Blockchain-Enabled Water Quality Monitoring: A Comprehensive Review of Digital Innovations and Challenges
Abstract
1. Introduction
2. Blockchain Technology for Water Resources Protection and Irrigation
2.1. Hydrology and Water Resources for Our Human Life
2.2. Blockchain Applications in Water Resource Protection and Irrigation
3. Application of Blockchain Technology in Water Quality Monitoring
3.1. Overview of WQM
3.1.1. Blockchain in WQM
3.1.2. Blockchain-Enabled Monitoring Approaches
3.1.3. Key Water Quality Parameters
4. Synthesis and Critical Analysis
Area | Current State | Desired State | Gaps | Reference |
---|---|---|---|---|
Data integrity and trust | Conventional systems are prone to data fraud and tampering | Unchangeable records to increase trust and accountability | Blockchain implementation remains small-scale, with pilots, and is not fully implemented at a large scale | [23,85,91] |
Integration with IoT | IoT sensors are widely used, but data systems are isolated | Continuous integration of sensors and blockchain for real-time data logging | Technical standards and middleware for smooth integration are still lacking | [23,92] |
Scalability | Blockchains are being applied mostly in small-scale projects | Large-scale WQM projects apply BCT | Requires high storage | [23] |
Cost efficiency | Centralized systems are initially often less expensive | Cost-effective blockchain implementation with long-term savings | High costs and a lack of clear return on investment in many cases | [10] |
Policy and regulation | Regulations do not specifically require blockchain for WQM | Supportive policies for using blockchain in WQM | Lack of regulation prevents BCT adoption | [46] |
Technical skills and cross-departmental collaboration | Lack of IT or blockchain expertise in the water sector, and vice versa, the IT and blockchain sector lacks water monitoring knowledge | Trained workforce capable of operating BCT for WQM activities | Training, educational programs, and collaboration are inadequate | [46] |
Case Studies in Using BCT for Water Governance
5. Challenges, Limitations, and Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
BCT | Blockchain technology |
COD | Chemical oxygen demand |
BOD | Biological oxygen demand |
DO | Dissolved oxygen |
GIS | Geographic Information System |
IoT | Internet of Things |
SCADA | Supervisory control and data acquisition |
WASP | Water Quality Analysis Simulation Program |
WMS | Wastewater management system |
WQM | Water quality monitoring |
WSN | Wireless sensor network |
SDG | Sustainable Development Goal |
PoS | Proof-of-stake |
PoW | Proof-of-work |
EC | Electrical conductivity |
References
- Jiang, J.; Tang, S.; Han, D.; Fu, G.; Solomatine, D.; Zheng, Y. A comprehensive review on the design and optimization of surface water quality monitoring networks. Environ. Model. Softw. 2020, 132, 104792. [Google Scholar] [CrossRef]
- Huang, C.-W.; Lin, C.; Nguyen, M.K.; Hussain, A.; Bui, X.-T.; Ngo, H.H. A review of biosensor for environmental monitoring: Principle, application, and corresponding achievement of sustainable development goals. Bioengineered 2023, 14, 58–80. [Google Scholar] [CrossRef]
- Behmel, S.; Damour, M.; Ludwig, R.; Rodriguez, M.J. Water quality monitoring strategies—A review and future perspectives. Sci. Total Environ. 2016, 571, 1312–1329. [Google Scholar] [CrossRef]
- Ardila, A.; Rodriguez, M.J.; Pelletier, G. Spatiotemporal optimization of water quality degradation monitoring in water distribution systems supplied by surface sources: A chronological and critical review. J. Environ. Manag. 2023, 337, 117734. [Google Scholar] [CrossRef]
- Barcellos, D.d.S.; Souza, F.T.d. Optimization of water quality monitoring programs by data mining. Water Res. 2022, 221, 118805. [Google Scholar] [CrossRef]
- Keiser, D.A.; Shapiro, J.S. Consequences of the Clean Water Act and the demand for water quality. Q. J. Econ. 2019, 134, 349–396. [Google Scholar] [CrossRef]
- Fatimah, Y.A.; Govindan, K.; Murniningsih, R.; Setiawan, A. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod. 2020, 269, 122263. [Google Scholar] [CrossRef]
- Hoang, T.-D.; Ky, N.M.; Thuong, N.T.N.; Nhan, H.Q.; Ngan, N.V.C. Artificial intelligence in pollution control and management: Status and future prospects. In Artificial Intelligence and Environmental Sustainability: Challenges and Solutions in the Era of Industry 4.0; Ong, H.L., Doong, R.-A., Naguib, R., Lim, C.P., Nagar, A.K., Eds.; Springer: Singapore, 2022; pp. 23–43. ISBN 978-981-19-1434-8. [Google Scholar]
- Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187. [Google Scholar] [CrossRef]
- Xia, W.; Chen, X.; Song, C. A framework of blockchain technology in intelligent water management. Front. Environ. Sci. 2022, 10, 909606. [Google Scholar] [CrossRef]
- Pincheira, M.; Vecchio, M.; Giaffreda, R.; Kanhere, S.S. Cost-effective IoT devices as trustworthy data sources for a blockchain-based water management system in precision agriculture. Comput. Electron. Agric. 2021, 180, 105889. [Google Scholar] [CrossRef]
- Obaideen, K.; Yousef, B.A.A.; AlMallahi, M.N.; Tan, Y.C.; Mahmoud, M.; Jaber, H.; Ramadan, M. An overview of smart irrigation systems using IoT. Energy Nexus 2022, 7, 100124. [Google Scholar] [CrossRef]
- Hughes, L.; Dwivedi, Y.K.; Misra, S.K.; Rana, N.P.; Raghavan, V.; Akella, V. Blockchain research, practice and policy: Applications, benefits, limitations, emerging research themes and research agenda. Int. J. Inf. Manag. 2019, 49, 114–129. [Google Scholar] [CrossRef]
- Saravanan, K.; Anusuya, E.; Kumar, R.; Son, L.H. Real-time water quality monitoring using Internet of Things in SCADA. Environ. Monit. Assess. 2018, 190, 556. [Google Scholar] [CrossRef]
- Chowdury, M.S.U.; Emran, T.B.; Ghosh, S.; Pathak, A.; Alam, M.M.; Absar, N.; Andersson, K.; Hossain, M.S. IoT Based Real-time River Water Quality Monitoring System. Procedia Comput. Sci. 2019, 155, 161–168. [Google Scholar] [CrossRef]
- Kshetri, N. Can blockchain strengthen the internet of things? IT Prof. 2017, 19, 68–72. [Google Scholar] [CrossRef]
- Hakak, S.; Khan, W.Z.; Gilkar, G.A.; Haider, N.; Imran, M.; Alkatheiri, M.S. Industrial wastewater management using blockchain technology: Architecture, requirements, and future directions. IEEE IoTM 2020, 3, 38–43. [Google Scholar] [CrossRef]
- Alzahrani, A.I.A.; Chauhdary, S.H.; Alshdadi, A.A. Internet of Things (IoT)-Based Wastewater Management in Smart Cities. Electronics 2023, 12, 2590. [Google Scholar] [CrossRef]
- Iyer, S.; Thakur, S.; Dixit, M.; Katkam, R.; Agrawal, A.; Kazi, F. Blockchain and anomaly detection based monitoring system for enforcing wastewater reuse. In Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–7. [Google Scholar]
- Berlian, M.H.; Sahputra, T.E.R.; Ardi, B.J.W.; Dzatmika, L.W.; Besari, A.R.A.; Sudibyo, R.W.; Sukaridhoto, S. Design and implementation of smart environment monitoring and analytics in real-time system framework based on internet of underwater things and big data. In Proceedings of the 2016 International Electronics Symposium (IES), Denpasar, Indonesia, 29–30 September 2016; pp. 403–408. [Google Scholar]
- Tajudin, M.K.; Sarijari, M.A.; Ibrahim, A.K.M.; Rashid, R.A. Blockchain-based Internet of Thing for Smart River Monitoring System. In Proceedings of the Sustainable and Integrated Engineering International Conference, Putrajaya, Malaysia, 8–9 December 2019; p. 012082. [Google Scholar]
- Nie, X.; Fan, T.; Wang, B.; Li, Z.; Shankar, A.; Manickam, A. Big Data analytics and IoT in Operation safety management in Under Water Management. Comput. Commun. 2020, 154, 188–196. [Google Scholar] [CrossRef]
- Satilmisoglu, T.K.; Sermet, Y.; Kurt, M.; Demir, I. Blockchain opportunities for water resources management: A comprehensive review. Sustainability 2024, 16, 2403. [Google Scholar] [CrossRef]
- Wang, X.; Bamisile, O.; Chen, S.; Xu, X.; Luo, S.; Huang, Q.; Hu, W. Decarbonization of China’s electricity systems with hydropower penetration and pumped-hydro storage: Comparing the policies with a techno-economic analysis. Renew. Energy 2022, 196, 65–83. [Google Scholar] [CrossRef]
- Wu, X.; Xiang, X.; Chen, X.; Zhang, X.; Hua, W. Effects of cascade reservoir dams on the streamflow and sediment transport in the Wujiang River basin of the Yangtze River, China. Inland Waters 2018, 8, 216–228. [Google Scholar] [CrossRef]
- Binh, D.V.; Kantoush, S.A.; Saber, M.; Mai, N.P.; Maskey, S.; Phong, D.T.; Sumi, T. Long-term alterations of flow regimes of the Mekong River and adaptation strategies for the Vietnamese Mekong Delta. J. Hydrol. Reg. Stud. 2020, 32, 100742. [Google Scholar] [CrossRef]
- Paraschiv, L.S.; Paraschiv, S. Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Rep. 2023, 9, 535–544. [Google Scholar] [CrossRef]
- WMO. Guide to Hydrological Practice—Volume II: Management of Water Resources and Application of Hydrological Practices; World Meteorological Organization: Geneva, Switzerland, 2009; p. 302. [Google Scholar]
- Sun, J.; Chen, W.; Hu, B.; Xu, Y.J.; Zhang, G.; Wu, Y.; Hu, B.; Song, Z. Roles of reservoirs in regulating basin flood and droughts risks under climate change: Historical assessment and future projection. J. Hydrol. Reg. Stud. 2023, 48, 101453. [Google Scholar] [CrossRef]
- Fabian, P.S.; Kwon, H.-H.; Vithanage, M.; Lee, J.-H. Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in Asia: A review. Environ. Res. 2023, 225, 115617. [Google Scholar] [CrossRef] [PubMed]
- Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R.A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L. Global Changes in Drought Conditions Under Different Levels of Warming. Geophys. Res. Lett. 2018, 45, 3285–3296. [Google Scholar] [CrossRef]
- Slater, L.; Villarini, G.; Archfield, S.; Faulkner, D.; Lamb, R.; Khouakhi, A.; Yin, J. Global Changes in 20-Year, 50-Year, and 100-Year River Floods. Geophys. Res. Lett. 2021, 48, e2020GL091824. [Google Scholar] [CrossRef]
- Drenkhan, F.; Huggel, C.; Hoyos, N.; Scott, C.A. Hydrology, water resources availability and management in the Andes under climate change and human impacts. J. Hydrol. Reg. Stud. 2023, 49, 101519. [Google Scholar] [CrossRef]
- Try, S.; Tanaka, S.; Tanaka, K.; Sayama, T.; Lee, G.; Oeurng, C. Assessing the effects of climate change on flood inundation in the lower Mekong Basin using high-resolution AGCM outputs. Prog. Earth Planet. Sci. 2020, 7, 34. [Google Scholar] [CrossRef]
- Cui, T.; Tian, F.; Yang, T.; Wen, J.; Khan, M.Y.A. Development of a comprehensive framework for assessing the impacts of climate change and dam construction on flow regimes. J. Hydrol. 2020, 590, 125358. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Wu, S.; Dai, J.; Yu, L.; Xue, W.; Wang, F.; Gao, A.; Xue, C. A Framework for Methodological Options to Assess Climatic and Anthropogenic Influences on Streamflow. Front. Environ. Sci. 2021, 9, 765227. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, B.; Yang, D.; Wang, T.; Yang, Y.; Ma, T.; Santisirisomboon, J. Future changes in water resources, floods and droughts under the joint impact of climate and land-use changes in the Chao Phraya basin, Thailand. J. Hydrol. 2023, 620, 129454. [Google Scholar] [CrossRef]
- Brêda, J.P.L.F.; Cauduro Dias de Paiva, R.; Siqueira, V.A.; Collischonn, W. Assessing climate change impact on flood discharge in South America and the influence of its main drivers. J. Hydrol. 2023, 619, 129284. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Räsänen, T.A.; Someth, P.; Lauri, H.; Koponen, J.; Sarkkula, J.; Kummu, M. Observed river discharge changes due to hydropower operations in the Upper Mekong Basin. J. Hydrol. 2017, 545, 28–41. [Google Scholar] [CrossRef]
- Binh, D.V.; Kantoush, S.; Sumi, T. Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology 2020, 353, 107011. [Google Scholar] [CrossRef]
- Chalise, D.R.; Sankarasubramanian, A.; Ruhi, A. Dams and Climate Interact to Alter River Flow Regimes Across the United States. Earth’s Future 2021, 9, e2020EF001816. [Google Scholar] [CrossRef]
- Dang, A.T.N.; Kumar, L. Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: A case study of District 8, Ho Chi Minh city, Vietnam. Geomat. Nat. Hazards Risk. 2017, 8, 1792–1811. [Google Scholar] [CrossRef]
- Binh, D.V.; Kantoush, S.A.; Sumi, T.; Mai, N.P.; Ngoc, T.A.; Trung, L.V.; An, T.D. Effects of riverbed incision on the hydrology of the Vietnamese Mekong Delta. Hydrol. Process. 2021, 35, e14030. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Kantoush, S.; Binh, D.V.; Saber, M.; Vo, D.N.; Sumi, T. Understanding the anthropogenic development impacts on long-term flow regimes in a tropical river basin, Central Vietnam. Hydrol. Sci. J. 2023, 68, 341–354. [Google Scholar] [CrossRef]
- Sriyono, E. Digitizing water management: Toward the innovative use of blockchain technologies to address sustainability. Cogent Eng. 2020, 7, 1769366. [Google Scholar] [CrossRef]
- Dogo, E.M.; Salami, A.F.; Nwulu, N.I.; Aigbavboa, C.O. Blockchain and Internet of Things-Based Technologies for Intelligent Water Management System. In Artificial Intelligence in IoT; Al-Turjman, F., Ed.; Springer: Cham, Switzerland, 2019; pp. 129–150. ISBN 978-3-030-04110-6. [Google Scholar]
- Poonia, V.; Goyal, M.K.; Gupta, B.B.; Gupta, A.K.; Jha, S.; Das, J. Drought occurrence in Different River Basins of India and blockchain technology based framework for disaster management. J. Clean. Prod. 2021, 312, 127737. [Google Scholar] [CrossRef]
- Hangan, A.; Chiru, C.-G.; Arsene, D.; Czako, Z.; Lisman, D.F.; Mocanu, M.; Pahontu, B.; Predescu, A.; Sebestyen, G. Advanced Techniques for Monitoring and Management of Urban Water Infrastructures—An Overview. Water 2022, 14, 2174. [Google Scholar] [CrossRef]
- Wu, G.; Li, E.; Wang, M. Application and Prospect Analysis of Blockchain Technology in Water Resources Protection. In Proceedings of the International Conference on Blockchain Technology and Information Security (ICBCTIS), Huaihua, China, 15–17 July 2022; pp. 182–187. [Google Scholar]
- Majia, L. Innovative Research of Blockchain Technology in the field of Computer Monitoring of Hydropower Station. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021; pp. 963–966. [Google Scholar]
- Sukrutha, V.L.T.; Mohanty, S.P.; Kougianos, E.; Ray, C. G-DaM: A Blockchain based Distributed Robust Framework for Ground Water Data Management. In Proceedings of the 2021 IEEE International Symposium on Smart Electronic Systems (iSES), Rajasthan, India, 18–22 December 2021; pp. 261–266. [Google Scholar]
- Mohammadi, F.; Sanjari, M.; Saif, M. A Real-Time Blockchain-Based Multifunctional Integrated Smart Metering System. In Proceedings of the 2022 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 25–26 April 2022; pp. 1–3. [Google Scholar]
- Dey, K.; Shekhawat, U. Blockchain for sustainable e-agriculture: Literature review, architecture for data management, and implications. J. Clean. Prod. 2021, 316, 128254. [Google Scholar] [CrossRef]
- Torky, M.; Hassanein, A.E. Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges. Comput. Electron. Agric. 2020, 178, 105476. [Google Scholar] [CrossRef]
- Krishna, K.M.; Borole, Y.D.; Rout, S.; Negi, P.; Deivakani, M.; Dilip, R. Inclusion of Cloud, Blockchain and IoT Based Technologies in Agriculture Sector. In Proceedings of the 9th International Conference on Cyber and IT Service Management (CITSM), Bengkulu, Indonesia, 22–23 September 2021; pp. 1–8. [Google Scholar]
- Kumar, V.; Jain, V.; Sharma, B.; Chatterjee, J.M.; Shrestha, R. Smart City Infrastructure: The Blockchain Perspective; Wiley: New Jersey, NJ, USA, 2022; p. 384. ISBN 978-1-119-78554-5. [Google Scholar]
- Drăgulinescu, A.M.; Bălăceanu, C.; Osiac, F.E.; Roşcăneanu, R.; Chedea, V.S.; Suciu, G.; Păun, M.C.; Ştèania, B. IoT-based Smart Water Management Systems. In Proceedings of the 27th International Symposium for Design and Technology in Electronic Packaging (SIITME), Timișoara, Romania, 27–30 October 2021; pp. 51–56. [Google Scholar]
- Drăgulinescu, A.M.; Constantin, F.; Orza, O.; Bosoc, S.; Streche, R.; Negoita, A.; Osiac, F.; Balaceanu, C.; Suciu, G. Smart Watering System Security Technologies using Blockchain. In Proceedings of the 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitești, Romania, 1–3 July 2021; pp. 1–4. [Google Scholar]
- Munir, M.S.; Bajwa, I.S.; Cheema, S.M. An intelligent and secure smart watering system using fuzzy logic and blockchain. Comput. Electr. Eng. 2019, 77, 109–119. [Google Scholar] [CrossRef]
- Chethan, R.C.; Roopa, B.; Sahana, D.K. A survey on water quality monitoring system using IoT and Blockchain. Int. J. Adv. Res. Ideas Innov. Technol. 2020, 6, 998–1002. [Google Scholar] [CrossRef]
- Kristensen, P.B.J. Surface Water Quality Monitoring; European Topic Centre on Inland Waters; European Environment Agency: Copenhagen, Denmark, 1996. [Google Scholar]
- Bartram, J.; Balance, R. Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; United Nations Environment Programme: Nairobi, Kenya; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- UNEP. Global Water Quality Monitoring. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/40286/GEMS_Water_History.pdf?sequence=3&isAllowed=y (accessed on 12 June 2025).
- US_EPA. An Introduction to Water Quality Monitoring. Available online: https://archive.epa.gov/water/archive/web/html/monintr.html (accessed on 12 June 2025).
- Hamilton, S. The 5 Essential Elements of a Hydrological Monitoring Programme. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20123311093 (accessed on 12 June 2025).
- EEA. Surface Water Quality Monitoring. Available online: https://www.eea.europa.eu/publications/92-9167-001-4/page003.html (accessed on 12 June 2025).
- Ando, M. Surface water monitoring. In Water Quality and Standards, 1 ed.; Kubota, S., Tsuchiya, Y., Eds.; EOLSS Publications: Oxford, UK, 2010; ISBN 978-1-84826-447-2. [Google Scholar]
- WHO&UNICEF. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs; World Health Organization: Geneva, Switzerland; United Nations Children’s Fund: New York, NY, USA, 2021. [Google Scholar]
- British_Columbia. Water Quality Monitoring Program. Available online: https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-quality/water-quality-monitoring/canada-bc-water-quality-monitoring-program (accessed on 17 June 2025).
- MRC. Water Quality Conditions. Available online: https://portal.mrcmekong.org/monitoring/water-quality (accessed on 12 June 2025).
- Tulip, S.S.; Siddik, M.S.; Islam, M.N.; Rahman, A.; Haghighi, A.T.; Mustafa, S.T. The impact of irrigation return flow on seasonal groundwater recharge in western Bangladesh. Agric. Water Manag. 2022, 266, 107593. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, J.; Zhangm, F.; Wang, H.; Yang, L.; Sun, X.; Cheng, M.; Cheng, H.; Li, Z. Optimizing irrigation amount and potassium rate to simultaneously improve tuber yield, water productivity and plant potassium accumulation of drip-fertigated potato in northwest China. Agric. Water Manag. 2022, 264, 107493. [Google Scholar] [CrossRef]
- Gai, R.; Du, X.; Ma, S.; Chen, N.; Gao, S. A summary of the research on the foundation and application of blockchain technology. In Proceedings of the the 2020 3rd International Conference on Computer Information Science and Artificial Intelligence, Mongolia, China, 25–27 September 2020; p. 012025. [Google Scholar]
- Li, B.; Fang, Y.; Xu, W.; Wang, J.; Rui, L.; Lei, M. Distributed incentive mechanism based on hyperledger fabric. In Proceedings of the 2nd International Symposium on Automation, Information and Computing, Beijing, China, 3–6 December 2021; p. 012130. [Google Scholar]
- Hall, J.; Zaffiro, A.; Marx, R.; Kefauver, P.; Krishnan, R.; Haught, R.; Herrmann, J. On-line water quality parameters as indicators of distribution system contamination. J. Am. Water Work. Assoc. 2007, 99, 66–77. [Google Scholar] [CrossRef]
- Pahontu, B.I.; Petcu, A.; Predescu, A.; Arsene, D.A.; Mocanu, M. A blockchain approach for migrating a cyber-physical water monitoring solution to a decentralized architecture. Water 2023, 15, 2874. [Google Scholar] [CrossRef]
- Ortiz, Y.P. How Blockchain Technology Sould Improve the Quality of Drinking Water in Puerto Rico. Available online: https://ssrn.com/abstract=3266166 (accessed on 12 June 2025).
- Zecchini, M. Data Collection Storage and Processing for Water Monitoring Based on IoT and Blockchain Technologies. Master’s Thesis, Sapienza—University of Rome, Rome, Italy, 2019. [Google Scholar]
- Fascista, A. Toward integrated large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives. Sensors 2022, 22, 1824. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Zhou, T.; Li, W.; Liu, Z.; Zhang, J. A blockchain-based location privacy protection Incentive mechanism in crowd sensing networks. Sensors 2018, 18, 3894. [Google Scholar] [CrossRef]
- Zhang, J. Application of blockchain technology in water management and new energy economic development. Water Supply 2023, 23, 4227. [Google Scholar] [CrossRef]
- Cheng, S.W.; Choo, K.Y. Design of a smart water storage and trading platform based on blockchain technology. In Proceedings of the Multimedia University Engineering Conference (MECON 2022), Cyberjaya and Melaka, Selangor, Malaysia, 25–27 July 2022; pp. 343–357. [Google Scholar]
- An, C.T.; Tai, T.M.; Huy, P.L.N.; Ngoc, P.H. Blockchain-based platform for IoT sensor data management. In Proceedings of the International Conference on Intelligent Systems and Data Science, Can Tho, Vietnam, 11–12 November 2023; pp. 138–152. [Google Scholar]
- Lin, Y.-P.; Mukhtar, H.; Huang, K.-T.; Petway, J.R.; Lin, C.-M.; Chou, C.-F.; Liao, S.-W. Real-Time Identification of Irrigation Water Pollution Sources and Pathways with a Wireless Sensor Network and Blockchain Framework. Sensors 2020, 20, 3634. [Google Scholar] [CrossRef]
- Budiarti, R.P.N.; Tjahjono, A.; Hariadi, M.; Purnomo, M.H. Development of IoT for Automated Water Quality Monitoring System. In Proceedings of the 2019 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), Jember, Indonesia, 16–17 October 2019; pp. 211–216. [Google Scholar]
- Geetha, S.; Gouthami, S. Internet of things enabled real time water quality monitoring system. Smart Water 2017, 2, 1. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G.; Marques, G. Internet of Things for Water Quality Monitoring and Assessment: A Comprehensive Review. In Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications; Hassanien, A.E., Bhatnagar, R., Darwish, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 245–259. ISBN 978-3-030-51920-9. [Google Scholar]
- Rahman, M.M.; Bapery, C.; Hossain, M.J.; Hassan, Z.; Hossain, G.M.J.; Islam, M.M. Internet of Things (IoT) based water quality monitoring system. Int. J. Multidiscip. Curr. Educ. Res. 2020, 2, 168–180. [Google Scholar]
- Vijayakumar, N.; Ramya, R. The real time monitoring of water quality in IoT environment. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Tamil Nadu, India, 19–20 March 2015; pp. 1–5. [Google Scholar]
- Li, H.; Fu, D.; Yang, M.; Lin, S.; Zongzhong, S.; Liu, W.J.; Hu, Q.J.E.I.A.R. Research on improving the quality of groundwater self-monitoring via Blockchain technology. Environ. Impact Assess. Rev. 2025, 112, 107811. [Google Scholar] [CrossRef]
- Roy, A.; Kizhakkethottam, J. Research on intelligent river water quality management system using blockchain-internet of things. TELKOMNIKA 2024, 22, 1478–1490. [Google Scholar] [CrossRef]
- Mammadzada, K.; Iqbal, M.; Milani, F.; García-Bañuelos, L.; Matulevičius, R. Blockchain Oracles: A Framework for Blockchain-Based Applications; Springer: Cham, Switzerland; pp. 19–34.
- Shubhani, A.; Neeraj, K. Chapter Twenty—Attacks on blockchain. In The Blockchain Technology for Secure and Smart Applications across Industry Verticals; Shubhani, A., Neeraj, K., Pethuru, R., Eds.; Elsevier: New York, NY, USA, 2021; Volume 121, pp. 399–410. [Google Scholar]
- Rajabi, T.; Khalil, A.A.; Manshaei, M.H.; Rahman, M.A.; Dakhilalian, M.; Ngouen, M.; Jadliwala, M.; Uluagac, A.S. Feasibility Analysis for Sybil Attacks in Shard-Based Permissionless Blockchains. Distrib. Ledger Technol. 2023, 2, 25. [Google Scholar] [CrossRef]
- Platt, M.; McBurney, P. Sybil in the Haystack: A Comprehensive Review of Blockchain Consensus Mechanisms in Search of Strong Sybil Attack Resistance. Algorithms 2023, 16, 34. [Google Scholar] [CrossRef]
- Ahmad, R.W.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Omar, M. Blockchain for Waste Management in Smart Cities: A Survey. IEEE Access 2021, 9, 131520–131541. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, Z.; Du, H.; Niyato, D.; Wang, J. Verifiable and Efficient Semantic Blockchain. In Proceedings of the 2023 IEEE Global Communications Conference (GLOBECOM), Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 2602–2607. [Google Scholar]
- Eren, H.; Karaduman, Ö.; Gençoğlu, M.T. Security Challenges and Performance Trade-Offs in On-Chain and Off-Chain Blockchain Storage: A Comprehensive Review. Appl. Sci. 2025, 15, 3225. [Google Scholar] [CrossRef]
- Solaiman, E.; Wike, T.; Sfyrakis, I. Implementation and evaluation of smart contracts using a hybrid on- and off-blockchain architecture. Concurrency Comput. Pract. Exper. 2021, 33, e5811. [Google Scholar] [CrossRef]
- Frikha, T.; Ktari, J.; Amor, N.B.; Chaabane, F.; Hamdi, M.; Denguir, F.; Hamam, H.J.J.o.S.P.S. Low power blockchain in industry 4.0 case study: Water management in Tunisia. J. Signal Process. Syst. 2024, 96, 257–271. [Google Scholar] [CrossRef]
- Zeng, Y.-F.; Chen, C.-T.; Lin, G.-F. Practical application of an intelligent irrigation system to rice paddies in Taiwan. Agric. Water Manag. 2023, 280, 108216. [Google Scholar] [CrossRef]
- Arrubla-Hoyos, W.; Ojeda-Beltrán, A.; Solano-Barliza, A.; Rambauth-Ibarra, G.; Barrios-Ulloa, A.; Cama-Pinto, D.; Arrabal-Campos, F.M.; Martínez-Lao, J.A.; Cama-Pinto, A.; Manzano-Agugliaro, F. Precision agriculture and sensor systems applications in Colombia through 5G networks. Sensors 2022, 22, 7295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kasahara, S.; Shen, Y.; Jiang, X.; Wan, J. Smart contract-based access control for the internet of things. IEEE Internet Things J. 2018, 6, 1594–1605. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Victor, N.; Chengoden, R.; Ramalingam, M.; Selvi, G.C.; Maddikunta, P.K.R.; Donta, P.K.; Dustdar, S.; Jhaveri, R.H.; Gadekallu, T.R. Blockchain for internet of underwater things: State-of-the-art, applications, challenges, and future directions. Sustainability 2022, 14, 15659. [Google Scholar] [CrossRef]
- Berquin, A. Douleurs (1): Douleurs chroniques et MPR. Ann. Phys. Rehabil. Med. 2013, 56, e108–e113. [Google Scholar] [CrossRef]
- Humayun, M.; Jhanjhi, N.Z.; Hamid, B.; Ahmed, G. Emerging Smart Logistics and Transportation Using IoT and Blockchain. IEEE IoTM 2020, 3, 58–62. [Google Scholar] [CrossRef]
- Kapoor, P. Improving Water Governance and Transparency with Blockchain Architecture. Irrig. Drain. Syst. Eng. 2024, 13, 450. [Google Scholar]
- Enaya, A.; Fernando, X.; Kashef, R. Survey of Blockchain-Based Applications for IoT. Appl. Sci. 2025, 15, 4562. [Google Scholar] [CrossRef]
- Gomez Rivera, A.O.; Tosh, D.K.; Ghosh, U. Resilient sensor authentication in SCADA by integrating physical unclonable function and blockchain. Cluster Comput. 2022, 25, 1869–1883. [Google Scholar] [CrossRef]
- Haque, E.U.; Shah, A.; Iqbal, J.; Ullah, S.S.; Alroobaea, R.; Hussain, S. A scalable blockchain based framework for efficient IoT data management using lightweight consensus. Sci. Rep. 2024, 14, 7841. [Google Scholar] [CrossRef]
- Pineda, M.; Jabba, D.; Nieto-Bernal, W.; Pérez, A. Sustainable consensus algorithms applied to blockchain: A systematic literature review. Sustainability 2024, 16, 10552. [Google Scholar] [CrossRef]
Region and Study | Key Issues/Challenges | Implemented Solutions/Projects | Results/Impact | Ref. |
---|---|---|---|---|
Tunisia AI and smart contract-based platform for water consumption monitoring in the context of Industry 4.0 | - Need to modernize urban water infrastructure. - Lack of real-time leak detection capabilities. - Energy constraints for IoT devices. | - Developed an AI and smart contract-based platform to monitor and track water consumption. | - Improved the reliability and efficiency of urban water systems. | [104] |
Taiwan Blockchain-based water pollution monitoring system | - Risk of water pollution from industrial discharge. - Need for tamper-proof data to identify the source of pollution. | - Utilized a technological framework combining WSN, blockchain, GIS, and WASP simulation. | - Effectively monitored copper (Cu2+) and electrical conductivity (EC) in the irrigation system in Taoyuan County. | [23,85] |
Bangladesh IoT-based water quality monitoring system | - Shortage of drinking water in coastal areas due to complex hydrogeological forms and natural disasters. - Toxins from industrial sources pose a threat to safe drinking water. - Traditional monitoring methods are expensive, time-consuming, and inefficient. | - Developed a low-cost, sustainable IoT-based water quality measurement system. - Used sensors (pH, turbidity, temperature, dissolved oxygen, and salinity) connected to Arduino and NodeMCU to transmit real-time data to a web interface. - A QR code is used for easy access to water quality data for end users. | - The system helps authorities take necessary steps to provide solutions for affected areas. - Users can easily check if the water is safe to drink by scanning a QR code. | [101] |
Taiwan IoT-based smart irrigation system for rice paddies | - Seasonal water scarcity and an aging agricultural workforce. - Farmland is fragmented into small-scale farms. | - Implemented an IoT-based smart irrigation system for rice paddies. | - Saved 2.9–19.3% of water and reduced the labor burden in Chiayi County. | [102,105], |
Colombia Application of 5G/IoT in smart agriculture | - Smart agriculture is not widely adopted. - Rural digital divide and lack of network coverage. | - Proposed the use of 5G and IoT networks for implementing precision and smart agriculture. | - 5G can create many benefits for Colombian agriculture, improving production and efficiency. | [103] |
Netherlands Digital platform for irrigation management | - Need for efficient water management in agriculture. - Need for an easy-to-use tool for irrigation decision making. | - Designed a data-driven digital platform for irrigation management. | - The platform helps farmers optimize water usage based on real-time data. | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thuy, T.L.; Nguyen, M.-K.; Bui, T.D.; Yen, H.P.H.; Hoai, N.T.; Ngan, N.V.C.; Pradiprao Khedulkar, A.; Van, D.P.; Halog, A.; Hoang, T.-D. Blockchain-Enabled Water Quality Monitoring: A Comprehensive Review of Digital Innovations and Challenges. Water 2025, 17, 2522. https://doi.org/10.3390/w17172522
Thuy TL, Nguyen M-K, Bui TD, Yen HPH, Hoai NT, Ngan NVC, Pradiprao Khedulkar A, Van DP, Halog A, Hoang T-D. Blockchain-Enabled Water Quality Monitoring: A Comprehensive Review of Digital Innovations and Challenges. Water. 2025; 17(17):2522. https://doi.org/10.3390/w17172522
Chicago/Turabian StyleThuy, Trang Le, Minh-Ky Nguyen, Thuyet D. Bui, Hoang Phan Hai Yen, Nguyen Thi Hoai, Nguyen Vo Chau Ngan, Akhil Pradiprao Khedulkar, Dinh Pham Van, Anthony Halog, and Tuan-Dung Hoang. 2025. "Blockchain-Enabled Water Quality Monitoring: A Comprehensive Review of Digital Innovations and Challenges" Water 17, no. 17: 2522. https://doi.org/10.3390/w17172522
APA StyleThuy, T. L., Nguyen, M.-K., Bui, T. D., Yen, H. P. H., Hoai, N. T., Ngan, N. V. C., Pradiprao Khedulkar, A., Van, D. P., Halog, A., & Hoang, T.-D. (2025). Blockchain-Enabled Water Quality Monitoring: A Comprehensive Review of Digital Innovations and Challenges. Water, 17(17), 2522. https://doi.org/10.3390/w17172522