Energy Migration and Groundwater Response to Irregular Wave Forcing in Coastal Aquifers: A Spectral and Wavelet Analysis
Abstract
1. Introduction
2. Method
2.1. Governing Equation
2.2. Boundary Conditions
2.3. Model Validation
2.4. Wavelet Transform
3. Results
3.1. Variations in Energy Density Distribution
3.2. Variations in Wavelet Power Distribution
3.3. Variations in Cross-Wavelet Power Distribution
4. Discussion
4.1. The Mechanism of Low-Frequency Energy Enhancement Phenomenon Through Fourier Analysis
4.2. The Mechanism of Low-Frequency Energy Enhancement Phenomenon Through Wavelet Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mansard, E.P.D.; Barthel, V. Shoaling properties of bounded long waves. In Proceedings of the 19th International Conference on Coastal Engineering, Houston, TX, USA, 3–7 September 1984; Volume 19, p. 54. [Google Scholar]
- Philip, J.R. Periodic nonlinear diffusion: An integral relation and its physical consequences. Aust. J. Phys. 1973, 26, 513–521. [Google Scholar] [CrossRef]
- Parlange, J.Y.; Stagnitti, F.; Starr, J.L.; Braddock, R.D. Free-surface flow in porous media and periodic solution of the shallow-flow approximation. J. Hydrol. 1984, 70, 251–263. [Google Scholar] [CrossRef]
- Levanon, E.; Yechieli, Y.; Gvirtzman, H.; Shalev, E. Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers-Field measurements and numerical model. J. Hydrol. 2017, 551, 665–675. [Google Scholar] [CrossRef]
- Nielsen, P. Tidal dynamics of the water table in beaches. Water Resour. Res. 1990, 26, 2127–2134. [Google Scholar] [CrossRef]
- Li, L.; Barry, D.A.; Stagnitti, F. Beach water table fluctuations due to spring-neap tides: Moving boundary effects. Adv. Water Resour. 2000, 23, 817–824. [Google Scholar] [CrossRef]
- Hegge, B.J.; Masselink, G. Groundwater-table responses to wave run-up: An experimental study from Western Australia. J. Coast. Res. 1991, 7, 623–634. [Google Scholar]
- Cartwright, N.; Nielsen, P.; Li, L. Experimental observations of watertable waves in an unconfined aquifer with a sloping boundary. Adv. Water Resour. 2004, 27, 991–1004. [Google Scholar] [CrossRef]
- Raubenheimer, B.; Guza, R.; Elgar, S. Tidal water table fluctuations in a sandy ocean beach. Water Resour. Res. 1999, 35, 2313–2320. [Google Scholar] [CrossRef]
- Holman, R.A. Extreme value statistics for wave run-up on a natural beach. Coast. Eng. 1986, 9, 527–544. [Google Scholar] [CrossRef]
- Elfrink, B.; Baldock, T. Hydrodynamics and sediment transport in the swash zone: A review and perspectives. Coast. Eng. 2002, 45, 149–167. [Google Scholar] [CrossRef]
- Kubota, S.; Mizuguchi, M.; Takezawa, M. Prediction of field swash and reflected wave distribution. Coast. Eng. Jpn. 1993, 36, 111–131. [Google Scholar] [CrossRef]
- Waddell, E. Wave forcing of beach groundwater. In Proceedings of the 17th International Conference on Coastal Engineering, Sydney, Australia, 29 January 1980; American Society of Civil Engineers: Reston, VA, USA, 1980. [Google Scholar]
- Cartwright, N.; Baldock, T.E.; Nielsen, P.; Jeng, D.S.; Tao, L. Swash-aquifer interaction in the vicinity of the water table exit point on a sandy beach. J. Geophys. Res. Oceans 2006, 111, C09035. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, M.; Liu, H. The effects of capillary fringe on solitary wave induced groundwater dynamics. Coast. Eng. 2022, 177, 104202. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, M.; Liu, H. Does the capillary fringe account for the zero-phase lag phenomenon in the propagation of the wave-induced water table fluctuation in a coastal aquifer? Coast. Eng. 2023, 182, 104300. [Google Scholar] [CrossRef]
- Turner, I.L.; Nielsen, P. Rapid water table fluctuation within the beach face: Implications for swash zone sediment mobility? Coast. Eng. 1997, 32, 45–59. [Google Scholar] [CrossRef]
- Stark, N.; Mewis, P.; Reeve, B.; Florence, M.; Piller, J.; Simon, J. Vertical pore pressure variations and geotechnical sediment properties at a sandy beach. Coast. Eng. 2022, 172, 104058. [Google Scholar] [CrossRef]
- Sleath, J.F. Conditions for plug formation in oscillatory flow. Cont. Shelf Res. 1999, 19, 1643–1664. [Google Scholar] [CrossRef]
- Foster, D.L.; Bowen, A.J.; Holman, R.A.; Natoo, P. Field evidence of pressure gradient induced incipient motion. J. Geophys. Res.-Oceans 2006, 111, C05004. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, Y.; Liu, H. Experimental study of the solitary wave induced groundwater hydrodynamics. Coast. Eng. 2022, 177, 104193. [Google Scholar] [CrossRef]
- Yu, X.; Xin, P.; Wang, S.S.; Shen, C.; Li, L. Effects of multi-constituent tides on a subterranean estuary. Adv. Water Resour. 2019, 124, 53–67. [Google Scholar] [CrossRef]
- Robinson, C.; Xin, P.; Li, L.; Barry, D.A. Groundwater flow and salt transport in a subterranean estuary driven by intensified wave conditions. Water Resour. Res. 2014, 50, 165–181. [Google Scholar] [CrossRef]
- Shi, F.; Kirby, J.T.; Harris, J.C.; Geiman, J.D.; Grilli, S.T. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model. 2012, 43–44, 36–51. [Google Scholar] [CrossRef]
- Hughes, J.D.; Sanford, W.W. SUTRA-MS, a Version of SUTRA Modifed to Simulate Heat and Multiple-Solute Transport. GeolSurv Open-File Report. 2004. Available online: https://water.usgs.gov/nrp/gwsoftware/SutraMS/OFR2004-1207.pdf (accessed on 6 June 2021).
- Chen, W.; Kong, J.; Wang, J.; Shen, C.; Luo, Z. Impact of sandy beach recovery on solute transport in coastal unconfined aquifers. Hydrogeol. J. 2023, 31, 1311–1330. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, C.; Kong, J.; Xin, P.; Lu, C.; Zhao, Z.; Li, L. Solute transport influenced by unstable flow in beach aquifers. Adv. Water Resour. 2019, 125, 68–81. [Google Scholar] [CrossRef]
- Shen, C.; Fan, Y.; Wang, X.; Song, W.; Li, L.; Lu, C. Effects of land reclamation on a subterranean estuary. Water Resour. Res. 2022, 58, e2022WR032164. [Google Scholar] [CrossRef]
- Robinson, C.; Li, L.; Barry, D. Effect of tidal forcing on a subterranean estuary. Adv. Water Resour. 2007, 30, 851–865. [Google Scholar] [CrossRef]
- Robinson, C.; Li, L.; Prommer, H. Tide-induced recirculation across the aquifer-ocean interface. Water Resour. Res. 2007, 43, W0742. [Google Scholar] [CrossRef]
- Xin, P.; Robinson, C.; Li, L.; Barry, D.A.; Bakhtyar, R. Effects of wave forcing on a subterranean estuary. Water Resour. Res. 2010, 46, W12505. [Google Scholar] [CrossRef]
- Izadparast, A.H.; Niedzwecki, J.M. Estimating the potential of ocean wave power resources. Ocean Eng. 2011, 38, 177–185. [Google Scholar] [CrossRef]
- Kumar, V.S.; Kumar, K.A. Spectral characteristics of high shallow water waves. Ocean Eng. 2008, 35, 900–911. [Google Scholar] [CrossRef]
- Nair, M.A.; Kumar, V.S. Spectral wave climatology off Ratnagiri, northeast Arabian Sea. Nat. Hazards 2016, 82, 1565–1588. [Google Scholar] [CrossRef]
- Nair, M.A.; Amrutha, M.M.; Kumar, V.S. Spectral wave characteristics in the coastal waters of the central west coast of India during tropical cyclone Kyarr. Ocean Dynam. 2022, 72, 151–168. [Google Scholar] [CrossRef]
- Castelle, B.; Bujan, S.; Ferreira, S.; Dodet, G. Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast. Mar. Geol. 2017, 385, 41–55. [Google Scholar] [CrossRef]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, H.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. 1973, 12, 95. [Google Scholar]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Boggess, A.; Narcowich, F.J. A First Course in Wavelets with Fourier Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61. [Google Scholar] [CrossRef]
- Hughes, M.G.; Aagaard, T.; Baldock, T.E. Spectral signatures for swash on reflective, intermediate and dissipative beaches. Mar. Geol. 2014, 355, 88–97. [Google Scholar] [CrossRef]
- Sous, D.; Lambert, A.; Rey, V.; Michallet, H. Swash-groundwater dynamics in a sandy beach laboratory experiment. Coast. Eng. 2013, 80, 122–136. [Google Scholar] [CrossRef]
- Masselink, G. Group bound long waves as a source of infragravity energy in the surf zone. Cont. Shelf Res. 1995, 15, 1525–1547. [Google Scholar] [CrossRef]
- Baldock, T.E.; Huntley, D.A.; Bird, P.A.D.; O’Hare, T.; Bullock, G.N. Breakpoint generated surf beat induced by bichromatic wave groups. Coast. Eng. 2000, 39, 213–242. [Google Scholar] [CrossRef]
- Deng, X.; Liu, H.; Cheng, Z.; Wang, K. Swash seepage velocity estimation using image analysis. Procedia Eng. 2015, 116, 436–445. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit | Value |
---|---|---|---|
Hydraulic conductivity | m/s | ||
Porosity | - | 0.4 | |
Longitudinal dispersivity | m2 | 0.5 | |
Transverse dispersivity | m2 | 0.05 | |
Molecular diffusion | m2/s | ||
Residual water saturation | - | 0.1 | |
Pore size distribution index | n | - | 2.68 |
Inverse of air entry suction parameter | a | 1/m | 14.5 |
Seawater density | kg/m3 | 1025 | |
Freshwater density | kg/m3 | 1000 | |
Seawater concentration | ppt | 35 | |
Freshwater concentration | ppt | 0.01 | |
Beach slope | Sb | - | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Kong, J.; Huang, S.; Xie, H.; Wang, J.; Gao, C. Energy Migration and Groundwater Response to Irregular Wave Forcing in Coastal Aquifers: A Spectral and Wavelet Analysis. Water 2025, 17, 2513. https://doi.org/10.3390/w17172513
Chen W, Kong J, Huang S, Xie H, Wang J, Gao C. Energy Migration and Groundwater Response to Irregular Wave Forcing in Coastal Aquifers: A Spectral and Wavelet Analysis. Water. 2025; 17(17):2513. https://doi.org/10.3390/w17172513
Chicago/Turabian StyleChen, Weilun, Jun Kong, Saihua Huang, Huawei Xie, Jun Wang, and Chao Gao. 2025. "Energy Migration and Groundwater Response to Irregular Wave Forcing in Coastal Aquifers: A Spectral and Wavelet Analysis" Water 17, no. 17: 2513. https://doi.org/10.3390/w17172513
APA StyleChen, W., Kong, J., Huang, S., Xie, H., Wang, J., & Gao, C. (2025). Energy Migration and Groundwater Response to Irregular Wave Forcing in Coastal Aquifers: A Spectral and Wavelet Analysis. Water, 17(17), 2513. https://doi.org/10.3390/w17172513