Research on the Energy Distribution of Hump Characteristics Under Pump Mode in a Pumped Storage Unit Based on Entropy Generation Theory
Abstract
1. Introduction
2. Mathematical Model
2.1. Governing Equation
2.2. Turbulence Model
2.3. Entropy Generation Theory
3. Model Setup and Validation
3.1. Numerical Model Setup
3.2. Boundary Conditions Setting
3.3. Grid Independence
3.4. Test Verification
4. Results and Discussion
4.1. Analysis of External Characteristic Test Results
4.2. Entropy Generation Evolution Characteristics
4.3. Correlation Between Entropy Generation Loss and Internal Flow Distribution
4.3.1. Analysis Between Runner Energy Loss and Internal Flow Characteristics
4.3.2. Analysis Between Dual-Blade-Row Cascade Energy Loss and Internal Flow Characteristics
4.3.3. Analysis Between Draft Tube Energy Loss and Internal Flow Characteristics
4.3.4. Analysis of Entropy Generation Distribution on Runner Blade Wall Surfaces
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ciocan, G.; Desvignes, V.; Combes, J.; Parkinson, E.; Kueny, J. Experimental and numerical analysis of rotor-stator interaction in a pump-turbine. In Proceedings of the XIX International Symposium on Hydraulic Machinery and Cavitation, Singapore, 9–11 September 1998. [Google Scholar]
- Li, Q.; Wang, Y.; Liu, C.; Han, W. Study on Unsteady internal flow characteristics in hump zone of mixed flow pump-turbine. J. Gansu Sci. 2017, 29, 54–58. [Google Scholar]
- Jia, J.; Zhang, J.; Qu, Y.; Cai, H.; Chen, S. Study on hump characteristics of pump-turbine with different guide vane exit angles. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Guangzhou, China, 23–24 October 2019; p. 072038. [Google Scholar]
- Wang, H.; Wu, G.; Wu, W.; Wei, X.; Chen, Y.; Li, H. Numerical simulation and analysis of the hump district of Francis pump-turbine. Shuili Fadian Xuebao (J. Hydroelectr. Eng.) 2012, 31, 253–258. [Google Scholar]
- Zhang, C.; Xia, L.; Diao, W. Influence of flow structures evolution on hump characteristics of a model pump-turbine in pump mode. J. Zhejiang Univ. (Eng. Sci.) 2017, 51, 162–171. [Google Scholar]
- Wang, X.; Liu, D.; Liu, X.; Wen, T.; Lianchen, X. Analysis on flow structures and pressure pulsation in vaneless space of reversible pump-turbine. J. Hydrol. Eng. 2021, 40, 59–72. [Google Scholar]
- Zhao, H.; Wang, F.; Wang, C.; Wang, B. Investigation on the hump region generation mechanism of pump mode in low-head pumped hydro-storage unit. Phys. Fluids 2022, 34, 115148. [Google Scholar] [CrossRef]
- Yang, W.; Wang, H.; Zhang, T. Numerical Analysis of the Pressure Fluctuation in Hump Zone of Mixed Flow Pump-turbine. Hydropower New Energy 2022, 36, 39–43. [Google Scholar]
- Zhang, Z.; Meng, X.; An, D. Research on Hump Characteristics of Pump-turbine in Pump Mode Based on SBES Turbulence Model. China Water Power Electrif. 2025, 3, 1–11+24. [Google Scholar]
- Li, D.; Song, Y.; Lin, S.; Wang, H.; Qin, Y.; Wei, X. Effect mechanism of cavitation on the hump characteristic of a pump-turbine. Renew. Energy 2021, 167, 369–383. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Z.; Tian, D. Influence of Guide Vane Opening on External Characteristics and Stability of Pump-turbine at Zero Flow Condition. Water Resour. Power 2021, 39, 158–160+157. [Google Scholar]
- Pan, J.; Zhu, D.; Tao, R.; Xiao, R. Analysis of h ump energy characteristics of pumped storage unit under pump condition. J. Hydropower Pumped Storage 2023, 9, 33–39. [Google Scholar]
- Yang, G.; Shen, X.; Shi, L.; Zhang, D.; Zhao, X.; van Esch, B.B. Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism. Energy 2023, 273, 127163. [Google Scholar] [CrossRef]
- Denton, J.D. Loss Mechanisms in Turbomachines; American Society of Mechanical Engineers: New York, NY, USA, 1993; Volume 78897. [Google Scholar]
- Moore, J.; Moore, J.G. Entropy Generation Rates from Viscous Flow Calculations: Part I—A Turbulent Boundary Layer Flow; American Society of Mechanical Engineers: New York, NY, USA, 1983; Volume 79511. [Google Scholar]
- Guan, X. Modern pumps theory and design. China Astronaut. 2011, 35, 265–266. [Google Scholar]
- Herwig, H.; Kock, F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems. Heat Mass Transf. 2007, 43, 207–215. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Qin, Y.; Han, L.; Wei, X.; Qin, D. Entropy generation analysis of hysteresis characteristic of a pump-turbine model. Energy Convers. Manag. 2017, 149, 175–191. [Google Scholar] [CrossRef]
- Li, D. Investigation on Flow Mechanism and Transient Characteristics in Hump Region of a Pump-Turbine; Harbin Institute of Technology: Harbin, China, 2017. [Google Scholar]
- Zhou, Z.; Zhang, Z.; Sun, Z.; Li, Z.; Liu, K.; Zheng, Y.; Kan, K. Generati on Study on internal hydraulie loss characteristics of pump-turbinehump region basedonentropytheory. Adv. Sci. Technol. Water 2025, 45, 62–67. [Google Scholar]
- Ansari, B.; Aligholami, M.; Rostamzadeh Khosroshahi, A. An experimental and numerical investigation into using hydropower plant on oil transmission lines. Energy Sci. Eng. 2022, 10, 4397–4410. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- Zhang, F.; Fang, M.; Tao, R.; Liu, W.; Gui, Z.; Xiao, R. Investigation of energy loss patterns and pressure fluctuation Spectrum for pump-turbine in the reverse pump mode. J. Energy Storage 2023, 72, 108275. [Google Scholar] [CrossRef]
- Gong, R.; Wang, H.; Chen, L.; Li, D.; Zhang, H.; Wei, X. Application of entropy generation theory to hydro-turbine hydraulic analysis. Sci. China Technol. Sci. 2013, 56, 1636–1643. [Google Scholar] [CrossRef]
- Duan, L.; Wu, X.; Ji, Z.; Xiong, Z.; Zhuang, J. The flow pattern and entropy generation in an axial inlet cyclone with reflux cone and gaps in the vortex finder. Powder Technol. 2016, 303, 192–202. [Google Scholar] [CrossRef]
- Li, Z.; Xu, H.; Feng, J.; Qian, S. Wall pressure and fluetuating characteristics of a siphon outlet pipe during siphoning formation process. Adv. Sci. Technol. Water 2023, 43, 43–49+80. [Google Scholar]
- Sun, C.; Lu, Y.; Zhang, S.; Zhang, Z.; Dong, H.; Wang, Z. Study on Internal Flow and Energy Loss Mechanism of Pump-turbine under Abnormally Low Head and Ultra-low Output. Chin. J. Hydrodyn. 2025, 40, 219–227. [Google Scholar]
- Kan, K.; Yang, H.; Zheng, Y.; Duan, H.; Chen, H. Analysis of hydraulic loss mechanism in inverse S-shaped region of pump-turbine based on entropy generation theory. J. Hydraul. Eng. 2023, 54, 323–332. [Google Scholar]
- Lu, J.L.; Wang, L.K.; Liao, W.L.; Zhao, Y.P.; Ji, Q.F. Entropy generation analysis for vortex rope of a turbine model. J. Hydraul. Eng. 2019, 50, 233–241. [Google Scholar]
- Li, D.; Gui, Z.; Yan, X.; Zheng, Y.; Kan, K. Hydraulic loss distribution of pump-turbine operated in pump mode based on entropy generation method. South-North Water Transf. Water Sci. Technol. 2023, 21, 390–398. [Google Scholar]
- Hu, J.; Wang, Q.; Meng, Z.; Song, H.; Chen, B.; Shen, H. Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant. Sustainability 2023, 15, 8327. [Google Scholar] [CrossRef]
Variable | Symbol | Value |
---|---|---|
Design flow rate | 0.12 [m3/s] | |
Design pump head | 7.84 [m] | |
Design rotational speed | 400 [r/min] | |
Count of runner blades | 12 | |
Count of stay vanes | 20 | |
The inlet runner at hub | 300.1 [mm] | |
Runner outlet diameter | 574 [mm] |
Domain | Coarse | Medium | Fine | |||
---|---|---|---|---|---|---|
Grids | Quality | Grids | Quality | Grids | Quality | |
Volute | 632,967 | 0.35 | 994,290 | 0.43 | 2,282,624 | 0.47 |
Runner | 1,473,216 | 0.30 | 1,795,213 | 0.33 | 2,032,896 | 0.37 |
Guide vanes | 287,280 | 0.42 | 642,180 | 0.45 | 1,347,758 | 0.48 |
Stay vanes | 508,329 | 0.44 | 1,461,133 | 0.53 | 1,848,867 | 0.53 |
Draft tube | 579,478 | 0.48 | 964,680 | 0.50 | 1,714,944 | 0.51 |
Total | 3,481,270 | 5,857,496 | 9,227,089 | |||
Computational Time | 48 min | 50 min | 55 min |
Parameter | Equipment | Type | Precision |
---|---|---|---|
Flow velocity | Electromagnetic Flowmeter | WP-EMF-A | ±0.2% |
Head | pressure sensor | WIDEPLUS-8 | ±0.15% |
Pressure pulsation | pressure sensor | WIDEPLUS-8 | ±0.15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Hu, J.; Liu, B.; Li, P.; Xie, F.; Hu, X.; Cui, J.; Zhang, R. Research on the Energy Distribution of Hump Characteristics Under Pump Mode in a Pumped Storage Unit Based on Entropy Generation Theory. Water 2025, 17, 2458. https://doi.org/10.3390/w17162458
Fang Y, Hu J, Liu B, Li P, Xie F, Hu X, Cui J, Zhang R. Research on the Energy Distribution of Hump Characteristics Under Pump Mode in a Pumped Storage Unit Based on Entropy Generation Theory. Water. 2025; 17(16):2458. https://doi.org/10.3390/w17162458
Chicago/Turabian StyleFang, Yunrui, Jianyong Hu, Bin Liu, Puxi Li, Feng Xie, Xiujun Hu, Jingyuan Cui, and Runlong Zhang. 2025. "Research on the Energy Distribution of Hump Characteristics Under Pump Mode in a Pumped Storage Unit Based on Entropy Generation Theory" Water 17, no. 16: 2458. https://doi.org/10.3390/w17162458
APA StyleFang, Y., Hu, J., Liu, B., Li, P., Xie, F., Hu, X., Cui, J., & Zhang, R. (2025). Research on the Energy Distribution of Hump Characteristics Under Pump Mode in a Pumped Storage Unit Based on Entropy Generation Theory. Water, 17(16), 2458. https://doi.org/10.3390/w17162458