWMI): Colombo, Sri Lanka, 2017. [Google Scholar]
- Bitran, E.; Rivera, P.; Villena, M.J. Water Management Problems in the Copiapó Basin, Chile: Markets, Severe Scarcity and the Regulator. Water Policy 2014, 16, 844–863. [Google Scholar] [CrossRef]
- Magnuson, M.; Pruet, J.; Archuleta, R.; Murphy, L. New Mexico Water Resources: Planning and Development Report; New Mexico Office of the State Engineer: Aztec, NM, USA, 2019.
- National Research Council; Division on Earth and Life Studies; Water Science and Technology Board; Committee on USGS Water Resources Research. Estimating Water Use in the United States: A New Paradigm for the National Water-Use Information Program; National Academies Press: Washington, DC, USA, 2002; ISBN 978-0-309-08483-3.
- Farahmand, H.; Tajrishy, M.; Isaai, M.T.; Ghoreishi, M.; Mohammadi, M. Introducing the REPAIR Framework for Sustainable Environmental Restoration: Lessons from Lake Urmia, Iran. J. Arid Environ. 2025, 229, 105369. [Google Scholar] [CrossRef]
- Issahaku, G.; Abdul-Rahaman, A. Sustainable Land Management Practices, off-Farm Work Participation and Vulnerability among Farmers in Ghana: Is There a Nexus? Int. Soil Water Conserv. Res. 2019, 7, 18–26. [Google Scholar] [CrossRef]
- Jabbar, A.; Wei, L.; Zhang, J.; Liu, J.; Wang, Y.; Wu, Q.; Peng, J. Exploring the Contributions of Non-Farm Income Diversification for Improving Soil and Water Conservation Practices and Reducing Rural Poverty in Rain-Fed Areas of Punjab, Pakistan. Front. Sustain. Food Syst. 2023, 7, 1179919. [Google Scholar] [CrossRef]
- Nyathi, D. Motives and Constraints of Rural Livelihoods Diversification in Dry-Land Agrarian Settings of Matabeleland, Zimbabwe. J. Asian Afr. Stud. 2024, 00219096241257696. [Google Scholar] [CrossRef]
- Vasco, C.; Valdiviezo, R.; Hernández, H.; Tafur, V.; Eche, D.; Jácome, E. Off-Farm Employment, Forest Clearing and Natural Resource Use: Evidence from the Ecuadorian Amazon. Sustainability 2020, 12, 4515. [Google Scholar] [CrossRef]
- Figueroa-Sandoval, B.; Coronado-Minjarez, M.A.; García-Herrera, E.J.; Ramírez-López, A.; Sangerman-Jarquín, D.M.; Figueroa-Rodríguez, K.A. Production System Diversification and Livelihood in the Drylands of North Central Mexico. Sustainability 2019, 11, 2750. [Google Scholar] [CrossRef]
- Madani, K. Water Management in Iran: What Is Causing the Looming Crisis? J. Environ. Stud. Sci. 2014, 4, 315–328. [Google Scholar] [CrossRef]
- Schwartz, F.W.; Liu, G.; Yu, Z. HESS Opinions: The Myth of Groundwater Sustainability in Asia. Hydrol. Earth Syst. Sci. 2020, 24, 489–500. [Google Scholar] [CrossRef]
- Haji, L.; Momenpour, Y.; Choobchian, S. Moving toward Salvaging Iran’s Groundwater: A Psychological Analysis of Blocking Unauthorized Agricultural Wells. Agric. Water Manag. 2024, 303, 109035. [Google Scholar] [CrossRef]
- Sassani, A.; Bigdeli, B.; Saghravani, S.F. Detection of Illegal Wells Using Advanced GIS Analysis through Landsat 8 and Sentinel-2 Image Fusion in Bastam, Iran. Sci. Rep. 2025, 15, 6500. [Google Scholar] [CrossRef]
- Molle, F.; Closas, A. Groundwater Licensing and Its Challenges. Hydrogeol. J. 2020, 28, 1961–1974. [Google Scholar] [CrossRef]
- Molle, F.; López-Gunn, E.; van Steenbergen, F. The Local and National Politics of Groundwater Overexploitation. Water Altern. 2018, 11, 445–457. [Google Scholar]
- Hoogesteger, J. The Ostrich Politics of Groundwater Development and Neoliberal Regulation in Mexico. Water Altern. 2018, 11, 552–571. [Google Scholar]
- Nabavi, E. (Ground)Water Governance and Legal Development in Iran, 1906–2016. Middle East Law Gov. 2017, 9, 43–70. [Google Scholar] [CrossRef]
- Olson, M. The Logic of Collective Action: Public Goods and the Theory of Groups, With a New Preface and Appendix; Harvard University Press: Cambridge, MA, USA, 1971; ISBN 978-0-674-28327-5. [Google Scholar]
- Meinzen-Dick, R. Beyond Panaceas in Water Institutions. Proc. Natl. Acad. Sci. USA 2007, 104, 15200–15205. [Google Scholar] [CrossRef] [PubMed]
- Schlager, E.; Heikkila, T. Left High and Dry? Climate Change, Common-Pool Resource Theory, and the Adaptability of Western Water Compacts. Public Adm. Rev. 2011, 71, 461–470. [Google Scholar] [CrossRef]
- Sydow, J.; Schreyögg, G.; Koch, J. Organizational Path Dependence: Opening the Black Box. Acad. Manag. Rev. 2009, 34, 689–709. [Google Scholar]
- David, P.A. Path Dependence: A Foundational Concept for Historical Social Science. Cliometrica 2007, 1, 91–114. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R. Catastrophic Regime Shifts in Ecosystems: Linking Theory to Observation. Trends Ecol. Evol. 2003, 18, 648–656. [Google Scholar] [CrossRef]
- Dangerman, J.; Grössler, A. No Way out? Analysing Policy Options to Alleviate or Derail Success-to-the-Successful in the Energy System. In Proceedings of the 29th International System Dynamics Conference, Washington, DC, USA, 24–28 July 2011. [Google Scholar]
- Dangerman, A.T.C.J.; Schellnhuber, H.J. Energy Systems Transformation. Proc. Natl. Acad. Sci. USA 2013, 110, E549–E558. [Google Scholar] [CrossRef] [PubMed]
- Mandl, C.E. Path Dependence: Segregation, Increasing Returns, and Success to the Successful. In Managing Complexity in Social Systems: Leverage Points for Policy and Strategy; Mandl, C.E., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 207–220. ISBN 978-3-031-30222-0. [Google Scholar]
- Proust, K.; Newell, B.; Brown, H.; Capon, A.; Browne, C.; Burton, A.; Dixon, J.; Mu, L.; Zarafu, M. Human Health and Climate Change: Leverage Points for Adaptation in Urban Environments. Int. J. Environ. Res. Public Health 2012, 9, 2134–2158. [Google Scholar] [CrossRef]
- Cumming, G.S. A Review of Social Dilemmas and Social-Ecological Traps in Conservation and Natural Resource Management. Conserv. Lett. 2018, 11, e12376. [Google Scholar] [CrossRef]
- Olaya, C.; Díaz Pabón, F.A.; Caicedo, S. Towards a System Dynamics Model of De Soto’s Theory on Informal Economy 2007. International System Dynamics Conference, 2007. Available online: https://proceedings.systemdynamics.org/2007/proceed/papers/OLAYA463.pdf (accessed on 25 August 2025).
- Atkinson, G.; Oleson, T. Urban Sprawl as a Path Dependent Process. J. Econ. Issues 1996, 30, 609–615. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Scenario Analysis for Integrated Water Resources Management under Future Land Use Change in the Urmia Lake Region, Iran. Land Use Policy 2020, 90, 104299. [Google Scholar] [CrossRef]
- Annual Agricultural Statistics of West Azerbaijan Province; Ministry of Agriculture Jihad of Iran: Tehran, Iran, 2023. (In Persian)
- Dalby, S.; Moussavi, Z. Environmental Security, Geopolitics and the Case of Lake Urmia’s Disappearance. Glob. Change Peace Secur. 2017, 29, 39–55. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L. Soil Water Dynamics in Apple Orchards of Different Ages on the Loess Plateau of China. Vadose Zone J. 2018, 17, 1–14. [Google Scholar] [CrossRef]
- Giordano, M. Global Groundwater? Issues and Solutions. Annu. Rev. Environ. Resour. 2009, 34, 153–178. [Google Scholar] [CrossRef]
- Molle, F. Why Enough Is Never Enough: The Societal Determinants of River Basin Closure. Int. J. Water Resour. Dev. 2008, 24, 217–226. [Google Scholar] [CrossRef]
- Lawell, C.-Y.C.L. The Management of Groundwater: Irrigation Efficiency, Policy, Institutions, and Externalities. Annu. Rev. Resour. Econ. 2016, 8, 247–259. [Google Scholar] [CrossRef]
- Hrozencik, R.A. Use of Pressurized Irrigation Systems in the Western United States Roughly Doubled from 1984 to 2018. 2021. Available online: https://ers.usda.gov/data-products/charts-of-note/chart-detail?chartId=102086 (accessed on 25 August 2025).
- Alcon, F.; de Miguel, M.D.; Burton, M. Duration Analysis of Adoption of Drip Irrigation Technology in Southeastern Spain. Technol. Forecast. Soc. Change 2011, 78, 991–1001. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Water Conservation in Irrigation Can Increase Water Use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef] [PubMed]
- Khazzoom, J.D. Economic Implications of Mandated Efficiency in Standards for Household Appliances. Energy J. 1980, 1, 21–40. [Google Scholar] [CrossRef]
- Sorrell, S.; Dimitropoulos, J. The Rebound Effect: Microeconomic Definitions, Limitations and Extensions. Ecol. Econ. 2008, 65, 636–649. [Google Scholar] [CrossRef]
- Berbel, J.; Gutiérrez-Martín, C.; Rodríguez-Díaz, J.A.; Camacho, E.; Montesinos, P. Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study. Water Resour. Manag. 2015, 29, 663–678. [Google Scholar] [CrossRef]
- Oduor, B.O.; Campo-Bescós, M.Á.; Lana-Renault, N.; Echarri, A.A.; Casalí, J. Evaluation of the Impact of Changing from Rainfed to Irrigated Agriculture in a Mediterranean Watershed in Spain. Agriculture 2023, 13, 106. [Google Scholar] [CrossRef]
- Esmaeili, A.; Shahsavari, Z. Water Allocation for Agriculture in Southwestern Iran Using a Programming Model. Appl. Water Sci. 2015, 5, 305–310. [Google Scholar] [CrossRef][Green Version]
- Turner, B.L.; Wuellner, M.; Nichols, T.; Gates, R.; Tedeschi, L.O.; Dunn, B.H. Development and Evaluation of a System Dynamics Model for Investigating Agriculturally Driven Land Transformation in the North Central United States. Nat. Resour. Model. 2016, 29, 179–228. [Google Scholar] [CrossRef]
- Turner, B.L.; Wuellner, M.; Nichols, T.; Gates, R.; Tedeschi, L.O.; Dunn, B.H. A Systems Approach to Forecast Agricultural Land Transformation and Soil Environmental Risk from Economic, Policy, and Cultural Scenarios in the North Central United States (2012–2062). Int. J. Agric. Sustain. 2017, 15, 102–123. [Google Scholar] [CrossRef]
- van Vliet, J.; de Groot, H.L.F.; Rietveld, P.; Verburg, P.H. Manifestations and Underlying Drivers of Agricultural Land Use Change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future Urban Land Expansion and Implications for Global Croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef]
- Freedgood, J.; Hunter, M.; Dempsey, J.; Sorensen, A. Farms Under Threat: The State of the States; American Farmland Trust: Washington, DC, USA, 2020. [Google Scholar]
- McNamara, L.A.; Jarratt, J.; Passell, H.D.; Kelly, S.; Malczynski, L.A.; Chermak, J.; Van Bloeman Waanders, P.; Tidwell, V.C.; Pallachula, K.; Turnley, J.G.; et al. Modeling the Transfer of Land and Water from Agricultural to Urban Uses in the Middle Rio Grande Basin, New Mexico; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2004.
- Flores-Lopez, C.; Turner, B.L.; Hanagriff, R.; Bhandari, A.; Sinha, T. South Texas Water Resource Mental Models: A Systems Thinking, Multi-Stakeholder Case Study. J. Contemp. Water Res. Educ. 2022, 176, 15–35. [Google Scholar] [CrossRef]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and Drivers of Post-Socialist Farmland Abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–Time Process and Drivers of Land Abandonment in Europe. CATENA 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Subedi, Y.R.; Kristiansen, P.; Cacho, O. Drivers and Consequences of Agricultural Land Abandonment and Its Reutilisation Pathways: A Systematic Review. Environ. Dev. 2022, 42, 100681. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Collier, M.J. Farmland Abandonment in Europe: An Overview of Drivers, Consequences, and Assessment of the Sustainability Implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- Xu, D.; Deng, X.; Guo, S.; Liu, S. Labor Migration and Farmland Abandonment in Rural China: Empirical Results and Policy Implications. J. Environ. Manag. 2019, 232, 738–750. [Google Scholar] [CrossRef]
- Hargrove, W.L.; Sheng, Z.; Granados, A.; Heyman, J.M.; Mubako, S.T. Impacts of Urbanization and Intensification of Agriculture on Transboundary Aquifers: A Case Study. J. Am. Water Resour. Assoc. 2021, 57, 170–185. [Google Scholar] [CrossRef]
- Madani, K.; Dinar, A. Non-Cooperative Institutions for Sustainable Common Pool Resource Management: Application to Groundwater. Ecol. Econ. 2012, 74, 34–45. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Qu, F. Land Fragmentation and Its Driving Forces in China. Land Use Policy 2006, 23, 272–285. [Google Scholar] [CrossRef]
- Keshavarz, M.; Karami, E.; Vanclay, F. The Social Experience of Drought in Rural Iran. Land Use Policy 2013, 30, 120–129. [Google Scholar] [CrossRef]
- Karami, E.; Rezaei-Moghaddam, K. Modeling Determinants of Agricultural Production Cooperatives’ Performance in Iran. Agric. Econ. 2005, 33, 305–314. [Google Scholar] [CrossRef]
- Carey, J.M.; Zilberman, D. A Model of Investment under Uncertainty: Modern Irrigation Technology and Emerging Markets in Water. Am. J. Agric. Econ. 2002, 84, 171–183. [Google Scholar] [CrossRef]
- de Bruin, S.P.; Knoop, J.; Visser, H.; Biemans, H. Identifying Potential Clusters of Future Migration Associated with Water Stress in Africa: A Vulnerability Approach. Front. Hum. Dyn. 2022, 4, 754354. [Google Scholar] [CrossRef]
- Maleksaeidi, H.; Jalali, M.; Eskandari, F. Challenges Threatening Agricultural Sustainability in the West of Iran: Viewpoint of Agricultural Experts. Sustainability 2021, 13, 3537. [Google Scholar] [CrossRef]
- Moghadam Manesh, M.; Nabavi, E. Using System Dynamics to Scrutinize Behavioral Feedback Loops in Groundwater Management. In Proceedings of the International System Dynamics Conference, Chicago, IL, USA, 26–30 July 2021. [Google Scholar]
Factor Affecting Groundwater Consumption | Mechanism | Archetype |
---|---|---|
Water rights | Restricting water rights | Shifting the burden |
Illegal wells | Drifting goal | |
Collective action | Path dependence | |
Crop type | Switching crop type | Success to the successful |
Irrigation efficiency | Technology adoption | Diffusion Fixes that fail archetype |
Land size | Land transformation | Invisible hand Success to the successful |
Land abandonment | Diffusion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moghadam Manesh, M.; Beall King, A. Review of Sub-Models in Groundwater System Dynamics Models to Facilitate “Lego-like” Modeling. Water 2025, 17, 2559. https://doi.org/10.3390/w17172559
Moghadam Manesh M, Beall King A. Review of Sub-Models in Groundwater System Dynamics Models to Facilitate “Lego-like” Modeling. Water. 2025; 17(17):2559. https://doi.org/10.3390/w17172559
Chicago/Turabian StyleMoghadam Manesh, Mehdi, and Allyson Beall King. 2025. "Review of Sub-Models in Groundwater System Dynamics Models to Facilitate “Lego-like” Modeling" Water 17, no. 17: 2559. https://doi.org/10.3390/w17172559
APA StyleMoghadam Manesh, M., & Beall King, A. (2025). Review of Sub-Models in Groundwater System Dynamics Models to Facilitate “Lego-like” Modeling. Water, 17(17), 2559. https://doi.org/10.3390/w17172559